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Abstract: Chromosomal instability (CIN) is a characteristic feature of cancer. In this review, 

we concentrate on mechanisms leading to CIN in myeloid neoplasia, i.e., myelodysplastic 

syndrome (MDS) or acute myeloid leukemia (AML). The pathogenesis of myeloid neoplasia 

is complex and involves genetic and epigenetic alterations. Chromosome aberrations define 

specific subgroups and guide clinical decisions. Genomic instability may play an essential 

role in leukemogenesis by promoting the accumulation of genetic lesions responsible for 

clonal evolution. Indeed, disease progression is often driven by clonal evolution into 

complex karyotypes. Earlier studies have shown an association between telomere 

shortening and advanced MDS and underlined the important role of dysfunctional 

telomeres in the development of genetic instability and cancer. Several studies link 

chromosome rearrangements and aberrant DNA and histone methylation. Genes implicated 

in epigenetic control, like DNMT3A, ASXL1, EZH2 and TET2, have been discovered to be 

mutated in MDS. Moreover, gene-specific hypermethylation correlates highly significantly 

with the risk score according to the International Prognostic Scoring System. In AML, 

methylation profiling also revealed clustering dependent on the genetic status. Clearly, 

genetic instability and clonal evolution are driving forces for leukemic transformation. 

Understanding the mechanisms inducing CIN will be important for prevention and for 

novel approaches towards therapeutic interventions. 
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1. Introduction 

1.1. Chromosomal Instability in Cancer 

Maintenance of genomic integrity is of the utmost importance for an organism’s survival and a 

prerequisite for successfully passing on genetic information. However, the stability of the genome is 

constantly threatened by DNA replication errors and by DNA damage due to a multitude of exogenous 

and endogenous factors, e.g., oxidative stress. The cell continuously counteracts these processes and 

has developed a complex network to repair genetic alterations. Nonetheless, a small number of cells 

may not succeed in repairing damaged DNA. In this situation, the cell usually enters apoptosis. 

However, in some cases mutations, like in oncogenes or tumor suppressor genes, may occur that allow 

the cell to bypass apoptosis and to survive. If such a cell acquires additional genetic alterations 

providing a clonal advantage, this may lead to malignant transformation and ultimately to cancer [1]. 

Genomic instability may result in numerous defects like replication errors, telomere dysfunction, 

epigenetic changes or defective DNA repair as a few examples. Chromosomal instability (CIN), a form 

of genomic instability, is by definition the cell-to-cell variability with regard to chromosomal changes, 

e.g., the rate of gross chromosome changes like an imbalance in the number of chromosomes per cell 

and an enhanced rate of loss of heterozygosity [2–4]. As such, chromosomal instability may predispose 

to the outgrowth of clones containing ―fixed‖ chromosome aberrations. Chromosome aberrations in 

myeloid neoplasms include whole-chromosome aberrations like monosomy or trisomy or structural 

changes like deletions, translocations and inversions [5]. Therefore, Bajani et al. [6] suggest to distinguish 

between structural chromosomal instability (S-CIN), developed at unstable genomic regions, or 

through aberrant DNA repair or methylation and numerical CIN (N-CIN), which occur due to mitotic 

segregation errors. Chromosomal instability can be found in all kinds of human cancer and is usually a 

strong negative prognostic indicator [7,8]. Also in myelodysplastic syndromes, elevated chromosomal 

instability, i.e., the cell-to-cell variability as determined by fluorescence in situ hybridization, 

correlates with poor outcome, irrespective of the cytogenetic subtype [9]. 

1.2. Role of Chromosomal Aberrations in Human Leukemia 

In this review we discuss the role of chromosomal and genomic instability in myeloid neoplasia, 

like myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML). MDS are a heterogeneous 

group of malignant clonal disorders of hematopoietic stem cells, characterized by dysplastic cells and 

an ineffective hematopoiesis in one or more myeloid cell lineages [10]. According to the World Health 

Organization (WHO), MDS is subdivided into different morphological subtypes. The International 

Prognostic Scoring System (IPSS) categorizes these subtypes into different risk groups (low, 

intermediate 1 and 2 and high) based on the number of cytopenias, the karyotype, and the percentage 

of blasts in the bone marrow [10,11]. Generally, in MDS, the amount of blasts, the immature 
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hematopoietic progenitor cells, in the bone marrow is less than 20%. This definition distinguishes it 

from AML with an amount of blasts of more than 20% [12]. In about 10% to 50% of cases, strongly 

depending on the respective subtype, myelodysplastic syndromes show a propensity to progression 

into AML [13,14]. 

In MDS, clonal chromosome aberrations have important diagnostic, prognostic and clinical 

relevance [10,15]. In a high amount of cases, MDS shows progression into AML, which is often 

associated with karyotypic evolution, i.e., the acquisition of additional chromosomal aberrations. 

In general, clonal chromosome aberrations can be found in about half of the AML and MDS 

patients [16]. MDS shows mainly unbalanced aberrations [17]. The most common chromosomal 

aberrations in MDS are monosomy 7, loss of the Y chromosome, trisomies 8 and 21 and deletions in 

5q, 7q, 17p and 20q. Losses of 5q, 7q and 17p are also frequent aberrations of complex karyotypes, 

which by definition contain three or more clonal aberrations. 

Cytogenetic abnormalities in AML and MDS are associated with distinct clinical and morphological 

subtypes and often predict disease outcome. For example, MDS with an isolated del(5q) defines a 

subtype of MDS with a favorable outcome, a median survival of 77.2 months, and a low risk of 

transformation into AML. In contrast, complex karyotypes are associated with a very high risk of 

transformation into AML and with a very poor prognosis, i.e., a median survival of 8.8 months [10]. 

Since complex karyotypes frequently occur in patients with secondary MDS, who have been treated 

with combined chemo- and radiotherapy due to a primary malignancy, increased genomic instability 

may lead to the development of aberrant clones. 

As MDS typically shows unbalanced aberrations like deletions and monosomies, it can be concluded 

that the molecular mechanism in MDS is predominantly loss or inactivation of a tumor suppressor 

gene, in contrast to AML, where often balanced translocations and inversions occur that may induce 

proliferation or inhibit differentiation [16,18]. As examples, a translocation t(8;21)/AML1-ETO fusion 

and an inv(16)/CBFb-MYH11 fusion result in the inactivation of core binding factors that have an 

essential role in myeloid differentiation. Both AML subtypes are associated with a good prognosis [12]. 

A t(15;17)/PML-RARA fusion resulting in the inactivation of the retinoid acid receptor α also defines 

an AML subtype with good prognosis. The molecular defect can be counteracted by treatment with 

retinoic acid, which induces the differentiation of the myeloid blasts [19]. Inversion of 3q, translocations 

of MLL, a t(6;9)/DEK-NUP214 fusion or a complex aberrant karyotype are each associated with a poor 

prognosis [12,20,21]. 

Genes frequently found to be mutated in karyotypically normal AML are NPM1, FLT-3 and 

CEBPalpha [22]. Recently, recurrent mutations with prognostic significance have been discovered in 

MDS, among those mutations in the genes TP53, EZH2, ETV6, GNAS, RUNX1, and ASXL1 [23]. 

1.3. Mechanisms to Induce CIN in Myeloid Neoplasia 

The pathogenesis of myeloid neoplasia is generally complex and involves genetic, epigenetic and 

immune-mediated mechanisms [11]. As in many cancer types, chromosomal instability and clonal 

evolution play an essential role in leukemogenesis by promoting the accumulation of genetic lesions 

responsible for malignant transformation. Although exogenous factors like previous chemo- and 
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radiotherapy increase the risk to develop MDS and AML, and particularly those with complex karyotypes, 

the exact mechanisms inducing CIN are not clear. 

Aberrations specific for MDS and AML, particularly terminal deletions, unbalanced translocations 

as well as gains and losses, could theoretically result from dysfunctional telomeres [24]. Earlier studies 

have shown an association between shorter telomeres and advanced MDS [25,26]. Also in AML, an 

increasing number of aberrations seem to be associated with ongoing telomere erosion, resulting in 

critically short telomeres of one or more chromosomes [24]. Data from animal models and in vitro 

experiments have elucidated an important role of dysfunctional telomeres in the development of 

genetic instability and cancer, particularly MDS and AML [24,27]. Recent studies not only underlined 

the significance of the mean telomere length, but particularly of single or very few critically short, 

dysfunctional telomeres causing chromosomal instability [28,29]. In the clinical context, however, the 

relevance of critically short telomeres for the development of CIN in MDS and AML remains to  

be shown. 

The identification of recurrent mutations in genes involved in the epigenetic regulation in patients 

with MDS has led to new insights into the pathophysiology of this disorder. Of particular interest is the 

recent recognition of mutations in genes involved in histone modification (EZH2 and ASXL1) and 

DNA methylation (DNMT3A and TET2). For time-controlled activation and silencing of tissue-specific 

genes in eukaryotic cells, continuous remodeling of the chromatin structure is necessary. Epigenetic 

factors modify the DNA and DNA-associated histones, thereby inducing conformational changes of 

the chromatin that allow activation or repression of gene expression. Mutations of epigenetic modifiers 

provide an important link between genetic and epigenetic alterations in MDS. In AML, gene 

expression studies also observed differential expression of the DNMT3A and DNMT3B genes, coding 

for DNA methyltransferases [30]. Furthermore, aberrant DNA methylation patterns helped to identify 

new subgroups of AML. Notably, cytogenetic subgroups are characterized by distinct DNA methylation 

patterns. Particularly for AML with normal karyotype, they define a methylation-based outcome 

predictor for disease-free and overall survival [31,32]. 

Recently, the important role of histone methylation for the induction of chromosomal and genomic 

instability and leukemia pathology in humans and mice became evident. Of course, it is not only telomeric 

dysfunction or epigenetic alterations that play an important role in the induction of chromosomal and 

genomic instability in myeloid malignancies. Chromosome aberrations have, for example, also been 

described to occur due to defective cytokinesis or cell cycle regulation [33,34]. Also, increased DNA 

damage, either via internal mechanisms leading to increased reactive oxygen species (ROS) or external 

factors like chemicals, cancer therapy or radiation, or a defective DNA damage repair in general due to 

mutations, may lead to aberrations in myeloid leukemia [35–37]. 

Yet, the mechanisms by which epigenetic alterations and telomere dysfunction contribute to disease 

pathogenesis are a highly active area of research and therefore we would like to address the following 

question in this review: How can telomeres and epigenetics contribute to inducing chromosomal and 

genomic instability and what role does this play in leukemogenesis? 
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2. Telomeres 

2.1. Telomeres and CIN 

Progressive telomere shortening due to the end-replication problem is one of the molecular 

mechanisms underlying aging. Starting at a length of around 15 kb and with an approximate telomere 

loss of 30–150 bp with each cell division, continued telomere length shortening can be observed over 

time. However, within the first two years of life, a more rapid loss of 1,000–3,000 bp/year takes place. 

Furthermore, accelerated telomere shortening can also be observed after the age of 60 years. The 

reason for this might, for example, lie in replicative stress due to a diminishing hematopoietic stem cell 

pool [38]. Yet, excessive telomere shortening also occurs during excessive proliferation after stem cell 

depletion or in cancer cells. 

As already mentioned, short telomeres, e.g., due to excessive proliferation, induce senescence when 

they reach a critical length of about 5–8 kb, the so-called Hayflick limit [39]. Importantly, single 

critically short telomeres are sufficient to elicit this cellular response. This finding demonstrates that, 

besides the median telomere length of the cell, the length of the single chromosome arms is also of 

great importance [40]. 

Dysfunctional telomeres lead to senescence and thus limit the proliferative potential of a stem cell. 

This might possibly lead to selection of stem cells with a defective DNA damage response, in which 

no cell-cycle arrest occurs due to deficient or low repair capacity and which are therefore prone to 

chromosomal instability predisposing them for leukemia [41]. 

Usually, cells that are able to circumvent senescence enter a further growth arrest phase (crisis), in 

which critically short telomeres of about 3–4 kb tend to fuse with other ―free ends‖ and thus promote 

further genomic instability [42]. Elimination of cells with short telomeres due to either aging or 

excessive proliferation is thus an important tumor-suppressive mechanism of the cell and a hurdle to 

tumor progression [43,44]. 

However, in the case of further mutations as in TP53 and RB, cells may be able to bypass 

senescence and crisis. In the case of continued proliferation, the cells with short telomeres might turn 

into immortalized cancer stem cells, in which chromosomal aberrations are stabilized by up-regulation 

of telomerase or by induction of ALT [45,46] (Figure 1). In line with this, in MDS a complex 

karyotype is observed more often in older patients, naturally with a background of shorter telomeres, 

than in younger patients, pointing towards short telomeres as a risk factor for chromosomal instability. 

Cancer stem cells generally show genetic aberrations, telomere stability and telomerase activity, 

suggesting that these cells have initially gone through a phase with very short telomeres, which have 

then at a later stage been re-elongated and stabilized [42,47].The appearance of these telomerase-positive 

clones with stabilized chromosome aberrations might have evolved due to the selective growth advantage 

of cells with activated telomerase [44]. 

Thus, critically short telomeres, even single short telomeres within a cell, can induce end-to-end 

fusions and the formation of chromatin bridges during anaphase with subsequent breakage-fusion-bridge 

events (B/F/B cycles). These events can lead to either structural rearrangements due to sister chromatid 

fusions, extensive chromatin fragmentation, to the loss of whole chromosomes via mechanical disruption 

of the spindle machinery or to failure of cytokinesis leading to polyploidization and multiple spindle 
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configurations [48,49]. Cycles of breakage-fusion-bridge events stop after acquisition of new 

telomeres by non-reciprocal translocation to the end of the unstable chromosome (telomere capture). 

Figure 1. Imaging methods for chromosomal instability and shortened telomeres (a) 

Telomere/Centromere (T/C)-FISH metaphase of a healthy individual; (b) T/C-FISH 

metaphase of a patient with MDS and shortened telomeres; (c) Fluorescence R-banding 

karyotype of a patient with AML and complex aberrant karyotype, (d) Multicolor FISH 

karyotype of the same patient. 

 

2.2. Telomeres in Leukemia 

During the development of MDS and AML, due to excessive proliferation and/or another 

underlying defect, pathologically shortened telomeres in a hematopoietic stem or progenitor cell may 

eventually reach a critically short length. As described, this may lead to increased CIN and genetic 

aberrations [48]. Aberrations typical for these diseases, particularly terminal deletions, unbalanced 

translocations as well as gains and losses of whole chromosomes could theoretically result from 

dysfunctional telomeres [24]. 

Specifically, short telomeres may lead to the generation of dicentric chromosomes, which may 

induce B/F/B cycles that may subsequently lead to loss or gain of chromosomes or to the development 

of unbalanced changes, typical for MDS. If these chromosome aberrations provide a survival benefit or 

a proliferative advantage, this may then, at a later stage, lead to clonal evolution of aberrant clones and 

possibly to the re-activation of telomerase. Indeed, increased telomerase activity has been described in 
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patients with advanced forms of MDS [50]. Also in AML, increased TERT expression, usually a 

characteristic feature of cancer cells, can be found in correlation with the complexity of the karyotype 

as well as the disease severity [51]. 

An association with MDS, especially with regard to the severity of the subtype and short telomeres, 

has already been shown [25,26,52]. As shown by Boultwood et al., telomere length showed a certain 

degree of heterogeneity within the subtypes but short telomeres could still be linked to leukemic 

transformation and complex aberrant karyotypes. Also, Sieglova et al. showed an association between 

telomere shortening and disease progression suggesting telomere dynamics as a prognostic factor in 

MDS. Likewise, an increasing number of aberrations in AML has been described to be associated with 

ongoing telomere erosion on the one hand and critically short telomeres on the other, pointing towards 

an essential role of telomeres in the pathogenesis of these diseases [24,53]. 

Recent studies not only underlined the significance of the mean telomere length, but in particular of 

single or very few critically short, dysfunctional telomeres causing CIN [28,29]. As an example, it has 

already been shown in mTR
−/−

mice that chromosomes frequently involved in aberrations have the 

shortest telomeres, leading to the conclusion that these short dysfunctional telomeres limit cellular 

survival [28]. 

Studies profiling the three-dimensional architecture of telomeres in patients with MDS and AML 

have shown that, based upon parameters like telomere numbers, telomere aggregates, signal intensities, 

nuclear volumes and nuclear telomere distribution, patients can be subdivided into distinct subgroups [54]. 

Notably, the evolution of telomeric dysfunction is linked to the progression of MDS into AML. 

The role of telomeres, especially in MDS, becomes clear when considering diseases like dyskeratosis 

congenita (DC) or aplastic anemia (AA), in which a mutation in one of the telomerase components or 

of the ―shelterin‖ complex (telomere-binding and stabilizing proteins) leads to critically short telomeres 

(<5 kb) and a substantially increased risk of MDS [55]. DC is a premature aging syndrome that—among 

other symptoms—is characterized by cytopenia in one or more lineages. This is why DC is often first 

diagnosed when MDS develops. Besides loss-of-function mutations in one of the telomerase 

components, mainly TERT, TERC and DKC, but also NOP10 and NHP2, mutations in the telomere-

associated protein TINF2 have also been found in patients with DC [56,57]. These mutations lead to 

either telomerase deficiency (as with the X-linked DKC1), a dysfunctional telomere repair complex (as 

with the autosomal dominant TERT and TERC mutations) or disrupted telomeres (as with the TINF2 

mutations). Although showing differences in the clinical manifestation as well as the severity of 

symptoms, all these mutations lead to shortened telomeres [56]. 

Recently, hypomorphic mutations of TERT have been found in a subset of patients with AML that 

also seemed to be associated with the occurrence of specific aberrations, in particular trisomy 8, 

inversion 16, a translocation t(15;17) and a complex aberrant karyotype [41]. In aplastic anemia and 

MDS, somatic mutations in TERT or TERC can be observed [58]. In AA, short telomeres have directly 

been linked to the probability of developing a cytogenetically abnormal clone, underlining the role of 

telomerase and short telomeres in malignant transformation of hematopoietic stem cells and MDS 

development [58–60]. 

Intriguingly, these data provide a first hint that short telomeres contribute to the pathogenesis of 

MDS and AML. However, the extent to which short telomeres induce chromosomal instability and the 

development of aberrant clones still remains to be elucidated. It is also of high importance for patient 
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management, whether the current telomere length may predict the risk to develop MDS and AML and 

whether a patient’s telomere length is able to predict the risk of progression and relapse. 

2.3. Telomere Length Measurement in Primary Cells of Patients and Our Data 

According to our hypothesis, different cytogenetic subtypes of MDS may show different telomere 

length profiles. Possibly those chromosomes involved in or prone to specific aberrations may have 

shorter telomeres than normal chromosomes. These critically short telomeres may be a driving force 

towards leukemic transformation and clonal evolution. However, they might be masked in the average 

telomere length by longer telomeres of other chromosomes in the same cell. Therefore, determining 

the telomere length of each chromosome is necessary to answer this question. 

To elucidate this, we recently selected a cohort of 78 patients with different cytogenetic and 

morphological subtypes of MDS and a cohort of 18 age and gender-matched healthy controls for 

telomere length measurement. In particular, we investigated the telomere length profiles and the role of 

single critically short telomeres by applying telomere/centromere-FISH (T/C-FISH) [61]. This method, 

basically a quantitative FISH in which the telomeric signal intensities are set in relation to the signal 

intensity of centromere 2 as an internal reference, was used in combination with fluorescence R-banding 

analysis of the same metaphases. This particularly allowed telomere length measurement of each 

single distinct chromosome arm and importantly, in the case of patients with an aberrant karyotype, 

guaranteed measurement of the aberrant clone excluding falsification of the results by normal cells. 

Bone marrow cells of patients with MDS showed significantly shorter telomeres than those of healthy 

controls. However, no association between short telomeres and specific cytogenetic or morphological 

subtypes was found and telomere lengths did not differ significantly between distinct morphological 

subtypes of MDS. Yet, so-called neo-telomeres (telomeres at the fusion site of two chromosomes) 

were found in two patients with a complex karyotype, showing a role of short telomeres in disease 

pathogenesis. We therefore hypothesized that, in most patients with MDS and monosomy 7 or complex 

karyotype, formerly short telomeres are stabilized or elongated by reactivation of telomerase or the 

ALT mechanism. Here, aberrant cells may have gone through a phase of very short telomeres, but 

survived crisis and evolved to clones after telomere-elongating mechanisms were triggered. 

Correspondingly, patients with a less severe subtype and mild telomere shortening might not show 

significant differences compared to patients with advanced MDS, whose telomeres have probably at an 

earlier stage gone through a phase of excessive shortening, but have already been re-elongated.  

Thus, it became clear that the different cohorts were too heterogeneous, as the disease status and the 

time point after diagnosis have to be taken into account. To gain more information, we subsequently 

performed follow-up analyses in patients with MDS with an isolated deletion of 5q [62]. At an early 

time point after initial diagnosis and prior to lenalidomide treatment, patients who had a later disease 

progression showed significantly shorter telomeres than patients without progression. At the time point 

of progression, all patients showed a re-elongation of the median telomere length that was similar to 

that measured in patients without progression. Thus, at an early time point after diagnosis, short 

telomere length seems to indicate an increased risk of relapse and disease progression, and with this 

provides further evidence of telomere shortening playing a fundamental role in the malignant 

transformation of hematopoietic stem cells. In general, the actual telomere length has to be interpreted 
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carefully, depending on different factors such as disease state and treatment. In MDS, it is not yet clear 

whether telomere shortening is a causative factor, as in dyskeratosis congenita, or whether the 

increased proliferation of MDS cells concomitantly leads to telomere shortening. On the practical side, 

measurement of telomere length in patients with MDS and AML could therefore be a tool for selecting 

those patients who might, in the first step, be monitored more closely to recognize disease progression 

at an early stage. Thus, telomeres not only play a role in disease pathogenesis and progression, but they 

may also serve as an important tool for risk assessment and therapeutic decisions. 

3. Epigenetics 

3.1. Mutations of Epigenetic Regulators 

Somatic mutations in epigenetic regulators are a common genetic event in myeloid neoplasia and 

contribute to hematopoietic transformation. Epigenetic regulators can change the gene expression without 

changing the nucleotide sequence. Genomic DNA is wrapped around the histone proteins (H2A, H2B, 

H3 and H4), whose N-termini can be modified, constituting the chromatin. These modifications 

include acetylation, methylation, ubiquitylation, phosphorylation and SUMOylation. A strong interaction 

between the genomic DNA and the histones results in a compact chromatin formation, whereas weak 

interactions enable gene expression by an open chromatin structure. Analyses of recurring 

translocations like t(11;16)(q23;p13.3), documented in cases of secondary AML or MDS, revealed the 

epigenetic translocation partners MLL (histone methyltransferase) and CBP (histone acetyltransferase) 

for the first time [63]. Up to now, many epigenetic modifiers are shown to be involved in 

translocations like MOZ [64], a histone lysine acetyltransferase or NUP98, which provide evidence of 

the importance of deregulated epigenetic factors. 

Innovative technologies like array comparative genomic hybridization (arrayCGH), single nucleotide 

polymorphism (SNP) arrays and next-generation sequencing revealed recurrent mutations of genes 

implicated in epigenetic control such as ASXL1, EZH2, DNMT3A and TET2 in MDS and AML. 

The human ASXL1 gene is located on chromosome 20q11.21 and codes for part of the Polycomb-

repressive deubiquitinase complex, which functions to deubiquitylate H2AK119 [65]. EZH2 located on 

chromosome 7q36.1, is a histone methyltransferase that catalyzes trimethylation of H3K27 and is a 

subunit of the polycomb repressive complex 2 (PCR2). Polycomb proteins initiate and maintain 

transcriptional silencing through specific histone modifications. DNMT3A is a member of the 

mammalian family of methyltransferases that enzymatically add a methyl group to cytosine in CpG 

dinucleotides (cytosine and guanine separated by only one phosphate). Methylation of CpG sites 

within the promoters can lead to gene silencing, a frequent mechanism to inactivate tumor suppressor 

genes. Examples in MDS are KLF5, KLF11, and MAFB, shown to be aberrantly hypermethylated in 

15%, 7%, and 1.7% of 115 cases, respectively [66]. 

The Tet family was first identified as an oncofusion partner of the histone H3 Lys4 (H3K4) 

methyltransferase MLL in patients with the translocation t(10;11)(q22;q23) in AML [67]. Recent 

studies demonstrate that Tet proteins catalyze the conversion of 5-methylcytosine of DNA to  

5-hydroxymethylcytosine (5hmC) and that TET2 mutations are associated with low 5hmC levels and 
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global hypomethylation [68]. This suggests that an altered 5hmC status leads to deregulation of 

important hematopoietic regulators and contributes to malignancy [69]. 

3.2. Role of Global DNA and Histone Methylation 

Novel techniques based on mass spectrometry allow large-scale quantitative DNA methylation 

analysis [32]. Using this approach, Bullinger et al. were able to report the first large-scale  

methylation-based outcome predictor in AML. Furthermore, they observed distinct methylation 

patterns for cytogenetic subgroups such as AML with inv(16), t(8;21), t(15;17) and t(11q23). Also, 

microarray-based methods help to identify new clinical markers especially for AML with a normal 

karyotype and define new subgroups of AML. These techniques also allow the analysis of single 

promoter methylation patterns of specific genes. Promoter CpG methylation is often correlated with 

silencing of TSGs (tumor suppressor genes) in specific pathways that are also targets of mutation or 

other mechanisms of inactivation. Notably, TSGs silenced epigenetically often reside in genomic 

regions that are characterized by frequent chromosomal deletions. These results indicate that aberrant 

methylation can cooperate with chromosome deletions to silence TSG. 

Using genome-wide approaches, unique methylation patterns of MDS and secondary AML were 

detected. Although particular cancer-related genes such as CDKN2A and genes in the WNT signaling 

pathway were hypermethylated, epigenetic deregulation was not limited to cancer-associated genes but 

appeared to be a more widespread phenomenon [70]. 

Comparing low-risk MDS cases with a control group, 552 differentially methylated CpG loci were 

identified, while hypermethylated genes were more frequent than hypomethylated genes [71]. In another 

study, patients with higher levels of methylation, compared with patients with lower levels, had a 

shorter median overall survival (12.3 v 17.5 months, respectively) and shorter median progression-free 

survival (6.4 v 14.9 months, respectively) [72]. Shen et al. used these methylation analyses as a 

prognostic model and observed that this was independent of age, sex, and IPSS group. 

So far, it is a matter of discussion whether mutation of single epigenetic regulators induce genetic 

instability. EVI1, a hematopoietic transcription factor that regulates stem cell renewal and induces 

epigenetic modifications [73], is frequently overexpressed in human myeloid neoplasia [74]. EVI1 

rearrangement due to inv(3) or t(3;3) is frequently associated with monosomy 7 and a very poor 

prognosis [75]. EVI1 is also a site of ectopic integration of retroviral vectors. Integration of a single 

retroviral vector into the EVI1 locus has led to leukemogenesis in mice [76,77]. Notably, in a human 

gene therapy trial, insertional mutagenesis was accompanied by the development of monosomy 7. 

There are contradicting results as to whether EVI1 overexpression directly induces CIN via defective 

cytokinesis and accumulation of supernumerary centrosomes [78]. Thus, preleukemic dominance as a 

result of spontaneous chromosomal rearrangements or transgene integration events may be related to 

inhibited differentiation of hematopoietic stem cells [74]. 

Epigenetic modifications like DNA and histone methylation also play an important role in the 

induction of genomic instability. With the aim of studying the cooperation of genetic alterations and 

epigenetic modifications in the induction of genomic instability in leukemogenesis, we established a 

bone marrow transplantation model of myeloid leukemia in mice. The genetic defect resulted from an 

overexpression of the master oncogene c-Myc, whereas the epigenetic defect was induced by the 
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histone methyltransferase Suv39h1 deficiency. Suv39h1 mediates the trimethylation of lysine 9 of 

histone 3 (H3K9me3) leading to condensed chromatin. 

As expected, clonal chromosomal aberrations induced by c-Myc overexpression were found in  

c-Myc/wt leukemias of about one-third of primary recipients and in more than 80% of secondary 

recipients [79]. Notably, leukemias that arose in c-Myc/Suv39h1-null mice were chromosomally stable, 

demonstrating that reduced H3K9 trimethylation due to lack of Suv39h1 rather protects leukemic cells 

from the development of CIN. 

In our further analyses, we identified centromeric fusions with loss of telomeric signals and higher 

numbers of critically short telomeres in c-Myc/Suv39h1-wt cells, but not in Suv39h1-null cells. Thus, 

telomere shortening to critical levels may have been prevented in Suv39h1-null cells, possibly due to 

better access of telomere-stabilizing proteins because of a more open chromatin structure. This is in 

accordance with the observation by Garcia-Cao et al. [80], who proved elongated telomeres in 

Suv39h1 and Suv39h2 double knock-out cells compared to wt cells. The critically short telomeres in 

leukemic c-Myc/Suv39h1-wt cells may impair chromosomal stability by inducing breakage-fusion-bridge 

cycles resulting in e.g., centromeric fusions [81]. Furthermore, missegregation driven by telomere 

shortening may cause numerical chromosomal aberrations [82]. In our BM transplantation model, 

numerical chromosomal aberrations were found in primary recipients and centromeric fusions were 

found mostly in secondary recipients. This may indicate that progressive telomere shortening may be 

involved in clonal evolution, i.e., ―mild‖ telomere shortening inducing chromosomal missegregation 

and numerical aberrations and more pronounced telomere shortening resulting in centromeric fusions 

and complex chromosomal rearrangements. 

The heterogeneous telomere lengths and the detection of ALT-associated PML bodies (APBs) 

indicated that the ALT mechanism was mainly responsible for telomere maintenance in c-Myc-induced 

leukemias. Microarray analyses identified an increased expression of genes involved in the ALT 

mechanism such as Pml, Rad50, Smc5, Fen1, FancA, Mus81, Sp110 and Sp100 in c-Myc/Suv39h1-null 

leukemias. This is in agreement with the observation that knock-down of Rad50c and Smc5 inhibits 

ALT-induced telomere maintenance, resulting in critically short telomeres [83]. Downregulation of 

Fen1, FancA and Mus81 prevents telomeric recombination required for ALT [84]. The more effective 

elongation or stabilization of telomeres in c-Myc-driven myeloid leukemias by ALT mechanism may 

prevent telomere shortening and the induction of CIN in Suv39h1-deficient leukemias. 

Consistent with studies by Karlsson et al. [85] and Ray et al. [86], we demonstrated a c-Myc-induced 

increase of DNA double-strand breaks (DSBs). However, DSBs were markedly reduced in c-Myc/ 

Suv39h1-null leukemias. Genes coding for repair proteins like Rad51c, Trp53bp1 or Ccnf were 

upregulated in leukemic c-Myc/Suv39h1-null cells. It has been shown that reduced expression of Rad51c, 

Trp53bp1 or Ccnf is linked to chromosomal aberrations like sister chromatid fusions, aneuploidy or 

tetraploidy [87–89]. The up-regulation of these genes in leukemic c-Myc/Suv39h1-null cells may 

strengthen genomic stability due to improved DSB repair. Moreover, changes in the chromatin 

structure in Suv39h1-null cells may improve the accessibility of the DNA repair machinery. As shown 

by Goodarzi et al. [90], heterochromatin can be a barrier for physiological DSB repair and Suv39h1 

and Suv39h2 double knock-out diminish DSB repair defects following Atm knock-out. Thus, highly 

efficient DSB repair might be a potential mechanism for preventing chromosomal aberrations in c-

Myc/Suv39h1-null leukemias. Our data showed for the first time that Suv39h1 deficiency may prevent 
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genomic instability by more efficient DNA repair and telomere stabilization in hematopoietic bone 

marrow cells overexpressing c-Myc. 

4. Conclusions  

Even though there are many hints, the exact mechanism of chromosomal instability is still unclear. 

As we discuss in this review, telomere shortening and epigenetic deregulation may be involved in the 

development of chromosomal and genomic instability. Importantly, in leukemia, genomic instability 

and in particular CIN may lead to the evolution of a complex aberrant karyotype, which is associated 

with a poor prognosis. This raises the question whether early intervention in aberrant epigenetic 

processes or telomeric dysregulation may prevent the outgrowth of aberrant clones. Telomere length 

measurement may be integrated in risk assessment to predict the prognosis. Thus, telomeres and 

epigenetics most likely play an important role in the induction of chromosomal instability in cancer 

and particularly in myeloid neoplasia. Elucidation of the exact mechanism of CIN induction in myeloid 

neoplasia remains a promising aim to understand leukemogenesis and find new therapeutic approaches. 
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