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Sarah Lemer1,2, Rüdiger Bieler3 and Gonzalo Giribet2

1University of Guam Marine Laboratory, 303 University Drive, UOG Station, Mangilao, GU 96923, USA
2Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University,
26 Oxford Street, Cambridge, MA 02138, USA
3Integrative Research Center, Field Museum of Natural History, 1400 South Lake Shore Drive, Chicago,
IL 60605, USA

SL, 0000-0003-0048-7296

Bivalvia has been the subject of extensive recent phylogenetic work to attempt

resolving either the backbone of the bivalve tree using transcriptomic data, or

the tips using morpho-anatomical data and up to five genetic markers. Yet the

first approach lacked decisive taxon sampling and the second failed to resolve

many interfamilial relationships, especially within the diverse clade Impari-

dentia. Here we combine dense taxon sampling with 108 deep-sequenced

Illumina-based transcriptomes to provide resolution in nodes that required

additional study. We designed specific data matrices to address the poorly

resolved relationships within Imparidentia. Our results support the overall

backbone of the bivalve tree, the monophyly of Bivalvia and all its main

nodes, although the monophyly of Protobranchia remains less clear. Likewise,

the inter-relationships of the six main bivalve clades were fully supported.

Within Imparidentia, resolution increases when analysing Imparidentia-

specific matrices. Lucinidae, Thyasiridae and Gastrochaenida represent three

early branches. Gastrochaenida is sister group to all remaining imparidentians,

which divide into six orders. Neoheterodontei is always fully supported, and

consists of Sphaeriida, Myida and Venerida, with the latter now also contain-

ing Mactroidea, Ungulinoidea and Chamidae, a family particularly difficult

to place in earlier work. Overall, our study, by using densely sampled

transcriptomes, provides the best-resolved bivalve phylogeny to date.
1. Introduction
Bivalvia is among the most diverse molluscan classes, totalling almost 10 000

described extant species (see [1]) inhabiting various aquatic environments, span-

ning freshwater, brackish and marine, as well as ranging from the shallow

continental shelve to the deep sea, including hydrothermal vents and hydro-

carbon seeps. Bivalves thus adopt a multitude of different life modes, from

detritivory to filter feeding, with extreme cases of photo- and chemosymbiosis

to carnivory [2–5]. Many species of bivalves constitute an important food

source and have a role in culture and folklore [6], or even in the medical and bio-

engineering fields [7–9]. Bivalves are also being increasingly used to study the

spread of cancer in natural environments, as a model of contagious tumours

[10], and to assess gene expression of cancer-related genes [11]. Because of their

filter feeding habits, they also hold a major function in coastal ecosystems and

reef ecology [12,13]. As a result their ecology, taxonomy, population genetics

and phylogenetic relationship have been intensely studied at the morphological

and molecular level (see [14] for a recent review), including transcriptomic

approaches [15,16].
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While the phylogenetic backbone of bivalves is relatively

well resolved [15], numerous uncertainties, especially within

its large clade, recently named Imparidentia (equivalent

to Euheterodonta excluding Anomalodesmata; Bieler et al.
[17]), remain, probably due to lack of information in

Sanger-based approaches (e.g. [14,17–19]), or due to the

lack of taxon sampling in phylogenomic approaches [15].

Many subgroups of bivalves have been relatively well

defined by morpho-anatomical characters (e.g. unionid fresh-

water mussels, mytilid mussels, venerid clams), but the

relationships of these and many other putative larger clades

within the bivalve tree were long contentious. Numerous

bivalve tree patterns were proposed, based on the chosen

morphological character system or available molecular mar-

kers of a particular study (see discussions in [19,20]).

A total-evidence analysis based on a large morphological data-

set in combination with up to nine molecular markers [17]

proposed a new topology of the bivalve tree, with six major

clades (Protobranchia, Pteriomorphia, Archiheterodonta,

Palaeoheterodonta, Anomalodesmata, Imparidentia) that have

been adopted at the levels of subclasses and superorders in

current ranked bivalve classifications [21]. The 2014 study,

however, could not find full support for all deeper nodes

of the tree. This included the question of monophyly of

the Protobranchia (discussed in [22], based on larger taxon

sampling), and of the monophyletic versus paraphyletic

branching pattern of Archiheterodonta þ Palaeoheterodonta

(subsequently addressed by [15]).

Imparidentia, one of the major six clades of living Bival-

via introduced by Bieler et al. [17], encompasses the

majority of mostly marine bivalve families and spans many

well-known and economically important groups such as

cockles, venus clams, giant clams and shipworms. The struc-

ture of this large clade has, however, remained unresolved.

It clearly contains the order Lucinida (with or without

the family Thyasiridae) and the large Neoheterodontei

clade (first defined by [23]) that includes the freshwater

Sphaeriidae and the two major orders Myida and Venerida.

However, a large number of imparidentian families could

not be placed with certainty and some, such as the extremely

long-branched Chamidae ( jewel box clams), proved particu-

larly vexing in the analyses. A subsequent study based on a

5-gene Sanger-based approach [14] provided much expanded

taxon sampling for the imparidentian families, but—as in

all prior Sanger-based studies (e.g. [19,23])—again could

not resolve the positions of families such as Chamidae and

Gastrochaenidae. The latter family was, however, included in

the phylogenomic analysis of González et al. [15], where it

found support as sister group of the non-lucinid impariden-

tians. That study demonstrated the utility of phylogenomic

approaches to resolving such nodes in bivalve phylogeny

but had limited taxon sampling and did not include other

problematic taxa such as Chamidae and Thyasiridae.

To resolve the internal structure of this major branch

of Bivalvia that remained opaque to morpho-anatomical

and Sanger-based approaches, we analyse 99 bivalve tran-

scriptomes (59 newly sequenced in this study) together

with nine molluscan outgroups to explore the remaining

uncertainties of Bivalvia’s phylogenetic relationships both

for deep and shallow divergent nodes. In order to do so,

we apply specific orthology searches to optimize the

generation of data matrices for different evolutionary ques-

tions (whole Bivalvia versus Imparidentia matrices), and
implement analytical methods well known to ameliorate

common biases in phylogenomic analyses.
2. Material and methods
(a) Taxon sampling, cDNA library construction and

next-generation sequencing
A total of 108 samples were analysed in this study: 99 bivalves

(98 species) and nine non-bivalve mollusc outgroups. We

sequenced cDNA from 59 specimens using an Illumina HiSeq

2500 platform, and combined these with 44 transcriptomes pre-

viously sequenced in our laboratory [15,16], and five publicly

available transcriptomes including one genome (see electronic

supplementary material, table S1 and the MCZ online collections

database, http://mczbase.mcz.harvard.edu). When compared to

the phylogenomic analysis of González et al. [15], we have tripled

the number of included imparidentian species from 17 to 52.

All tissues were collected fresh and immediately flash frozen in

liquid nitrogen or fixed in RNAlater (Life Technologies, Carlsbad,

CA, USA) and stored at 2808C. Total RNA was extracted using

TRIzol (Life Sciences) and purification of mRNA was performed

using the Dynabeads (Invitrogen) following the manufacturer’s

instructions and as described in Lemer et al. [16]. For each

sample, mRNA was eluted in 15 ml of Tris-HCl buffer, quality

assessed with a picoRNA assay in an Agilent 2100 Bioanalyzer

(Agilent Technologies) and quantity measured with an RNA

assay in a Qubit fluorometer (Life Technologies).

All cDNA libraries were constructed using the PrepX mRNA

kit for Apollo 324 (Wafergen) by inputting approximately 100 ng

of RNA per sample in the instrument. Each library was barcoded

with TruSeq single indices (i7) to allow multiplexed sequencing

runs. Each library concentration was measured by a real time

qPCR run on a MX3000P qPCR system (Agilent Technologies)

using the Kapa Library quantification kit for NGS (Kapa Biosys-

tems); quality and size selection were assessed with an HS DNA

assay in an Agilent 2100 Bioanalyzer (Agilent Technologies)

(final library concentration varied between 5 nM and 200 nM).

Libraries were then sequenced on the Illumina HiSeq 2500 plat-

form with paired-end reads of 150 bp at the FAS Center for

Systems Biology at Harvard University.
(b) Transcriptome assembly
All reads generated for this study are deposited in the National

Center for Biotechnology Information Sequence Read Archive

(NCBI-SRA; electronic supplementary material, table S1).

Demultiplexed Illumina HiSeq 2500 sequencing results were

retrieved in FASTQ format from the sequencing facility (Bauer

Core—Harvard University) and in SRA format from GenBank.

Each sample, except for the genome of Lottia gigantea, was

prepared as in Lemer et al. [16]. In brief, reads were filtered for

quality, adapters and rRNA contamination using TRIMGALORE

version 0.3.3 [24] and BOWTIE 2.0.0 [25]. The protein assem-

bly of the Lottia gigantea genome was downloaded from the

EMBL database (http://metazoa.ensembl.org/Lottia_gigantea/

Info/Index).

De novo transcriptome assemblies were conducted for each

sample with TRINITY r2014-04-13 [26,27] using paired read files

and default parameters except for –path_reinforcement_distance

50. Reduction of redundant transcripts was done in each tran-

scriptome and genome with CD-HIT version 4.6 [28] using a

threshold of 98% global similarity. Predicted peptides for each

transcriptome were identified with TRANSDECODER 3.0.0 [27]

with default settings and filtered for isoforms with a custom

Python script.
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(c) Orthology assignment and matrix construction
Orthology assignment across all assembled transcriptomes was

performed using stand-alone OMA 1.06 [29,30]. The parame-

ters.drw file retained all default settings with the exception of

‘MaxTimePerLevel’, which was set at 3600, to optimize the soft-

ware for our server cluster. The all-by-all local alignment process

was parallelized across 400 CPUs once all the input pre-processing

steps were achieved on a single core (to avoid risk of collision). All

234 663 orthogroups were aligned individually using MUSCLE 3.6

[31]. Divergently aligned positions were culled by a probabilistic

character masking approach with ZORRO [32], using default par-

ameters and FASTTREE 2.1.4 [33] to construct guide trees. In all of the

alignments, positions that were assigned a confidence score below

the threshold of 5 by ZORRO were discarded, using a custom

Python script.

Two initial data matrices following occupancy thresholds [34]

were generated for phylogenetic analyses, using a custom Python

script: the first one, Matrix 1, targeting a minimum gene occupancy

of 50%, was constructed by selecting the OMA orthogroups

present in 55 or more taxa (resulting in 312 orthogroups). The

second matrix, Matrix 2 includes orthogroups present in 77 or

more taxa (gene occupancy greater than 70%; resulting in 102

orthogroups). Selected orthogroups for each matrix were then

concatenated using PHYUTILITY 2.6 [35].

To explore the complex topology of the Imparidentia subclade,

a second orthology assignment run was performed using OMA

2.0, with taxa from the Imparidentia clade only (52 taxa) and six

outgroups (see electronic supplementary material, table S1 for

details). The objective of this approach was to design matrices opti-

mized for Imparidentia rather than subsamples of the original

dataset (as done in [36]). The 137 741 orthogroups obtained

were filtered and prepared as described above. Matrix 3i was con-

structed by retaining orthogroups with minimum gene occupancy

of 50% (28 or more taxa; resulting in 439 orthogroups).

To account for potential biases based on gene evolutionary

rates on the Imparidentia tree topology, Matrix 4i was constructed

by discarding the orthogroups with the 20% highest and 20%

lowest evolutionary rates of Matrix 3i. Orthogroups were sorted

based on their evolutionary rate using per cent pairwise identity

as a proxy. Accumulated conservation values were generated for

each locus using TRIMAL 1.2b (-sct flag). Loci were sorted; the first

being the slowest evolving genes (most conserved) and the last

being the fastest evolving genes (least conserved). A total of 343

orthogroups were retained, for a matrix with 37% missing data.
(d) Phylogenetic analyses
Maximum-likelihood inference was computed for Matrices 1, 3i
and 4i with RAxML 7.7.5 [37] using PROTGAMMALG4X as

the best-fit model of amino acid substitution and 100 bootstrap

replicates on concatenated orthogroups. Additionally, maxi-

mum-likelihood inference was also computed for Matrices 1, 3i
and 4i with partitioned data using IQTREE 1.6.1 [38–40]. We

included the ModelFinder option [41] which automatically selects

the best-fit model for each partition (i.e. orthogroup) and the -sq

flag which allows each partition to have its own set of branch

lengths, thus accounts for heterotachy [42]. Three independent

runs were conducted for each matrix, each with 1000 ultrafast boot-

strap replications, which resamples site within partitions, and the

most likely tree was retained [43]. Maximum-likelihood inferences

for Matrix 2 were computed using a principal component approach

to improve amino acid substitution matrices (PCMA) with PHYML

3.0 [44]; this computational intensive method could only be used

for this smaller matrix. Analyses were conducted with 10 principal

components and three random starting trees for each run.

Matrices 2 and 3i were also analysed using Bayesian inference

with PHYLOBAYES MPI 1.7a with OPENMPI 1.10 [45] using the site-

heterogeneous CAT-GTR model of evolution [46]. Three
independent Markov chain Monte Carlo (MCMC) runs were con-

ducted for 7688–11 551 cycles (Matrix 2) and 7152–12 252 cycles

(Matrix 3i). The initial cycles in each MCMC run were discarded

as burn-in and determined using the ‘tracecomp’ executable.

Convergence was assessed using the ‘bpcomp’ executable, and

chains were considered to have converged when the maximum

bipartition discrepancies (maxdiff ) across a minimum of two

independent chains reached 0.2.

To test for putative gene incongruence within Imparidentia

we inferred individual gene trees for each orthogroup included

in Matrix 3i using RAxML 7.7.5. PROTGAMMALG4X was

selected as the best-fit model of amino acid substitution. All

individual best-scoring trees were concatenated for each matrix

and fed into SUPERQ 1.1 [47] in order to visualize inter-gene con-

flicts. SUPERQ decomposes all gene trees into quartets to infer a

super-network where edge lengths are assigned based on quartet

frequencies; it was run using the ‘balanced’ edge-weight optim-

ization function with no filter. The resulting super-networks

were visualized with SPLITSTREE 4.13.1 [48].

Finally, to minimize the potential impact of compositional

heterogeneity and long-branch attraction (e.g. [49]), we recoded

Matrices 1 and 3i into Dayhoff categories [50]; thus reducing the

20 character states of amino acids down to six states [51]. We

assigned the following numbers to each amino acid: 0: AGPST, 1:

FWY, 2: C, 3: HKR, 4: ILMV, 5: EDNQ. The recoded matrices

were analysed with RAxML 7.7.5 using a multi-state model (-m

MULTIGAMMA -K GTR).
3. Results and discussion
(a) Strengthening the phylogenetic backbone of

Bivalvia
Although the backbone of the bivalve tree of life has been

explored extensively in recent times (e.g. [14,17,19,52–57]), a

number of uncertainties remain. The phylogenetic dataset

generated in this study is the largest ever gathered to attempt

to resolve these relationships. We analysed 108 transcriptomes

and genomes and explored four matrices using both maxi-

mum-likelihood and Bayesian approaches. The orthology

assessment of the 108-taxon dataset with the OMA stand-

alone algorithm generated 234 663 orthogroups. Details of

the values used to assess the quality of the assembled transcrip-

tomes (number of sequenced reads, used reads and contigs) as

well as accession numbers, can be found in the electronic sup-

plementary material, table S1. Concatenated matrices were

compiled using a threshold of per cent gene occupancy. Both

Matrix 1 and Matrix 2 contained data for all the taxa included

in the study, though each taxon varied in gene representa-

tion (electronic supplementary material, figure S1). The two

main matrices constructed yielded 312 (Matrix 1: occupancy

of more than 50%, 70 488 aa) and 102 (Matrix 2: occupancy of

more than 70%, 22 164 aa) orthologues, respectively.

All the phylogenetic analyses conducted on the two main

matrices revealed a well-supported topology for all deep

nodes in the bivalve tree of life (figure 1). Every analysis con-

ducted with the two main matrices recovered monophyly of

Pteriomorphia, Heteroconchia, Palaeoheterodonta, Euhetero-

donta, Archiheterodonta, Anomalodesmata, Imparidentia and

Neoheterodontei with full support (100% bootstrap or posterior

probability of 1; figure 1). The relationships among the hetero-

conchian clades were also consistent across all analyses, with

Palaeoheterodonta as sister group to Heterodonta, Archihetero-

donta as sister group to Euheterodonta, and Anomalodesmata
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Figure 1. Phylogenetic hypothesis for Bivalvia based on Matrix 1 analysed in RAxML with support values plotted as follows: checked boards in major deep nodes
represent nodal support for the different analyses in Matrix 1 (bottom row) and Matrix 2 (top row). PHYML-PCMA and RAxML are abbreviated as ML, PHYLOBAYES:
PB, RAxML with Dayhoff recoding: DH and IQtree: IQ. Filled squares indicate nodal support values higher than 90% bootstraps (ML) and a posterior probability of
0.99 or higher (PB). Grey squares indicate lower nodal support and white squares indicate unrecovered nodes in the specified analysis. Single squares on internal
nodes indicate that the node was recovered in all five analyses either with maximum or partial support. Internal nodes not recovered by all five analyses are not
reported. Bivalvia subclasses are represented in different shades of colour.
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as sister group of Imparidentia, as in most recent studies [14,15],

but contradicting earlier findings of a clade including Palaeo-

heterodonta and Archiheterodonta (e.g. [17,19]) and results

based on mitogenomic data (e.g. [56,57]).

Monophyly of Protobranchia was recovered in all analyses

conducted with Matrix 1 (figure 1). However, in analyses con-

ducted with Matrix 2, Solemyoidea appears as sister group to

all other bivalves, rendering Protobranchia paraphyletic. The

latter result contrasts with most recent bivalve phylogenetic
studies [15,19], which recovered monophyly of Protobranchia

in all their analyses, although in the phylogenomic analyses

of González et al. [15], some gene conflict was detected. Here

we expanded the sampling within Protobranchia from three

to nine transcriptomes (belonging to eight species), which con-

tinued to support monophyly only in the analyses of Matrix 1.

The increased taxon sampling, however, allowed us to clarify

the relationships among the protobranch superfamilies, Nucu-

loidea being sister group of Nuculanoidea in most analyses
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(figure 1), as recognized in earlier work [19,22]. Non-

monophyly of Protobranchia was also reported in the bivalve

phylogenetic study of Combosch et al. [14], among many

other molecular studies, where the authors included 25 proto-

branch taxa and recovered Solemyoidea clustering with the

outgroups. The reasons for the non-recovery of the subclass

Protobranchia under some analytical conditions remain

puzzling and highlight the necessity for a deeper phylo-

genomic focus on this group, especially including members

of the unsampled Manzanelloidea (Manzanellidae and

Nucinellidae), but could also be attributed to the relatively

small number of genes (102) of Matrix 2.

Relationships within Pteriomorphia are entirely consist-

ent with the most recent phylogenomic analyses focusing

on this clade [16] and were well supported in all our analyses

but one (figure 1). Mytilida was placed as a sister group to

Ostreida (Pinnidae, Ostreoidea and Pterioidea) in all analyses

(although with low nodal support in the IQTREE analyses).

Arcida appeared as sister group to all other pteriomorphians

in all analyses with maximum nodal support except in the

PhyML-PCMA tree (with 80% bootstrap support). For further

details on the history and hypotheses of pteriomorphians see

Lemer et al. [16].

For Heteroconchia, our phylogenomic analyses recovered a

similar topology to that of González et al. [15]; i.e. a first split

between Palaeoheterodonta and Heterodonta; Archihetero-

donta as sister group of Euheterodonta; and a main division

of Euheterodonta into Anomalodesmata and Imparidentia.

The well-supported Palaeoheterodonta segregated in all ana-

lyses, as expected, in two main clades; the marine Trigoniida

and the freshwater Unionida. Within Unionida, Unionidae

and Margaritiferidae always clustered together (i.e. Unionoi-

dea) and likewise, Iridinidae and Etheriidae (i.e. Etherioidea)

always formed a clade (figure 1). The current sampling does

not permit addressing detailed phylogenetic and biogeographic

questions within Unionida.

Archiheterodonta, a clade composed of what some

authors have considered the most ‘primitive’ heterodonts,

based on morphological characters such as sperm [58], perios-

tracum formation, and extracellular high molecular weight

haemoglobin [59,60], was recovered as sister group to all

other Heterodonta (i.e. Euheterodonta) in all our analyses,

as previously found by González et al. [15]. Our sampling

enabled us to support two superfamilies, Carditoidea (Cardi-

tidae) and Crassatelloidea (Crassatellidae þ Astartidae),

as in the most recent analysis of Archiheterodonta [53]

(figure 1).

Anomalodesmata was the sister clade to Imparidentia in

all analyses with high support values (figure 1). Within this

clade we constantly recovered a deep subdivision of analysed

taxa into two groups mostly corresponding to the ‘lyonsiid’

and ‘thraciid’ lineages of Harper et al. [61], as also seen in sub-

sequent phylogenetic analyses including sufficient taxon

sampling of anomalodesmatans [14,17,23], as well as in studies

of sperm ultrastructure [62]. The ‘lyonsiid’ samples include

members of the families Laternulidae and Lyonsiidae and the

‘thraciid’ lineage members of Thraciidae and Myochamidae.

Our sole representative of the carnivorous septibranch families,

Poromya illevis (Poromyidae), was recovered as the sister group

to the ‘thraciids’ in all our analyses except for the Bayesian ana-

lyses with Matrix 2 and the Dayhoff analyses with Matrix 1,

where it placed as sister group to the ‘lyonsiids’, albeit without

significant nodal support in both instances. Monophyly of the
three septibranch families (Poromyidae, Cuspidariidae and

Verticordiidae) has been rejected in most recent phylo-

genetic analyses [14,61] and deserves to be explored further,

something we could not attempt here due to lack of suitable

tissue for transcriptomes.
(b) Resolving the Imparidentia puzzle
Imparidentia is supported as a clade in nearly all recent phylo-

genetic analyses of bivalves, yet its internal relationships have

remained largely obscured by a combination of factors, includ-

ing lack of genetic information, deficient taxon sampling, or

both, and portrayed as an example of a rapid imparidentian

radiation. However, recent analyses have shown a steady

diversification through the Palaeozoic and Mesozoic [17].

Nevertheless, and to avoid possible compressions of the dee-

pest branches in the clade, we built a data matrix optimized

for Imparidentia. The two matrices enriched for Imparidentia

yielded 439 (Matrix 3i; figures 2 and 3) and 343 (Matrix 4i)
orthologues, respectively.

Eight superfamilies of extant Imparidentia were previou-

sly placed outside the ordinal framework of Adapedonta,

Cardiida, Lucinida, Myida and Venerida [17]. Of these,

the superfamily Gastrochaenoidea (with the single family

Gastrochaenidae) is the sister group to all other non-lucinid

imparidentians and is here elevated to order Gastrochaenida

(a concept already used by [63], who had used a suborder

‘Gastrochaenoidea’ for this family). Galeommatoidea (a

group including many nominal family-group taxa including

Basterotiidae, Galeommatidae [here studied], and Lasaeidae)

is here interpreted as order Galeommatida. Sphaerioidea

(with family Sphaeriidae) has long been recognized as

the most basal member of Neoheterodontei and is here

elevated to the ordinal level as Sphaeriida. Mactroidea

(with families Mactridae and Mesodesmatidae; Anatinellidae

and Cardiliidae not sampled), Ungulinoidea (with family

Ungulinidae), and the long-debated Chamoidea (with

family Chamidae) are recognized as members of Venerida.

Not currently placed, because suitable material was unavail-

able to this study, are the members of nominal superfamilies

Cyamioidea (Cyamiidae, Galatheavalvidae, Sportellidae) and

Gaimardioidea (Gaimardiidae).

The first offshoots of Imparidentia comprise Lucinidae and

Thyasiridae, but whether these form a clade (i.e. as mono-

phyletic Lucinida; figures 1 and 2) or a grade, with Lucinidae

as sister group to Thyasiridae plus the remaining Imparidentia

(figure 3), remains elusive. The next branch of the Imparidentia

tree is represented by Gastrochaenida as the sister group

to all the remaining imparidentians. The latter in some analyses

divides into two main groups, a well-supported clade

Neoheterodontei including Sphaeriida, Myida and an array

of families that we assign to a redefined Venerida, and a

second putative clade including Adapedonta, Galeommatida,

and a well-supported Tellinoidea–Cardioidea clade (¼ Cardi-

ida) (figure 2). However, the relationships of Adapedonta,

Galeommatida and Cardiida remain unstable (figures 2

and 3), although most analyses, except for PHYLOBAYES,

support a sister group relationship of Adapedonta and

Galeommatida. In the maximum-likelihood and Bayesian

analyses, Cardiida is sister group to Neoheterodontei with

55% BS and 1.0 pp respectively; whereas in the IQtree

analysis Cardiida is placed as sister group to Adapedonta,

Galeommatida, and Neoheterodontei with maximum
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support. When recoding the amino acid matrix with Dayhoff

categories, Cardiida is recovered as sister group to the clade

formed by Adapedonta and Galeommatida, albeit without sig-

nificant nodal support. In the Bayesian analysis Galeommatida

is sister group to the clade composed of Adapedonta, Cardiida

and Neoheterodontei.

Given the current resolution and the composition of

the imparidentian clades, we recognize eight orders for

extant taxa: Lucinida (with or without the Thyasiridae,

which may end up constituting a ninth order), Gastrochae-

nida, Adapedonta, Galeommatida, Cardiida, Sphaeriida,

Myida and Venerida. The higher-level structure of Neoheter-

odontei appears well resolved, with Myida and Venerida well

supported as sister taxa and Sphaeriida being their most

immediate outgroup. Resolution within Myida is likewise

stable and highly supported; however, Venerida shows

more uncertainty, even after the addition of Mactroidea,

Ungulinoidea and Chamoidea. The position of Chamidae, a

long-standing question in bivalve phylogeny (e.g. [14,17]), is

well resolved as a member of Venerida, as it appears within

this clade in all analyses and with full support. Its definitive

position is less clear. In most analyses, including those for

the Imparidentia dataset and using methods that take into

account heterotachy and heterogeneity, Chamidae groups

with Hemidonacidae, Glossidae, and Trapezidae (e.g. figures 1

and 2). A suite of families within the Neoheterodontei

(Glossidae, Hemidonacidae, Glauconomidae, Trapezidae,
Arcticidae, Vesicomyidae, Kelliellidae) has been problematic

to resolve in prior morphological and Sanger-approach

studies (e.g. [14,23,64,65]). Of these, Glauconomidae was

found to form a well-supported clade with Cyrenidae and

Cyrenoididae and these currently are considered to constitute

the superfamily Cyrenoidea [17,19,66], a position here sup-

ported. The position of Hemidonacidae remains unresolved

and its status as a separate superfamily (e.g. [65]) is here main-

tained. Formal bivalve classifications [67,68] grouped the

remaining families in two superfamilies, Arcticoidea (with

Arcticidae and Trapezidae) and Glossoidea (with Glossidae,

Kelliellidae and Vesicomyidae). Transcriptomic data do not

support these putative clades, with Trapezidae here grouping

with Glossidae, and Vesicomyidae (Calyptogena magnifica)

clustering not with Glossidae but with Arcticidae and Vener-

idae. An intriguing result is the separation of the putative

members of Cyrenidae in the transcriptomic studies (also

González et al. [15]; Glauconome not studied therein). Cyreni-

dae is generally considered [69] a monophyletic group

spanning smaller-shelled freshwater taxa such as Corbicula
and larger-shelled and mostly estuarine and near-shore

mangrove taxa such as Polymesoda and Geloina. However,

results of the current study place Corbicula stemward in the

Cyrenoidea and Polymesoda in its crown group and sister

group to Glauconome. Investigation of other nominal cyrenids

(Batissa, Cyanocyclas, Geloina, Villorita) will be needed to fully

resolve this group.
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Recent work on bivalve phylogeny called for the need of

resolving the phylogenetic position of ‘strange’ taxa, such as

Chamidae, Gastrochaenidae or Thyasiridae [14,15]. Our new

approach strongly supports Gastrochaenidae as the sister

group to all other Imparidentia except Lucinida and

Thyasiridae. The position of Thyasiridae is reduced to two

possibilities, being the sister group (or member) of Lucinida

or the sister group to Gastrochaenida plus the remaining

imparidentians. Chamidae is less precisely positioned, but

it is clearly a member of the redefined Venerida, probably

related to Hemidonacidae, Glossidae and Trapezidae. Work

continues to be needed to refine such last branches of the

bivalve tree of life (including further testing the monophyly

of Protobranchia), however we are now far from the time

when bivalve families jumped 10 or more nodes up or

down the backbone of the tree with each new analysis.

New refinements may require increasingly lower-level adjust-

ments of hypothesized branching patterns but we are a lot

closer to a stable reconstruction of the bivalve tree of life, a

task that seemed daunting only a decade ago.
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53. González VL, Giribet G. 2014 A multilocus
phylogeny of archiheterodont bivalves (Mollusca,
Bivalvia, Archiheterodonta). Zool. Scr. 44, 41 – 58.
(doi:10.1111/zsc.12086)

54. Waller TR. 1998 Origin of the molluscan class
Bivalvia and a phylogeny of major groups. In
Bivalves: an eon of evolution—palaeobiological
studies honoring Norman D Newell (eds PA
Johnston, JW Haggart), pp. 1 – 45. Calgary:
University of Calgary Press.

55. Steiner G, Hammer S. 2000 Molecular phylogeny of
the Bivalvia inferred from 18S rDNA sequences with
particular reference to the Pteriomorphia. In The
evolutionary biology of the Bivalvia (eds EM Harper,
JD Taylor, JA Crame), pp. 11 – 29. London, UK: The
Geological Society of London.

56. Plazzi F, Ceregato A, Taviani M, Passamonti M. 2011
A molecular phylogeny of bivalve mollusks: ancient
radiations and divergences as revealed by
mitochondrial genes. PLoS ONE 6, e27147. (doi:10.
1371/journal.pone.0027147)

57. Plazzi F, Puccio G, Passamonti M. 2016 Comparative
large-scale mitogenomics evidences clade-specific
evolutionary trends in mitochondrial DNAs of
Bivalvia. Genome Biol. Evol. 8, 2544 – 2564. (doi:10.
1093/gbe/evw187)

58. Healy JM. 1995 Sperm ultrastructure in the marine
bivalve families Carditidae and Crassatellidae and its
bearing on unification of the Crassatelloidea with
the Carditoidea. Zool. Scr. 24, 21 – 28. (doi:10.1111/
j.1463-6409.1995.tb00472.x)

59. Terwilliger RC, Terwilliger NB. 1985 Molluscan
hemoglobins. Comp. Biochem. Physiol. B 81B,
255 – 261. (doi:10.1016/0305-0491(85)90310-4)

60. Taylor JD, Glover EA, Williams ST. 2005 Another
bloody bivalve: anatomy and relationships of
Eucrassatella donacina from south western
Australia (Mollusca: Bivalvia: Crassatellidae). In
The marine flora and fauna of Esperance, Western
Australia (eds FE Wells, DI Walker, GA Kendrick),
pp. 261 – 288. Perth, Australia: Western Australian
Museum.

61. Harper EM, Dreyer H, Steiner G. 2006 Reconstructing
the Anomalodesmata (Mollusca: Bivalvia):
morphology and molecules. Zool. J. Linn. Soc. 148,
395 – 420. (doi:10.1111/j.1096-3642.2006.00260.x)

62. Healy JM, Bieler R, Mikkelsen PM. 2008
Spermatozoa of the Anomalodesmata (Bivalvia,
Mollusca) with special reference to relationships
within the group. Acta Zool. 89, 339 – 350. (doi:10.
1111/j.1463-6395.2008.00322.x)

63. Lange de Morretes F. 1949 Ensaio de catálogo dos
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