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Abstract

It is well established that the gut microbiota plays an important role in host health

and is perturbed by several factors including antibiotics. Antibiotic‐induced changes

in microbial composition can have a negative impact on host health including

reduced microbial diversity, changes in functional attributes of the microbiota,

formation, and selection of antibiotic‐resistant strains making hosts more susceptible

to infection with pathogens such as Clostridioides difficile. Antibiotic resistance is a

global crisis and the increased use of antibiotics over time warrants investigation into

its effects on microbiota and health. In this review, we discuss the adverse effects of

antibiotics on the gut microbiota and thus host health, and suggest alternative

approaches to antibiotic use.
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1 | INTRODUCTION

Since their discovery, antibiotics have revolutionized the treatment of

infectious diseases on a global scale. They are recognized as one of

the contributing factors to increased life expectancy in the 20th

century owing to the decline in infectious disease mortality

(Adedeji, 2016). However, their overuse and misuse in human and

veterinary medicine and animal husbandry have resulted in the cur-

rent global antibiotic resistance crisis (Llor & Bjerrum, 2014; Vidovic

& Vidovic, 2020) which is exacerbated by the slow rate of new drug

development (Simpkin et al., 2017). Despite this, antibiotics are still

widely prescribed in disease treatment and studies have reported

increased consumption of antibiotics in certain countries in the past

number of years (Adriaenssens et al., 2011; Klein et al., 2018).

More recently, scientists have uncovered the detrimental impact

of broad‐spectrum antibiotics on the gut microbiota. Home to

bacteria, archaea, microeukaryotes, and viruses, the gut microbiota

plays a fundamental role in human health. It prevents pathogen co-

lonization, regulates gut immunity, provides essential nutrients and

bioactive metabolites, and is involved in energy homeostasis (Mills

et al., 2019). In infants, the gut microbiota is acquired during birth and

thereafter plays an essential role in the development of infant gut

immunity. Evidence to date strongly suggests that balanced micro-

biota composition and rich species diversity are essential to its op-

timal functioning (Heiman & Greenway, 2016), which can be

compromised in disease states (Mosca et al., 2016). Likewise, reduced

diversity and imbalanced microbiota composition in the infant's gut

are associated with intestinal illnesses and a predisposition to certain

diseases later in life (Milani et al., 2017; Volkova et al., 2021).

Broad‐spectrum antibiotics reduce gut microbiota diversity

(Dubourg et al., 2014), and as well as killing the pathogen of concern

can eradicate beneficial microbes (Blaser, 2011), with deleterious

MicrobiologyOpen. 2022;11:e1260. www.MicrobiologyOpen.com | 1 of 23

https://doi.org/10.1002/mbo3.1260

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium,

provided the original work is properly cited.

© 2021 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

http://orcid.org/0000-0002-6724-7011
mailto:catherine.stanton@teagasc.ie
https://www.MicrobiologyOpen.com


consequences for the host. Despite this, in Western countries, up to

35% of women are exposed to an antibiotic during pregnancy and

delivery, and antibiotics comprise 80% of the drugs a woman is ex-

posed to during pregnancy (Kuperman & Koren, 2016; Stokholm

et al., 2013). Mothers are frequently prescribed intrapartum

antibiotics prophylactically to prevent and treat infections (Verani

et al., 2010).

Clostridioides difficile (formerly known as Clostridium difficile) in-

fection is an example of a disease brought about directly through

antibiotic disruption of the gut microbiota (Theriot et al., 2014). Ill-

ness ranges from mild diarrhea to death (Guh & Kutty, 2018).

Antibiotic eradication of beneficial bacteria in the gut enables

C. difficile to flourish (Rea et al., 2011). A recent study also concluded

that oral antibiotic use is associated with an increased risk of colon

cancer (S. Zhang & Chen, 2019). These are just some of the examples

of how antibiotic therapy can compromise health.

This review thus focuses on the negative impacts of antibiotics

on human health from pregnancy through to adulthood, most of

which are microbiota‐dependent, although we also provide evidence

of nonmicrobiota‐associated negative impacts. We discuss the

changes to microbiota composition and functionality and the con-

sequences for host health (Figure 1). We look at the impact of anti-

biotics at the single bacterial cell level, and how antibiotic use and

misuse result in antibiotic resistance development. Further, we con-

sider alternative approaches to antibiotic therapy and discuss ther-

apeutics that can be used to maintain and improve host health and

minimize the effects of antibiotics when used.

2 | INTRODUCTION TO MICROBIOTA
COMPOSITION FROM INFANCY TO
ADULTHOOD

It was previously believed that infants are protected in the mother's

womb which is a sterile environment, but studies have now de-

monstrated that amniotic fluid samples, placenta from mothers, and

meconium samples from infants contain bacterial DNA suggesting

the early exposure of infants to bacteria (Aagaard et al., 2014; de

Goffau et al., 2019; Moles et al., 2013; Stinson et al., 2019). However,

this is much debated (Perez‐Muñoz et al., 2017) due to issues with

contamination and varying interpretations, thus we emphasize on

microbiota development from infancy to adults in this review.

The gut microbiota in the early stages of life becomes more di-

verse until it reaches a stable adult‐like composition by 2–4 years of

age. Following birth, the gut is colonized by facultative anaerobes due

to the partially aerobic or microaerophilic environment. These then

F IGURE 1 The negative impacts that can occur on host health due to overuse and misuse of antibiotics
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generate the appropriate atmosphere for the development of anae-

robes by consuming the available oxygen. Thereafter, followed by

early exposure to food (breast milk or infant formula), this composi-

tion changes, and facultative anaerobes such as Bifidobacterium,

Bacteroides, and Clostridium dominate (Voreades et al., 2014). An

initial decrease in Proteobacteria and Enterobacteriaceae accom-

panied by increases in Bacteroidetes and bifidobacteria have been

reported in many studies (Bäckhed et al., 2015; Bokulich et al., 2017).

The establishment of the adult‐like microbiota occurs at 2–4 years of

age, which is represented by the high relative abundance of Bacter-

oidetes and Firmicutes (Fouhy et al., 2019).

It is largely accepted that the mother is the most important source

of the gut microbiota for infants (Asnicar et al., 2017; Ferretti

et al., 2018). The establishment of the healthy infant gut microbiota

and its subsequent development is a continuous process that is in-

fluenced by several factors. Mode of delivery is one of the first factors

that influence the infant gut microbiota, with vaginally delivered in-

fants having microbiota that is more diverse and similar to their mo-

thers' vaginal microbiota while cesarean section‐born infants are

deprived of this exposure and thus have gut microbiota similar to their

mothers' skin and the hospital environment. These differences are

significant and studies have demonstrated an increased association of

Propionibacterium, Corynebacterium, Staphylococcus, C. difficile, and

Streptococcus and lower abundances of bifidobacteria and Bacteroides

with cesarean‐born neonates, whereas Lactobacillus, Prevotella, and

Sneathia spp. are associated with vaginally delivered neonates (Azad

et al., 2013; Dominguez‐Bello et al., 2010; Penders et al., 2006).

Feeding habit is another crucial factor affecting the infant's gut mi-

crobiota composition. Because of the presence of oligosaccharides in

human milk (human milk oligosaccharides) that are largely used by

bifidobacteria, breastfed infants show higher levels of bifidobacteria

compared to formula‐fed infants, and the proportions remain high

even postweaning (Bezirtzoglou et al., 2011; Fallani et al., 2011).

Bacteroides, Streptococcus, and Lactobacillus have also been reported in

breastfed infants (Harmsen et al., 2000). Formula‐fed infants present

higher abundances of Escherichia coli, C. difficile, the Bacteroides fragilis

group, and lactobacilli than their breastfed counterparts (Penders

et al., 2006). Gestational age is another factor that affects the gut

microbiota composition with preterm infants showing lower diversity,

higher abundance of Proteobacteria and reduced levels of obligate

anaerobes such as Bifidobacterium, Bacteroides, and Atopobium com-

pared to full‐term infants (Arboleya et al., 2012; C. J. Hill et al., 2017;

Moles et al., 2013). Another factor is antibiotic administration, as

shown in Figure 2, and is discussed below.

F IGURE 2 Diagrammatic representation of the effect of various antibiotics on human gut bacteria. Green (left) denotes increasing levels,
while red (right) indicates decreasing levels
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The gut microbial composition changes throughout pregnancy and

a healthy pregnancy is characterized by an increase in the bacterial

load and profound alterations in the composition of gut microbiota

(Nuriel‐Ohayon et al., 2016). During the first to the third trimester of

pregnancy, major changes such as an overall increase in Proteobacteria

and Actinobacteria and reduced richness have been reported owing to

the major physiological changes (Koren et al., 2012). Also, the vaginal

microbiota during pregnancy has been reported to change—

represented by the high bacterial load with high Lactobacillus abun-

dance, low richness, and diversity compared to the vaginal microbiota

of nonpregnant females (Aagaard et al., 2012; Freitas et al., 2017).

The gut microbiota of healthy adults is predominantly composed

of the phyla Firmicutes and Bacteroidetes, representing the majority,

followed by Actinobacteria, Proteobacteria, and Verrucomicrobia

(Arumugam et al., 2011). Indeed, the gut microbiome can be per-

turbed by short‐term use or even low‐doses of antibiotics that can

have long‐term effects on health (Jernberg et al., 2010), this cautions

against the misuse and overuse of antibiotics, particularly in pregnant

women and young children.

3 | ANTIBIOTIC TYPES COMMONLY
ADMINISTERED

The use of antibiotic therapy during pregnancy and lactation varies

depending on the underlying condition, country, and medical guide-

lines, but some of the most commonly prescribed antibiotics during

pregnancy are β‐lactam antibacterials (Petersen et al., 2010). Some of

the other antibiotic classes prescribed include sulfonamides/tri-

methoprim and macrolides/lincosamides/streptogramins (de Jonge

et al., 2014). Common infections for which antibiotics are prescribed

during pregnancy include urinary tract infections, respiratory tract

infections, skin or ear infections, bacterial vaginosis, and fever of

unknown origin (Heikkila, 1993; Petersen et al., 2010). Antibiotics are

frequently administered to mothers during labor to prevent Group B

Streptococcus transmission, to reduce and prevent infections in the

endometrium, and to prevent wound infections (Braye et al., 2019);

though the WHO advises against the prophylactic use of antibiotics

post uncomplicated delivery. This is of concern as infant antibiotic

exposure through intrapartum antibiotic prophylaxis (IAP) has been

shown to alter infant gut microbial diversity (Tapiainen et al., 2019).

Further, antibiotics are commonly prescribed to newborns, owing to

their high susceptibility to infections and lowered immunity,

particularly in premature infants (Clark, 2006; Vergnano et al., 2005).

The most commonly used antibiotics for infants include amoxicillin,

co‐amoxiclav, benzylpenicillin, cephalosporins, gentamycin, vanco-

mycin, clindamycin, and azithromycin. These antibiotics are indicated

in respiratory and ear infections, bronchitis, pharyngitis, and high

temperature (CDC, 2017). Table 1 summarizes the commonly used

antibiotics and their indication for use.

4 | IMPACT OF ANTIBIOTICS ON GUT
MICROBIAL COMPOSITION

4.1 | Impact of antibiotics during pregnancy and
lactation

Perinatal and peripartum antibiotic use can impact gut microbial co-

lonization and the resistome profile in infants (Wong et al., 2020; Zhou

et al., 2020). To understand the potential impact of antibiotic admin-

istration on offspring during pregnancy, scientists examined the tem-

poral impact of cefoperazone, on both maternal and offspring

microbiota when administered during the peripartum period in an in-

terleukin 10 (IL‐10)‐deficient murine model of colitis (Miyoshi

et al., 2017). Offspring from cefoperazone‐exposed dams developed

altered gut microbial communities into adulthood and had increased

susceptibility to spontaneous and chemically induced colitis

(Miyoshi et al., 2017). Similar results were demonstrated by Schulfer

et al. (2018), who inoculated germ‐free pregnant mice with an

TABLE 1 Summary of the various antibiotics used commonly, their mode of action, and indications when used

Antibiotic
Class of
antibiotic

Broad/narrow
spectrum

Mode of
action Target pathogen Reference

Amoxicillin,
ampicillin

β‐Lactam Broad‐spectrum Bactericidal Rhinosinusitis, respiratory and
genitourinary tract infections,

septicemia

Akhavan et al. (2020);
Peechakara and

Gupta (2021)

Cephalosporin β‐Lactam Broad‐spectrum Bactericidal Urinary and respiratory tract infection,
Gram‐negative bacteria

Bui and Preuss (2021)

Azithromycin/
erythromycin

Macrolides Broad‐spectrum Bactericidal Sinusitis, pneumonia, respiratory tract,
and skin infection, urogenital and
chlamydial infection

Pitsouni et al. (2007); Patel
and Hashmi (2021)

Metronidazole Nitroimidazole Broad‐spectrum Bactericidal Protozoal infections, C. difficile
infections, Gram‐negative bacterial
infections

Rineh et al. (2014); Weir and
Le (2020)

Gentamycin Aminoglycoside Broad‐spectrum Bactericidal Urinary tract infection, Gram‐negative
bacterial infections

Habak and Griggs, (2020);
Chaves and Tadi (2021)
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antibiotic‐altered microbial community. They observed that the altered

microbial community was transmitted to the IL‐10‐deficient offspring

which resulted in the development of markedly increased colitis

(Schulfer et al., 2018). Another study demonstrated that uptake of

antibiotics during pregnancy can lead to alterations in the vaginal mi-

crobial composition before birth (Stokholm et al., 2014); this can im-

pact the microbial composition infants receive at birth (Dobbler

et al., 2019). Maternal antibiotic uptake during pregnancy has been

reported to be associated with altered microbial composition de-

pending on the antibiotic type (Azad et al., 2016; Coker et al., 2020). It

is also associated with increased risk of asthma and allergy in the infant

(Stokholm et al., 2014) although there is some controversy around this

(Kim et al., 2019), as well as with functional impairment in develop-

ment and cognition (Kenyon et al., 2008), obesity (Mueller et al., 2015),

immunological alterations and development of diabetes (Tormo‐Badia

et al., 2014) in offspring.

Many studies have demonstrated that IAP‐exposed infants in the

first weeks of life have lower proportions of Actinobacteria and Bac-

teroidetes (Aloisio et al., 2016; Nogacka et al., 2017), high oral Pro-

teobacteria levels (Gomez‐Arango et al., 2017), and lower levels of

bifidobacteria (Mazzola et al., 2016). At 3 months, they show under‐

representation of Bacteroides, Parabacteroides, and higher Enterococcus

and Clostridium (Azad et al., 2016), as well as a higher abundance of

Enterobacteriaceae (Mazzola et al., 2016), as compared to nonantibiotic

exposed infants. Similar results were reported in a recent study in-

cluding 22 newborns which demonstrated that maternal intrapartum

antibiotics can affect the infant oral microbiota with phyla Actino-

bacteria, Bacteroidetes, and Proteobacteria being more abundant in

infants of antibiotic‐treated mothers (Li et al., 2019). Another study in

28 preterm infants (with fecal samples collected on Day 7 and 14 from

birth) demonstrated similar results with decreases in Bacteroidetes and

Bifidobacterium in prenatal antibiotic‐exposed infants and suggested

that the altered microbiota resembled the resistant bacteria in the

neonatal intensive care unit during the same period (Zou et al., 2018).

Many of these effects are similar to those observed following post-

natal antibiotic administration (Tapiainen et al., 2019). Ampicillin use as

an intrapartum prophylactic drug in mothers against Group B Strep-

tococcus is also demonstrated to reduce the levels of bifidobacteria in

infants (Aloisio et al., 2014). Similar effects of perinatal antibiotic ex-

posure have been observed in preterm infants (n = 40); marked by

increased levels of Enterobacteriaceae species and reduced levels of

Bacteroidaceae (Arboleya et al., 2016).

Maternal antibiotic administration during lactation also influ-

ences the milk microbiota (Hermansson et al., 2019; Soto

et al., 2014), which can in turn influence the infant gut microbial

composition.

4.2 | Impact of antibiotic administration directly to
infants on the infant gut microbiota

Premature infants are very often treated with antibiotics owing to

their health conditions, and antibiotics are one of the most

commonly prescribed drugs in the NICU (Clark, 2006). Many of the

prophylactic antibiotics are broad‐spectrum and thus affect a huge

proportion of the gut bacterial community, leading to many al-

terations in the early establishment pattern. Studies have reported

that very preterm infants who received prolonged antibiotic treat-

ment had less diverse bacterial populations and reduced species

richness in their gut and more antibiotic resistance genes (ARGs;

Gasparrini et al., 2019; Gibson et al., 2016). Both short‐term and

long‐term exposure of preterm infants to antibiotics can alter their

gastrointestinal microbiota. These changes include decreases in

bifidobacteria and Bacteroidetes relative abundance, and an increase

in Enterococcus abundance (Gasparrini et al., 2019; Zou et al., 2018;

Zwittink et al., 2018). Extended antibiotic treatment in premature

infants can result in an increased risk of developing late‐onset

sepsis (primarily caused by Group B Streptococcus), necrotizing

enterocolitis (NEC), and overall mortality (Esaiassen et al., 2017;

Kuppala et al., 2011).

Amoxicillin treatment in infants (n = 31) for 7 days was shown to

completely eradicate Bifidobacterium adolescentis species which was

accompanied by decreased diversity of the bifidobacteria population

(Mangin et al., 2010). In a cohort of 18 infants, we have previously

found that the use of ampicillin and gentamicin in early life resulted in

higher levels of Proteobacteria and lower proportions of Bifido-

bacterium and Lactobacillus 4 and 8 weeks after the treatment (Fouhy

et al., 2012). A study reporting on the effects of administering the

broad‐spectrum antibiotic, cefalexin, in 26 infants, in the first 4 days

of life revealed that the gut microbiota of antibiotic‐treated infants

showed less diversity than the control antibiotic‐free infants (Tanaka

et al., 2009). The antibiotic also arrested the growth of some bacterial

groups such as bifidobacteria and resulted in unusual colonization

of Enterococcus in the first week. Further to this, a high

Enterobacteriaceae population was observed 1 month following an-

tibiotic treatment as compared to the control antibiotic‐free infants

(Tanaka et al., 2009). Antibiotics change the dominant members of

the bacterial community which could have profound effects on

immune development, metabolism, and growth of the infant

(Cox et al., 2014; Nobel et al., 2015).

Similar results of reduced gut microbiota diversity have been

observed in children (n = 39, monthly sampling in the first 3 years of

life) who have undergone antibiotic therapy. The authors also re-

ported the presence of ARGs on mobile genetic elements long after

cessation of treatment (Yassour et al., 2016). Antibiotic use during

infancy and childhood has been associated with the altered microbial

composition and metabolic functions (Korpela et al.,2016), higher risk

of asthma and allergy development (Ni et al., 2019; Yamamoto‐

Hanada et al., 2017), and obesity (L. C. Bailey et al., 2014) in later life.

4.3 | Impact of antibiotics on the gut and oral
microbiota in adults

To investigate the long term effects of antibiotics on the healthy

state microbial composition, the antibiotics amoxicillin (n = 6;
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Cochetière et al., 2005), ciprofloxacin (n = 3; Les Dethlefsen

et al., 2008), and cefprozil (n = 24; Raymond et al., 2016) were ad-

ministered to healthy individuals. These studies reported changes in

microbial composition persisting for up to 12 weeks after treatment

had ended with the incomplete restoration of microbial composition

and emergence of antibiotic‐resistant strains. In one study, the

authors examined the distal gut microbiota of three individuals over

10 months post‐administration of the antibiotic ciprofloxacin. They

reported that the effect of ciprofloxacin on the gut microbiota was

profound and rapid with a decrease in richness and diversity of

microbiota accompanied by shifts in levels of Bacteroidetes, Lach-

nospiraceae, and the Ruminococcaceae. By 1 week after the end of

each course, communities began to return to their initial state, but

the return was incomplete and variable from the initial stage

(Dethlefsen & Relman, 2011). Many studies have investigated the

long‐term impact on gut microbiota following a course of anti-

biotics. A short term course of clindamycin (7 days) resulted in

significant disturbances in the bacterial community such as a sharp

decline in Bacteroides (Jernberg et al., 2007; Löfmark et al., 2006)

and enterococcal colonies (Lindgren et al., 2009) that remained for

up to 2 years post‐treatment and was accompanied by increased

levels of ARGs and strains (Jernberg et al., 2007; Lindgren

et al., 2009; Löfmark et al., 2006). Another study (n = 10) that

analyzed adult fecal samples from 11 days to 12 months post an-

tibiotic treatment demonstrated that the use of ciprofloxacin for

10 days resulted in lower abundances of Bifidobacterium but did not

affect Lactobacillus and Bacteroides levels, but clindamycin treat-

ment for the same number of days caused Lactobacillus and Bifi-

dobacterium to decrease and Bifidobacterium did not normalize until

1‐year post‐treatment, showing that different bacterial groups re-

quire different times for normalization post‐treatment (Rashid

et al., 2015).

Pérez‐Cobas and Gosalbes et al. (2013) also reported that the

type of antibiotic, whether static or cidal, had varying effects on

the gut microbiota which was reflected at the functional level.

For instance, in a study of four subjects, a bacteriostatic drug

resulted in the flourishing of Gram‐negative bacteria which was

related to an increase in the number of genes involved in lipo-

polysaccharide (LPS) synthesis, while the bactericidal drug was

associated with an increase in Gram‐positive bacteria which was

accompanied by an over‐representation of genes involved in

endospore formation (Pérez‐Cobas & Artacho et al., 2013). An-

tibiotic administration for the eradication of Helicobacter pylori

demonstrated that the antibiotics could affect the indigenous

microbiota and lead to the development of resistant strains which

can persist for years after treatment (Jakobsson et al., 2010;

Sjölund et al., 2003).

Furthermore many antibiotics are used for dentistry procedures

routinely. These antibiotics can increase the number of resistant

strains present orally, can increase the minimum inhibitory con-

centrations, and can also eliminate the nonpathogenic strains

(Harrison et al., 1985; Ready et al., 2004), which can lead to systemic

infections and inflammation.

5 | CONSEQUENCES OF ANTIBIOTIC‐
INDUCED MICROBIOTA CHANGES FOR
HEALTH AND DISEASE

5.1 | In adults

Due to the role of the microbiota in host metabolism and physiology,

many studies postulate that microbial imbalances can be related to

obesity (Riley et al., 2013; Scott et al., 2016), diabetes (Boursi

et al., 2015; Mikkelsen et al., 2015), and asthma (Arrieta et al., 2015;

Kozyrskyj et al., 2007). Blaser and Falkow (2009) have suggested a

link between the “missing microbes” and modern conditions such as

obesity and juvenile diabetes. These multifactorial conditions can be

controlled by identifying the controllable factors such as the micro-

biota component and dietary habits, thus preventing them from

occurring if possible.

Studies have reported a link between antibiotic usage and obe-

sity (Del Fiol et al., 2018). Some studies suggest that an increased

ratio of Firmicutes to Bacteroidetes rather than specific levels is as-

sociated with obesity (Kasai et al., 2015), though results are con-

flicting (Duncan et al., 2008; Schwiertz et al., 2010). While the

microbial component of obesity is debated, studies have reported a

common change at functional microbial levels. Indeed, obese in-

dividuals have higher short‐chain fatty acid (SCFA) content compared

to lean individuals (Schwiertz et al., 2010; Turnbaugh et al., 2006).

Furthermore, obesity is associated with metabolic alterations related

to glucose homeostasis and insulin resistance and linked to the de-

velopment of diabetes (Cani et al., 2012). In a study in 96 humans

(48 each antibiotic group and controls), researchers reported sig-

nificant and persistent weight gain after an episode of infectious

endocarditis in patients who had been treated with vancomycin and

gentamycin (Thuny et al., 2010).

An association between antibiotic‐induced changes in microbial

colonization and type 1 diabetes in male mice was reported (Candon

et al., 2015). A combination of broad‐spectrum antibiotics or van-

comycin alone was given to neonatal nonobese diabetic mice that

spontaneously developed autoimmune type 1 diabetes. The micro-

biota was significantly altered with an increase in Escherichia and

Lactobacillus species and a decrease of the Clostridiales order com-

pared to controls. A major reduction of IL‐17‐producing cells was also

observed in the lamina propria of the ileum and the colon of

vancomycin‐treated mice (Candon et al., 2015), which can affect host

defense mechanisms. Some studies in human populations also sug-

gest a link between repeated use of broad‐spectrum antibiotics and

diabetes (Boursi et al., 2015; Mikkelsen et al., 2015), while some

suggest a protective and preventative role of antibiotics and diet in

diabetes development in diabetes‐prone animals partly due to low-

ering of specific antigenic load or development of tolerogenic APCs

(Brugman et al., 2006; Hu et al., 2015).

Associations between altered microbial composition and type 2

diabetes are more established, with decreased levels of butyrate‐

producing bacteria reported in type 2 diabetic patients (Gurung

et al., 2020). X. Zhang et al. (2013) studied 121 subjects with normal
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glucose tolerance, prediabetes, and newly diagnosed diabetes and

reported that there is modulation of the gut microbial composition at

the prediabetes stage which can act as a marker for the development

of diabetes state.

Antibiotics can lead to antibiotic‐associated diarrhea (AAD)

and studies have demonstrated that clindamycin can result in al-

teration of the microbial community which can promote the co-

lonization of potential pathogens such as C. difficile which can lead

to diarrhea and colitis (Buffie et al., 2012; McDonald, 2017). An-

other study in a mouse model reported that antibiotic treatment

resulted in decreased alpha and beta diversity, which potentially

caused a decrease in levels of serotonin, tryptophan hydrolase, and

secondary bile acids which can further affect gut motility and

metabolism (Ge et al., 2017).

5.2 | During pregnancy and infancy

Extrinsic factors such as antibiotics can alter the diversity of the

maternal microbiota that can affect the infant's gut microbiota di-

versity, immunity, and disease development in later life, both directly

and indirectly (Azad et al., 2016; Nyangahu et al., 2018; Tapiainen

et al., 2019; Tormo‐Badia et al., 2014). According to the hygiene

hypothesis, if the host is not exposed to a diverse range of microbiota

early in childhood or in the developing stages, immune‐related dis-

orders may develop such as asthma and allergic sensitization. Anti-

biotics can have a similar effect when administered during infancy.

Preterm infants are often exposed to antibiotics which results in an

altered microbial composition (Clark, 2006; Gibson et al., 2016; Zou

et al., 2018), predisposing them to probable infections such as NEC,

and invasive fungal infections (Esaiassen et al., 2017). Animal studies

have reported that administration of low dose or subtherapeutic

concentrations of antibiotics in early life can disturb the microbial

composition, affecting the expression of genes involved in immunity

and carbohydrate metabolism, and can alter metabolic homeostasis

predisposing the host to adiposity later in life (Cho et al., 2012; Cox

et al., 2014; Schulfer et al., 2019). Obesity has been widely linked

with altered microbial colonization during early life owing to the role

of the gut microbiota in dietary metabolism. Studies have demon-

strated that early‐life antibiotic exposure has potential links to in-

creases in body mass index, overweight and central adiposity, and

this can be gender‐specific affecting males more than females (Azad

et al., 2014; Murphy et al., 2014). Both murine models (Cho

et al., 2012; Cox et al., 2014) and human studies have reported that

antibiotic exposure in the first few months of life is associated with

increases in body mass index and risk of overweight (L. C. Bailey

et al., 2014; Scott et al., 2016; Trasande et al., 2013) and asthma

(Kozyrskyj et al., 2007; Risnes et al., 2011) in childhood. Similarly,

studies have reported that antibiotic administration in early life can

be associated with a heightened risk of asthma, allergy, and atopic

dermatitis, and IBD (Johnson et al., 2005; Kronman et al., 2012; Ni

et al., 2019; Yamamoto‐Hanada et al., 2017). NEC and AAD have also

been associated with prolonged or prophylactic antibiotic uptake in

early life (Alexander et al., 2011; Kuppala et al., 2011; Michael Cotten

et al., 2009).

5.3 | Changes in immune response

The immune system is trained to fight pathogens during infancy, and

this is the time when microbial colonization takes place. Any dis-

turbance to microbial colonization has been shown to affect immune

maturation due to this co‐developmental process. Studies in germ‐

free mice have confirmed that the absence of microbes in the gut

results in both physiological and immunological changes to the gut

environment. These changes include alterations in mucus thickness

and composition (Szentkuti et al., 1990), reduced gastric motility

(Abrams & Bishop, 1967), improper development and functioning of

intestinal cells and immune cells (Cahenzli et al., 2013; Vaishnava

et al., 2008) and improper development of the immune system (Bauer

et al., 1963; Macpherson & Uhr, 2004). Antibiotic treatment has been

shown to reduce the thickness of the colonic mucus layer thus in-

creasing the risk of pathogen invasion and intestinal inflammation in

8–10‐week‐old mice (Wlodarska et al., 2011). Another study in mice

reported that antibiotic‐induced alterations in the microbiota shift

the TH1/TH2 balance toward TH2‐dominant immunity—which leads

to atopy development, accompanied by a reduced number of lym-

phocytes (Oyama et al., 2001). Altered microbial composition and

altered gene maturation profile such as downregulation of genes

coding for MHC class 1b and class II proteins and products of Paneth

cells such as defensins were seen post clamoxyl treatment in neo-

natal rats, which could affect mucosal barrier development

(Schumann et al., 2005).

A study demonstrated that certain molecules produced by bac-

teria in the gut are involved in immune system maturation. Indeed,

germ‐free mice colonized with B. fragilis producing a bacteria poly-

saccharide resulted in correcting T‐cell‐deficiencies and improving T

(H)1/T(H)2 imbalances along with promoting lymphoid organogen-

esis; this was not observed in the case of the nonpolysaccharide‐

producing mutant B. fragilis (Mazmanian et al., 2005). Studies have

reported that the secretion of antimicrobial peptides by intestinal

epithelial cells is regulated by the microbiota in the microenviron-

ment. Germ‐free mice colonized with conventional or human mi-

crobiota or specific probiotic species or LPS demonstrated increased

production of antimicrobial peptides like REGIII‐γ, boosting the in-

nate immune response (Brandl et al., 2008; Cash et al., 2006;

Natividad et al., 2013).

A study in mice demonstrated that prenatal antibiotics not only

altered the pattern of microbiota colonization in infant mice but also

negatively affected the activity of CD8+ T lymphocytes towards viral

infections affecting their immune responses (Gonzalez‐Perez

et al., 2016). Further, they also observed that infant mice were more

susceptible to infection when born in stricter hygienic facilities

(Gonzalez‐Perez et al., 2016). Similar results were reported post‐

antibiotic treatment in another murine model with low bacterial di-

versity alongside reduced cytokine production by CD4+ T lymphocytes
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and reduced production of interferon‐γ (D. A. Hill et al., 2010). In a

study involving influenza patients, the authors reported that subjects

with low titers of infection and treated with antibiotics had low im-

mune responses accompanied with microbiota loss, low im-

munoglobulin (Ig) G1, IgA, and secondary bile acid levels against the

infection (Hagan et al., 2019).

These studies demonstrate the complex relationship between

the microbiota and the host immune response, and the impact of

antibiotics on this interaction which needs to be further studied. It

can also impact the effectiveness of vaccines used postantibiotic

treatment.

6 | INFLUENCE OF ANTIBIOTIC‐ INDUCED
CHANGES ON MICROBIOTA
FUNCTIONALITY AND BACTERIAL
BEHAVIOR AT THE SINGLE‐CELL LEVEL

6.1 | Changes in metabolites

The gut microbiota is responsible for the production of many essential

metabolites including SCFAs and amino acids (Mills et al., 2019). Stu-

dies have reported that commensal‐produced butyrate and propionate

have anti‐inflammatory roles, promoting the generation and differ-

entiation of regulatory T cells (Arpaia et al., 2013; Furusawa

et al., 2013), with roles in energy metabolism (den Besten et al., 2013;

DeVadder et al., 2014). By impacting the composition of the microbial

community, antibiotics also alter microbiota functionality and thus the

metabolites produced (Ferrer et al., 2017).

For example, metabolomics profiles were analyzed in antibiotic‐

treated piglets fed a corn‐soy basal diet with or without in‐feed an-

tibiotics from postnatal days 7–42. The antibiotic‐treated group had

higher concentrations of metabolites associated with amino acid

metabolism, decreasing the concentration of amino acids. A reduc-

tion in SCFA production was also reported as levels of butyrate and

propionate were decreased (Mu et al., 2017). Another study in piglets

(Days 7–21) demonstrated that fecal microbiota transplant (FMT) and

antibiotic (amoxicillin) treatment both resulted in lowering of fatty

acid oxidative catabolism and amino acid biosynthesis, though anti-

biotics had a more significant effect (Wan et al., 2019).

Multiple studies performed in mouse models have elucidated the

effects of antibiotic treatment on host metabolic functions. A study in

antibiotic (streptomycin)‐treated mice reported that antibiotic ad-

ministration can affect pathways of hormone synthesis such as

steroids and eicosanoids, along with altering the pathways involved in

sugar, bile acids, and amino acid metabolism, thus suggesting the role

of the microbiota in these pathways (Antunes et al., 2011). Sun et al.

(2019) reported that mice treated with antibiotics (enrofloxacin,

vancomycin, and polymixin B sulfate) showed upregulated gene ex-

pression of various cytokines in the colon, with significant metabolic

shifts in valine, leucine, and isoleucine biosynthesis pathways. These

alterations correlated to changes in microbial composition. One study

reported that clindamycin treatment in mice resulted in significant

changes in metabolite composition (30% of the compounds ana-

lyzed); the restoration of which was associated with recovery of the

altered microbiota (Jump et al., 2014). Zhao et al. (2013) reported

that antibiotic treatment altered the products of bacterial metabo-

lism. This included decreased levels of SCFAs, amino acids (correlated

with the abundance of Prevotella, Alistipes, and Barnesiella), and in-

creased precursors like bile acids and oligosaccharides (associated

with high levels of facultative anaerobic bacteria, Enterococcus fae-

calis, Enterococcus faecium, and Mycoplasma; Zhao et al., 2013). Mi-

crobial depletion in mice due to antibiotic uptake decreased baseline

serum glucose levels, improved insulin sensitivity (Zarrinpar

et al., 2018), altered systemic glucose metabolism along with changes

in expressions of the genes in the liver and ileum involved in glucose

and bile acid metabolism (Rodrigues et al., 2017). This was reported

to be accompanied by reduced levels of SCFAs and secondary bile

acid pools (Zarrinpar et al., 2018). Similar results were reported fol-

lowing vancomycin treatment (Vrieze et al., 2014). This can lead to

impairment of barrier function (Kelly et al., 2015); act as a causative

factor in the development of ulcerative colitis (Machiels et al., 2013),

and Salmonella infection (Gillis et al., 2018).

Studies have also reported that antibiotic uptake can result in

changes in protein expression, energy metabolism in the microbiota,

with a slight increase following antibiotic therapy, which may be as a

coping mechanism to antibiotic stress but decreased at later stages

and post‐antibiotic usage (Pérez‐Cobas & Artacho et al., 2013). An-

other study demonstrated that antibiotics have a sex‐dependent ef-

fect on host metabolism. They reported that vancomycin and

ciprofloxacin–metronidazole treatment resulted in significant reduc-

tions of Firmicutes and SCFAs in female mice, which was only ob-

served after vancomycin treatment in males. They also reported that

both antibiotic exposures significantly decreased the levels of ala-

nine, branched‐chain amino acids (leucine, isoleucine, and valine), and

aromatic amino acids in colonic contents of female mice but not in

male mice (Gao et al., 2019).

6.2 | Accumulation of metabolites/xenobiotics

Xenobiotics (including antibiotics, heavy metals, and environmental

chemicals) have an impact on gut microbial composition. The effect

here is cyclical in that the microbiota is necessary for xenobiotic bio-

transformation (Figure 3). The metabolism of xenobiotics before it

reaches its target organ site is largely dependent on the microbiota.

The gut microbiota can affect the xenobiotic half‐life in the host, the

extent to which they reach the target receptor, and may also influence

the host's capacity to metabolize xenobiotics (Koppel et al., 2017).

Both in vivo and in vitro studies have shown that the gut microbiota is

involved in the biotransformation of xenobiotics (Lu et al., 2013).

Studies using germ‐free and conventional rodents reported that the

absence of gut microbiota‐affected gene expression of many liver

enzymes including active androstane receptor and host detoxifying

enzymes such as glutathione peroxidases, sulfotransferase, epoxide

hydrolases, and N‐acetyltransferases (Björkholm et al., 2009; Meinl

8 of 23 | PATANGIA ET AL.



et al., 2009). However, the absence of microbes necessary for meta-

bolizing particular compounds can result in their accumulation in the

host which may lead to toxicity. Ciprofloxacin administration to SPF

and germ‐free mice revealed decreases in hepatic Cyp3a11 expres-

sion, this was associated with the gut microbiota. The lower lithocholic

acid (LCA) levels due to decreases in LCA‐producing bacteria post

antibiotic administration could be responsible for decreases in the

expression of Cyp3a11. Similar effects in humans can result in less

clearance of multiple CYP3A4 (human analog of Cyp3a11)‐dependent

medications (Lynch & Price, 2007).

Another study speculated that increased levels of hepatic lipid

accumulation and TG levels in mice were due to antibiotic treatment

and the altered gut microbial composition (Jin et al., 2016). Studies

have shown that antibiotic treatment in mice increases the levels of

sialic acid and succinate which increase the susceptibility of the host

to Salmonella and C. difficile infections (Ferreyra et al., 2014; K. M. Ng

et al., 2013). In the same manner, an antibiotic‐altered microbial

composition can result in deficiencies of certain metabolites or vita-

mins that are solely produced by bacteria. For example, one study

reported that antibiotic‐induced changes in the gut microbiota of

mice resulted in shifts in copper (Cu) metabolism. This can have

consequences for immunity and the intestinal barrier due to the role

of Cu in these functions (Miller et al., 2019).

Furthermore, cross‐feeding is a significant feature of the gut

microbiota. For example, B. adolescentis produces lactate and acetate

by utilizing fructo‐oligosaccharides and starch. Butyrate‐producing

anaerobes cannot utilize fructo‐oligosaccharides and starch but rely

on lactate and acetate as growth substrates. Therefore, B. ado-

lescentis indirectly facilitate the proliferation and expansion of

butyrate‐producing species through cross‐feeding. This type of de-

pendency is also seen in many other bacterial groups (Heinken &

Thiele, 2015; Rowland et al., 2018). This codependency can be dis-

turbed by antibiotic use leading to increased accumulation or defi-

ciency of some metabolites/compounds. For example, a study

reported a decrease in abundance of Gram‐negative bacteria in the

gut by vancomycin which is a Gram positive‐targeting antibiotic

(Ubeda et al., 2010). This can be due to the interdependency of

bacteria in their community.

6.3 | Changes in bacterial signaling pattern

Antibiotics can alter the transcription of several major functional

genes such as those encoding transport proteins, genes involved in

the metabolism of carbohydrates, and protein synthesis (Goh

et al., 2002; J. T. Lin et al., 2005). A study demonstrated induced

expression of virulence‐associated genes in Pseudomonas aeruginosa

leading to higher secretion of rhamnolipids and phenazines on ex-

posure to subinhibitory concentrations of antibiotics (Shen

et al., 2008). Many studies have reported that aminoglycosides

(Hoffman et al., 2005), β‐lactams (Kaplan et al., 2012; K. M. Ng

et al., 2014), vancomycin, and oxacillin (Mirani & Jamil, 2010) can

induce biofilm formation even at sublethal concentrations. These

biofilms then act as reservoirs of antibiotic resistance. This confers

additional resistance to bacteria against several antibiotics and host

defense, which can make treatment difficult in humans and can cause

several issues such as blockage of pipes/equipment in healthcare

settings and food industries (Muhammad et al., 2020).

Bacteria interact with their host using pattern recognition re-

ceptors (PRR) via signaling through the production of bile acids, SCFAs,

fatty acids, amino acids, LPS, lipoteichoic acid, flagellin, CpG DNA, and

peptidoglycan. These signaling molecules either serve as a source of

energy for other cells, regulate or modulate the function of immune

cells such as monocytes, macrophages, T cells via G‐protein coupled

receptor and nuclear receptor family, free fatty acid receptors (Brestoff

& Artis, 2013). Antibiotic use results in a reduction of these bacteria

and hence the PRRs such as TLR signaling and downstream regulation

of innate defenses (Willing et al., 2011). A study reported that an

antibiotic‐mediated decrease in butyrate‐producing bacteria resulted in

reduced epithelial signaling through the intracellular butyrate sensor

peroxisome proliferator‐activated receptor γ (Byndloss et al., 2017).

Similarly, antibiotic disruption of the commensal microbiota in newborn

mice increases their susceptibility to pneumonia, due to interrupted

migration of IL‐22 producing lymphoid cells (IL‐22+ ILC3; Gray

et al., 2017). This effect could be reversed by the transfer of com-

mensal microbiota to mice at birth (Gray et al., 2017). Another study

reported the importance of commensals in protecting against colon

injury and maintaining intestinal homeostasis (Rakoff‐Nahoum

et al., 2004). In this case, commensals induced release of protective

factors via TLRs; these factors were not released in mice treated with

antibiotics lacking the commensal bacteria (Rakoff‐Nahoum

et al., 2004). Antibiotics can thus impact complex host‐microbial in-

teractions due to changes in microbial community composition.

6.4 | ARG reservoir

ARGs are now reported to be found in the environment including

oceans and freshwater bodies (Hatosy & Martiny, 2015), soil

F IGURE 3 Figure demonstrating cyclical relation between gut
microbiota, xenobiotics, and metabolites

PATANGIA ET AL. | 9 of 23



(Cycoń et al., 2019), glaciers (Segawa et al., 2013), the food chain,

and also within humans. Apart from bacteria, viruses have also

been reported to be carriers of ARGs (Debroas & Siguret, 2019).

Some of this spread of ARGs is historical such as in some un-

touched/uncontaminated environments (Van Goethem, 2018)

but much of it is because of the wide use of antibiotics by

humans.

For instance, apart from their use in treating infections in hu-

mans, antibiotics have been widely used as growth promoters for

weight gain in animals (Butaye et al., 2003) and to treat and control

infections (Ding et al., 2014; Mcmanus et al., 2002). They have also

been used in aquaculture for similar reasons (Cabello, 2006; Lulijwa

et al., 2019). Some of these antibiotics are the same as, or are

structurally similar to the ones used to treat human infections such as

erythromycin, gentamycin, enrofloxacin, neomycin, streptomycin

(Marshall & Levy, 2011). The development of antibiotic‐resistant

bacteria in agriculture and aquaculture is a serious concern as such

bacteria can enter humans through the food chain promoting cross‐

resistance and also reducing the susceptibility of infectious bacteria

to antibiotic treatment.

Humans are reservoirs of ARGs (J. K. Bailey et al., 2010;

Clemente et al., 2015; Sommer et al., 2010) and the gut has been

pinpointed as the epicenter of antibiotic resistance (Carlet, 2012).

Intriguingly, some studies have reported the presence of ARGs in

humans from remote communities who have had very limited

exposure to antibiotic therapy. They reported high levels of ac-

quired resistance to antibiotics such as tetracycline, ampicillin,

trimethoprim/sulfamethoxazole, streptomycin, and chlor-

amphenicol (Bartoloni et al., 2009). Similarly, ARGs in healthy

humans have been reported despite the absence of antibiotic use

(Bengtsson‐Palme et al., 2015; Sommer et al., 2009; de Vries

et al., 2011). Studies in healthy infants and children who have

never been exposed to antibiotics report the presence of genes

that confer resistance to β‐lactams, fluoroquinolones, tetra-

cycline, macrolide, sulfonamide, or multiple drug classes. The

major ARG carriers were found to be Enterococcus spp., Staphy-

lococcus spp., Klebsiella spp., Streptococcus spp., and Escherichia/

Shigella spp. (Casaburi et al., 2019; Karami et al., 2006; Moore

et al., 2013; L. Zhang et al., 2011).

In the gut, bacteria can horizontally and vertically transmit genes

to other related or unrelated bacteria due to their proximity via

mobile genetic elements (Table 2). ARGs in the infant gut microbiota

can be derived from that of their mothers, as AR bacteria can be

transmitted from mother to infant through breastfeeding (Parnanen

et al., 2018). The presence of ARGs in humans is a global crisis be-

cause it makes the treatment of infections more difficult, costly, and

inefficient.

7 | NONMICROBIOTA‐ASSOCIATED
EFFECTS OF ANTIBIOTICS

7.1 | In pregnancy

Associations between antibiotic usage during pregnancy with

neonatal and congenital abnormalities have been reported. For

example, studies have reported an increased risk of developing

cerebral palsy, epilepsy, cardiac and genital malformations in

infants born to mothers treated with macrolides during pregnancy

and which are more harmful when consumed during the first tri-

mester (Källén & Danielsson, 2014; Kenyon et al., 2008; Meeraus

et al., 2015). Similarly, amoxicillin use during the first trimester was

linked to cleft lip and cleft palate development, and though re-

ported in only a small number of cases, it exemplifies the adverse

effects of antibiotic use during pregnancy (Lin et al., 2012). Birth

defects such as microphthalmia, hypoplastic left heart syndrome,

atrial septal defects, and cleft lip with cleft palate have also been

associated with the use of sulfonamides and nitrofurantoin during

the first trimester of pregnancy (Crider et al., 2009). Similarly,

trimethoprim–sulfonamide use during pregnancy is associated

with a higher risk of cardiovascular malformations (Czeizel

et al., 2001). The evidence in all cases is mixed (Muanda &

Sheehy, 2017), and is usually linked with consumption during the

early months of pregnancy. This could be due to the antibacterial

impacting the neonate during the organogenesis and early devel-

opment stages in utero. Though the examples cited represent

potential associations and not causal relationships, a reappraisal of

antibiotic usage during pregnancy is warranted.

TABLE 2 Various mobile genetic elements that can be used for the transfer of ARGs

Mobile elements and transfer of resistance genes

Vehicle element Description Some antibiotic resistance genes transported

Plasmids; Rozwandowicz
et al. (2018)

Extrachromosomal material Colistin resistance, extended‐spectrum β‐lactams, β‐lactams,
aminoglycoside, quinolone, sulfonamides, tetracycline,
chloramphenicol, trimethoprim

Integrons; Partridge
et al. (2009)

Genetic elements with site‐specific
recombination system

Sulfonamide resistance (sulI), aminoglycosides, β‐lactams, quinolones,
chloramphenicol, and trimethoprim

Transposons; Lupski (1987) Mobile elements that need integration into

chromosome or plasmid

β‐Lactams, macrolides, aminoglycoside, chloramphenicol, tetracycline
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7.2 | General effects

Studies have reported that antibiotics can exert direct toxic effects

on host tissues such as mitochondrial damage, suppressed ribo-

somal gene expression (Morgun et al., 2015), and oxidative tissue

damage in mammalian cells (Kalghatgi et al., 2013). Though con-

troversial, some studies suggest that antibiotic use can be related

to increased risk of breast cancer (Tamim et al., 2007; Velicer

et al., 2004) and increased risk of miscarriage (Fan et al., 2019).

Sometimes, antibiotics can worsen the condition they are meant to

treat. The bactericidal action of many β‐lactam antibiotics has been

reported to increase toxin production such as Shiga toxin which is

released from entero‐hemorrhagic E. coli, predisposing the host to

a higher risk of a hemolytic uremic syndrome (Kimmitt et al., 1999;

Wong, 2000). Antibiotics can also affect host metabolism directly

without microbes as a mediator while making the targeted pa-

thogen less susceptible to the antibiotic. These changes in host

metabolites are mostly local to the site of infection and include

high levels of AMP which decrease the efficacy of antibiotics and

also increase phagocytic activity. This was accompanied by im-

paired immune function because of the inhibitory effect of anti-

biotics on the respiratory activity of immune cells (Yang

et al., 2017).

8 | ANTIBIOTIC ALTERNATIVES AND USE
OF PROBIOTICS FOR RESTORING THE
MICROBIAL COMMUNITY AND
BETTERMENT OF HEALTH

It is now well established that antibiotic use results in changes in

microbial composition, the consequences of which can be detrimental

for the host. Certain approaches can be used along with or post

antibiotic therapy to restore the microbial composition faster

(Figure 4). Probiotics are widely used for this purpose and have been

shown to increase the abundance of beneficial microbes, stabilize the

microbial community and thus alleviate the effects of antibiotics (Ki

Cha et al., 2012; Korpela et al., 2018). Probiotics exert their effects by

promoting antimicrobial peptide production, producing bacteriocins,

suppressing the growth of non‐commensals via competing for nu-

trients and receptors on the intestinal mucosa, enhancing barrier

function in the gut, and modulating immunity (Bron et al., 2011;

Cazorla et al., 2018; Collado et al., 2007; O'Shea et al., 2012; Xue

et al., 2017), but the use of probiotics may not lead to complete

restoration of the gut microbiota.

FMT can be more beneficial for regaining microbial balance in the

gut (Suez et al., 2018). FMT has been widely used therapeutically for

rebalancing the microbiota of C. difficile‐infected patients; restoring

F IGURE 4 Various alternatives to antibiotics that can be used alone or in some cases in combination with antibiotic treatment
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their microbial and metabolic activity (Weingarden et al., 2014). FMT

can also utilize donor fecal material from the patient itself before

antibiotic therapy, known as autologous FMT. Many factors such as

efficacy, cost, and suitability make FMT an attractive option but

detailed studies are needed to optimize the process and understand

other probable therapeutic applications beyond gut disorders

(Allegretti et al., 2019; Ramai et al., 2019).

One of the major issues of antibiotic use is the development of

bacterial resistance. Alternatives such as bacteriophage (phage)

therapy and bacteriocins are now being investigated as substitutes

for antibiotics or complementary therapies with antibiotics to

overcome the issue of resistance. Phage therapy was first de-

scribed and used in the early 1900s, but due to the introduction of

antibiotics, phage therapy was dismissed in western medicine

(D. M. Lin et al., 2017), although it is still practiced in certain re-

gions of the world including Georgia, Russia, and Poland (C. Hill

et al., 2018). With the growing antibiotic resistance crisis, phage

therapy is now being revisited. The use of phage therapy to reduce

biofilm and treat lung infections has been studied in mouse models

and it has been demonstrated that phage therapy successfully

treats respiratory P. aeruginosa infection (F. Cao et al., 2015; Fong

et al., 2017; Waters et al., 2017). A report based on using perso-

nalized phage therapy for treating a patient with multidrug re-

sistant A. baumannii reported clearance of infection and success of

the treatment (Schooley et al., 2017). Furthermore, case reports of

patients with bacterial prostatitis and septicemia and acute kidney

injury reported pathogen eradication and decrease in clinical

symptoms post phage therapy (Jennes et al., 2017; Letkiewicz

et al., 2009). Another study reported that 67 of 96 patients'

wounds and ulcers healed post phage therapy; healing was asso-

ciated with a reduction in pathogens (Markoishvili et al., 2002).

The use of engineered bacteriophages to treat drug‐resistant

Mycobacterium abscessus was reported to show clinical improve-

ment in a patient with cystic fibrosis (Dedrick et al., 2019). Another

promising approach is the use of phage lytic proteins as anti-

microbial compounds (Mondal et al., 2020), making phages a

strong antibacterial contender of antibiotics.

Bacteriocins represent another category of potential anti-

biotic alternative. Bacteriocins are ribosomally produced anti-

bacterial peptides produced by bacteria which themselves are

immune to the killing peptide due to specific immunity mechan-

isms. To date, bacteriocins have been mainly used in the food

industry as food safety and preservative agents (Silva

et al., 2018). Bacteriocins have shown promising results as anti-

microbials in animal studies. For example, mouse model studies

have reported the successful use of pyocin to treat P. aeruginosa

lung infections with high efficacy and without any adverse effects

(McCaughey et al., 2016; Merrikin & Terry, 1972). Another study

in mice reported that administration of nisin‐ and pediocin‐

producing Lactococcus lactis and P. acidilactici strains helped re-

duce intestinal vancomycin‐resistant enterococci colonization

(Millette et al., 2008). Bacteriocins have been successfully used to

treat and prevent bovine mastitis with comparable efficacy to

antibiotics (L. T. Cao et al., 2007; Crispie et al., 2004; Kitching

et al., 2019). Furthermore, nisin has proven to be effective in

treating mastitis caused by Staphylococcus in eight lactating fe-

males (Fernández et al., 2008).

Another effective way of addressing the problem of antibiotic

resistance is with the use of monoclonal antibodies as alternatives or

in conjunction with antibiotics. Monoclonal antibodies bypass the

complications of toxicity, resistance development, and early clear-

ance by the immune system which is seen in the case of antibiotics.

The use of monoclonal antibodies for treating bacterial infections is

emerging in the past few years, before which monoclonal antibodies

were mostly used for treating cancer, autoimmune diseases, or viral

infections (Zurawski & McLendon, 2020). A recent study in rabbits

demonstrated the success of the use of monoclonal antibody obil-

toxaximab against anthrax protective antigen. The authors reported

that the use of obiltoxaximab improved the survival of rabbits that

received a lethal dose of B. anthracis spores (Henning et al., 2018). In

a recent clinical trial of 2655 participants, authors reported that the

use of bezlotoxumab (monoclonal antibody against C. difficile toxin)

for treating C. difficile infection resulted in a lower recurrence of

infection (Wilcox et al., 2017). In another recent study, Watson et al.

(2021) generated a monoclonal antibody from B cells of a patient to

be used against Mycobacterium tuberculosis infection in mice.

Monoclonal antibodies are costlier than producing antibiotics but

have many benefits and more studies in this direction will help can

help transform medicine.

One of the major advantages of bacteriocins, phages and their

endolysins, and monoclonal antibodies is that they can be highly

target‐specific thus rendering minimal if any, collateral damage to the

microbiota.

9 | CONCLUSION

This review has summarized the importance of the gut microbiota in

host metabolism and immune functions such as immunity develop-

ment, colonization resistance, cell signaling, and with the help of

advanced omics technologies, the complex interactions between host

and microbiota are now becoming clear. Antibiotics disrupt the mi-

crobial balance and hence the networking within the bacterial com-

munity, and that with the host. The resulting resistant bacteria make

clinical treatment difficult. Due to this complex link between the host

and microbiota, the current usage of antibiotics requires careful

stewardship, with an emphasis on the application of antibiotic alter-

natives, while limiting collateral damage. To this end, we need to

design, develop, and translate new antibiotic alternatives from bench

to bedside, in addition to methodologies that are efficient in con-

serving and restoring the microbial community after antibiotic‐

associated perturbations.
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