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Abstract

To study the dysregulated host immune response to infection in sepsis, gene expression pro-

files from the Gene Expression Omnibus (GEO) datasets GSE54514, GSE57065,

GSE64456, GSE95233, GSE66099 and GSE72829 were selected. From the Kyoto Encyclo-

pedia of Genes and Genomes (KEGG) immune system pathways, 998 unique genes were

selected, and genes were classified as follows based on gene annotation from KEGG, Gene

Ontology, and Reactome: adaptive immunity, antigen presentation, cytokines and chemo-

kines, complement, hematopoiesis, innate immunity, leukocyte migration, NK cell activity,

platelet activity, and signaling. After correlation matrix formation, correlation coefficient of 0.8

was selected for network generation and network analysis. Total transcriptome was analyzed

for differentially expressed genes (DEG), followed by gene set enrichment analysis. The net-

work topological structure revealed that adaptive immunity tended to form a prominent and

isolated cluster in sepsis. Common genes within the cluster from the 6 datasets included

CD247, CD8A, ITK, LAT, and LCK. The clustering coefficient and modularity parameters

were increased in 5/6 and 4/6 datasets in the sepsis group that seemed to be associated with

functional aspect of the network. GSE95233 revealed that the nonsurvivor group showed a

prominent and isolated adaptive immunity cluster, whereas the survivor group had isolated

complement-coagulation and platelet-related clusters. T cell receptor signaling (TCR) path-

way and antigen processing and presentation pathway were down-regulated in 5/6 and 4/6

datasets, respectively. Complement and coagulation, Fc gamma, epsilon related signaling

pathways were up-regulated in 5/6 datasets. Altogether, network and gene set enrichment

analysis showed that adaptive-immunity-related genes along with TCR pathway were down-

regulated and isolated from immune the network that seemed to be associated with unfavor-

able prognosis. Prominence of platelet and complement-coagulation-related genes in the

immune network was associated with survival in sepsis. Complement-coagulation pathway

was up-regulated in the sepsis group that was associated with favorable prognosis. Network

and gene set enrichment analysis supported elucidation of sepsis pathogenesis.
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Introduction

Sepsis is defined as a documented infection with immune dysfunction or dysregulated host

response with organ dysfunction [1–3]. Sepsis cases are composed of a heterogeneous subset

of patients with various biological and clinical characteristics, including age, medication,

underlying disease, causative microbes, and microbes with different antibiotic resistances [4,

5]. These features might act as confounding factors or cause in patients various immune

responses or immune dysfunction.

Immune dysfunction or dysregulated host response in sepsis is associated with defective

antigen presentation, defective adaptive immunity, defective NK cell activity, decreased immu-

noglobulin levels, neutrophil abnormalities, hypercytokinemia, complement consumption,

and defective bacterial removal [6–8]. These features occur in the time course of disease by

themselves or as a combination of more than two features. Measurement of immune-related

molecules such as procalcitonin, C-reactive protein, interleukins, chemokines, and other

immune-related molecules showed that they were associated with these features [9, 10]. Gene

expression profiles from sepsis patients provided comprehensive data that could minimize

selection bias and exhibit a wide range of biological responses [11–17]. Up- or down-regulated

genes and pathways related to sepsis support the understanding of sepsis [11–13].

The immune response in healthy and diseased states is rarely attributed to single molecules,

but rather to complex inter-related molecules. As sepsis-related immune response molecules

are complex, a network approach might enhance our understanding of the equilibrium of the

immune response in sepsis [18, 19]. A network approach analysis of a small group of cytokines

revealed that the network constructed from sepsis patients’ data had a smaller network diame-

ter and shorter shortest path and characteristic path than did the control network [20]. These

topologic features were related to decreased network function or modularity of the network.

In addition, compared to that of day 1, the day 4 cytokine network was decreased in the sepsis

group, which was in line with previous literature [21]. These studies constructed networks

based on measured immune-associated molecules that could be regarded as actual observable

characteristics of sepsis. As molecules could be analyzed independently, analysis of multiple

molecules as a system was required. Analysis of these molecules via network analysis including

topologic parameters and visualization resulted in an informative outcome. However, previous

studies constructed networks based on cytokine measurements in small groups, which resulted

in a limited number of recruited molecules. Measuring molecules in multiplex methods is rela-

tively unfeasible compared to measuring gene expression.

In this study, gene expression signatures from a public database, Gene Expression Omnibus

(GEO), were analyzed. Total transcriptome was analyzed for differentially expressed genes

(DEGs) between healthy control and sepsis groups, followed by gene set enrichment analysis

for DEGs, which revealed up- or down-regulated pathways. We selected 998 immune-related

genes included in immune response pathways using gene expression profiles to construct a

network for the healthy control and sepsis groups.

Methods

Cases in the cohort

This was a retrospective study, and our protocol was approved by the Institutional Review

Board (IRB) of Incheon St. Mary’s Hospital and Seoul St. Mary’s Hospital in accordance with

the Declaration of Helsinki. As public datasets were used, informed consent was waived by the

IRB. The public datasets were downloaded from the Gene Express Omnibus (GEO) website

(http://www.ncbi.nlm.nih.gov/geo/). The mentioned databases were searched using the
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following common terminology: sepsis, human, GPL570 (Affymetrix Human Genome U133

Plus 2.0 Array or hgu133plus2.db), GPL6947 (Illumina HumanHT-12 V3.0 expression bead-

chip), and GPL10558 (Illumina HumanHT-12 V4.0 expression beadchip) [22, 23]. These plat-

forms were selected because they allow the study of genes related to the immune response.

GPL570, GPL6947, and GPL10558 consisted of 58075, 48803, and 47231 probes, respectively.

Entering GPL570, GPL6947, and GPL10558 with other terminology, 74 datasets or series were

found. Among them, the GSE54514 [11], GSE57065 [12], GSE64456 [13], GSE66099 [14],

GSE72829 [15], and GSE95233 [16] datasets were selected because their study designs were

suitable to the purpose of this study [19], which included a healthy control group and a sepsis

group, with more than 10 samples in each group. Datasets with drug treatment, studied tissue

other than whole blood, and known sepsis etiology were excluded (S1 Fig in S1 File). All the

datasets used transcriptomes derived from whole blood. Data regarding the time point of gene

expression were derived from the first sample after admission. GSE66099 and GSE72829 were

composed of several unique datasets, and healthy control and septic shock data from

GSE66099 were selected. Healthy control cases and initial sepsis cases were used for each data-

set. In the case of GSE72829, a healthy control and a definite bacterial infection group were

selected. Randomized selection of sepsis cases without replacement was performed to match

the number of healthy control cases and form a balanced correlation matrix. GSE95233 was

additionally analyzed for survivor and nonsurvivor sepsis cases (GSE95233-1). Baseline char-

acteristics of the datasets are listed in Table 1.

Sepsis diagnosis

Employed gene expression datasets used sepsis diagnosis based on sepsis criteria [1]. The

patients were classified as having systemic inflammatory response syndrome if they met two or

more of the following criteria: WBC count� 12.0 × 109/L or� 4.0 × 109/L, or presenting

more than 10% immature cells; body temperature� 38˚ C or� 36˚ C; respiratory rate� 20

breaths per minute, or heart rate� 90 beats per minute. Sepsis was diagnosed with SIRS and

documented bacterial infection, and septic shock was diagnosed with sepsis and hypotension

not responding to fluid resuscitation [1].

Bioinformatics

For differentially expressed genes (DEG) analysis between control and patient groups based

on total transcriptome, gene set enrichment for pathway analysis and network construction,

several appropriate R software packages were used [24], including Bioconductor [25], affy

[26], GEOquery [27], lumi [28], and limma [29]. The data were downloaded from the GEO

database, and the data matrix of gene expression values was formatted using the GEOquery

package [27]. In the case of Affymetrix gene expression data sets, the raw microarray data

(CEL files) were normalized using the Robust Multichip Averaging (RMA) method, and log2

transformation was performed [25–27]. In the case of Illumina gene expression data sets, the

arrays were normalized using the quantile method [27, 29]. The data were annotated with cor-

responding gene names using R packages hgu133plus2.db, illuminaHumanv3.db, and illu-

mina-Humanv4.db [30, 31].

Gene set enrichment for pathway analysis

Analysis of DEG was performed for total transcriptome. After a t-test using basic functions in

R software, genes were selected based on false discovery rate of less than 0.01 (FDR < 0.01)

[32]. Based on DEG analysis, gene set enrichment for pathway analysis using GAGE package,

based on R language, was performed [33]. GAGE package applies input data to the Kyoto
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Encylopedia of Genes and Genomes (KEGG) pathways. Significant pathways were plotted for

heatmap that was selected based on global P-value of less than 0.05.

Immune response related genes

To analyze the function of the immune response in the control and sepsis groups, KEGG

immune system pathways were used [34]. Twenty-one pathways of the immune system were

included, as follows: hematopoietic cell lineage (has04640); complement and coagulation cas-

cade (has04610); platelet activation (hsa04611); Toll-like receptor signaling (hsa04620); Toll

and Imd signaling (hsa04624); NOD-like receptor signaling pathway (hsa04621); RIG-I-like

receptor signaling (hsa04622); cytosolic DNA-sensing (hsa04623); C-type lectin receptor sig-

naling (hsa04625); natural killer cell-mediated cytotoxicity (hsa04650); antigen processing and

presentation (hsa04612); T cell receptor signaling (hsa04660); Th1 and Th2 cell differentiation

(04658); Th17 cell differentiation (hsa04659); B cell receptor signaling (hsa04662); Fc epsilon

RI signaling (hsa04664); Fc gamma R-mediated phagocytosis (hsa04666); leukocyte transen-

dothelial migration (hsa04670); intestinal immune network for IgA production (hsa04672),

and chemokine signaling (hsa04062). The 21 pathways were assigned to adaptive immunity,

innate immunity, NK cell activity, leukocyte migration, antigen presentation, complement-

coagulation, platelet activity, cytokines-chemokines, signaling, and hematopoiesis. From

them, 1908 genes in these pathways and 998 unique genes were extracted (S1 and S2 Tables in

S1 File).

Table 1. Baseline characteristics of recruited datasets for adult and paediatric patient.

GSE54514 GSE57065 GSE95233 GSE64456 GSE66099 GSE72829

Patient type Adult Adult Adult Pediatric Pediatric Pediatric

Age, mean (yr) a,b �18, 60.3 �18, 62 �18, 65 �2 mo, 29 d �10, 3.7 �17, 1.9 mo

Sex (male %)b 40 67.9 65 52 58 62

Nonsurvivor (%) 25.7 17.9 (28 d) NA NA 16.3 19.2

Cohort description ICU with sepsis

or

ICU with ICU with ED with sepsis PICU with sepsis

or

Discovery group

septic shock septic shock septic shock (PECARN study) septic shock (IRIS study)

Severity evaluation APACHEII SOFA SOFA YOSb PRISM NA

Control (n) 18 25 22 19 49 52

Sepsis or septic shock (n) 35 28 51 89 198 94

Randomized selection without replacement

(septic shock)

18 25 22 - - -

Randomized selection without replacement

(sepsis)

- - - 18 49 52

Measured frequency, frequency (time points) 5 (1, 2, 3, 4, 5 d) 3 (0, 24, 28 hr) 3 (1–2, 3–4, 7–10

d)

1 1 1

Recruited time pointsc 0–24 hr 0–24 hr 1–2 d NA 0–24 hr 5 d

Platform Illumina,

GPL6947

Affymetrix,

GPL570

Affymetrix,

GPL570

Illumina,

GPL10558

Affymetrix,

GPL570

Illumina,

GPL10558

Reference [11] [12] [16] [13] [14] [15]

ED, emergency department; ICU, intensive care unit; NA, data not available; hr, hour; d, day; APACHEII, acute physiology and chronic health evaluation II; SOFA,

sequential (sepsis related) organ failure assessment.
aGSE57065 and GSE72829 were summarized using median age.
b Percent of male and age are summarized data derived from the previous studies, which could be different from the analysis performed in this study. The sepsis patient

was randomly selected corresponding to the number of the control cases.
cYOS, Yale observation score (6–30).

https://doi.org/10.1371/journal.pone.0247669.t001
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As genes were included in multiple pathways, we utilized Gene Ontology (GO) and Reac-

tome pathways for additional information [35, 36]. From the GO pathway, we included activa-

tion of the innate immune response, complement activation, and immune response-activating

signal transduction. From the immune response pathway, the adaptive immune response and

the innate immune response were included. Leukocyte homeostasis, leukocyte activation, and

leukocyte migration were also collected. From the Reactome database, we included the hemo-

stasis pathway; platelet homeostasis; platelet adhesion to exposed collagen; platelet activation,

signaling, and aggregation; formation of fibrin clots; dissolution of fibrin clots, and cell surface

interactions at the vascular wall. In the immune system pathway, adaptive immune system,

innate immune system, and cytokine signaling in the immune system were included (S3

Table in S1 File).

Genes included in multiple pathways were assigned to one pathway with their most fre-

quent function among the KEGG, GO, and Reactome pathways. If the frequency of the gene

that was included in the pathway was equal, undetermined (U) value was assigned. If the fre-

quency was equal and included chemokines-cytokines, signaling, or hematopoiesis pathways,

pathways other than these ones were assigned (S3 Table in S1 File).

Network topology analysis

The network was constructed using Spearman’s correlations equal to or greater than 0.8 and a

P-value of less than 0.05 for each set of molecules. Each gene was regarded as a node, and the

correlation pairs between the genes were regarded as links [37]. Links were created between

the nodes with significant correlation coefficients. Network analysis results were plotted, and

the topologic parameters were calculated using Cytoscape and an additional application, Net-

workAnalyzer [37–39]. The clustering coefficient is defined as the number of links between

associated nodes. The degree of a node is defined as the number of links connected to a node

(gene), and a hub is defined as a node with a relatively high degree. Network density is the

ratio of links in the network to the maximum possible number of links. The length of a path is

the number of unique links between the nodes that are present in the path. Distance is the

shortest path length between two nodes. The network diameter is the maximum length of the

shortest path. The characteristic path length is the average shortest path length and provides

the expected distance between two nodes. The average number of neighbors is the number of

identical nodes connected to a node. The normalized version of the average number of neigh-

bors is the network density. Network heterogeneity is the variance in the number of links of a

node divided by the number of mean links. The average number of neighbors indicates the

average connectivity of the nodes. The topological coefficient is a relative measure of the extent

to which a node shares neighbors with other nodes. Network centralization is close to one

when the network resembles a star-like figure, while uniformly connected networks have a

centralization value close to zero. The stress centrality of a node is the number of shortest

paths passing through that node. The betweenness centrality of a node is the number of short-

est paths between two other nodes that pass through that node, divided by the total number of

shortest paths between the two nodes; betweenness centrality reflects the amount of control

that this node exerts over other nodes. Closeness centrality reflects how close nodes are, which

implies that nodes with high closeness centrality values have the shortest distance to other

nodes on average. Eccentricity reflects the maximum distance of a node from other nodes [38,

39]; a high eccentricity value means that all other nodes are in proximity, a low eccentricity

value means that there are at least one node and its neighbors that are far from that node.

Degree correlation defines the relationship between the degree of a node and that of connected

nodes [40]. Modularity is defined as the tendency of nodes to cluster and to interact,
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coordinating biological processes [41, 42]. The parameters were analyzed using comparison of

proportions (MedCalc Software version 18.2.1, Mariakerke, Belgium).

Results

Gene set enrichment for pathway analysis

Total transcriptome analysis of healthy control and sepsis group revealed that 176 to 8229

genes showed expression differences in datasets. Gene set enrichment for pathway analysis

was performed based on KEGG pathways (S4 Table in S1 File). Among up-regulated or down-

regulated pathways with statistical significance, we searched for pathways associated with

immune-related pathway (S2–S6 Figs in S1 File). We found that complement and coagulation

cascade pathway and Fc epsilon RI signaling and Fc gamma R-mediated phagocytosis path-

ways were up-regulated in 2/3 of datasets from adult patients and in 3/3 of those from pediatric

patients. T cell receptor signaling pathway was down-regulated in 2/3 and 3/3 of datasets from

adult and pediatric patients, respectively. Antigen presentation and processing were down-reg-

ulated in 2/3 of datasets from adult and pediatric patients (Table 2). Altogether, these findings

were interpreted along with the network analysis results. In network analysis, adaptive immu-

nity genes were prominent and isolated from network in sepsis patient group (Fig 1). T cell

receptor signaling (TCR) pathway was down-regulated in 5/6 of the datasets. These data imply

that adaptive immunity related with T cells might be impaired or dysregulated in sepsis. In

addition, adaptive immunity was associated with unfavorable prognosis in sepsis group. Com-

plement and coagulation cascade was prominent in sepsis survivors of GSE95233 datasets (Fig

2). Complement and coagulation cascade was increased in sepsis in 5/6 of datasets and these

data imply that these pathways may be involved in convalescence process.

Network structure and immune function

The network topologic structure revealed that, in sepsis, adaptive immunity genes (green col-

ored) formed a prominent cluster, isolated from the rest of the network (Fig 1 and S7–S18 Figs

in S1 File). In that isolated cluster, CD247 (CD3 Zeta chain), CD8A, ITK (tyrosine protein

kinase ITK / TSK), LAT (linker for activation of T cells), LCK (leukocyte C-terminal Src kinase)

were found in all 6 datasets. CD2, FYN (Src family tyrosine kinase), GATA3 (GATA-binding

protein 3), IL7R, RASGRP1 (RAS guanyl-releasing protein 1) were all found in adult datasets,

but 2/3were found in the pediatric group. CBLB (E2 ubiquitin protein ligase CBL-B), CD3D,

CD3G, ZAP70 (Zeta-chain-associated protein kinase 70) were found in 2/3 of adult datasets, but

all were found in pediatric datasets. Other genes are listed in S5 Table in S1 File. In addition,

NK cell activity (light blue) tended to be included in the network in the sepsis group, whereas it

was isolated in the healthy control group. The nonsurvivor network from GSE95233 revealed

that adaptive immunity was isolated and prominent from the rest of the network, whereas plate-

let activity (olive green) and the compliment and coagulation cascade pathway (yellow) were

isolated and prominent in the survivor group (Fig 2). Platelet, complement and coagulation-

related genes were prominent in survivors; C6, C7, F11, COL1A1, COL3A1, ADCY6, GP5, FGG,

MYLK4, SERPINE1, SERPIND1, CR2, etc. were included. CD8B, IL1A, IL3, IL12B, IL21, IL23R,

and other genes were also included. The isolated gene cluster from nonsurvivors included CD2,

CD3D, CD3G, CD8A, CD247, CBLB, GATA3, ITK, LCK, CTLA4, IL10, ZAP70, and other genes.

Network parameter analysis

Comparison of topologic parameters revealed that the clustering coefficient in sepsis was

increased in 2/3 of adult datasets and in 3/3 of pediatric datasets (Table 3). Network
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heterogeneity was increased in 3/3 of adult datasets, but was decreased in 3/3 of pediatric data-

sets. Modularity value was increased in 1/3 of adult datasets, whereas modularity value was

increased in 3/3 of pediatric datasets in the sepsis group. Shortest path was decreased in 2/3 of

adult and pediatric datasets, whereas average degree was increased in 2/3 of adult and pediatric

datasets (Table 3). For GSE95233-1 analysis, difference between network parameters was cal-

culated as follows: (case—control / control) x 100. The difference of clustering coefficient

between survivor (0.390) and nonsurvivor (0.337) was -13.5%. The difference of modularity

between survivor (0.581) and nonsurvivor (0.694) was 19.4%.

We searched for nodes with such a high degree that they could be considered as hub nodes.

In the GSE54514 control and sepsis groups, CD3D and ITPR3 (inositol 1,4,5 trisphosphate

receptor type 3) had degree 33 and 43, respectively. In the GSE57065 control and sepsis

groups, ATG5 (autophagy-related 5), and GBP5 (guanylate-binding protein 5) had degree 19

and 25, respectively. In the GSE95233 control and sepsis groups, IFNGR1 (interferon gamma

receptor 1), and ESAM (endothelial cell selective adhesion molecule) had degree 49 and 21,

respectively.

In the GSE64456 control and sepsis groups, LYN (tyrosine protein kinase Lyn), and IFI16
(interferon gamma-inducible protein 16) had degree 56 and 70, respectively. In the GSE66099

control and sepsis groups, NCF2 (neutrophil cytosolic factor 2), NLRP12 (NLR family pyrin

domain-containing 12), and NCR2 (natural cytotoxicity-triggering receptor 2) had degree 26,

26, and 34, respectively. In the GSE72829 control and sepsis groups, C5AR1 (complement C5a

receptor 1) and CSF3R (colony-stimulating factor 3 receptor) had degree 50 and 46, respec-

tively. These network parameters are listed in S6–S17 Tables in S1 File.

Discussion

The features of immune dysfunction or immune response in sepsis include defective antigen

presentation and adaptive immunity (T and B cell abnormalities), abnormalities in NK cell

activity, diminished immunoglobulin level, alteration in neutrophils, abnormal cytokine levels,

unbalanced pro- and anti-inflammatory cytokines, complement consumption, and defective

bacterial killing [4, 5]. This complexity hampers understanding of immunologic features in

Table 2. Differentially expressed gene analysis between control and sepsis followed by gene set pathway analysisa.

GSE54514 GSE57065 GSE95233 GSE64456 GSE66099 GSE72829

Patient type Adult Adult Adult Pediatric Pediatric Pediatric

Control cases (n) 18 25 22 19 49 52

Sequential selection of sepsis

cases (n)

18 25 22 19 49 52

Differentially expressed Genes

(n)

176 7885 6784 3123 8229 7463

Up regulated pathway (n) 0 60 44 13 78 51

Down regulated pathway (n) 0 33 33 16 33 15

Up regulated immune pathway C, Fc, RIG C, Fc C, Fc, NK, K,

TLR

APC, C, CXC & etc, Fc,

IgA,

BCR, C, Fc, CXC & etc, LK,

NK, TLR

Down regulated immune

pathway

APC, TCR, H,

K

APC, BCR, CXC & etc,

IgA, TCR

APC, IgA, TCR H, TCR APC, IgA, TCR

aDifferentially expressed gene was selected based on FDR (P<0.01).

APC, Antigen processing and presentation; BCR, B cell receptor signaling; C, Complement and coagulation; CXC & etc, chemokine signaling; Fc, Fc gamma R mediated

phagocytosis or Fc epsilon RI signaling; H, hematopoietic cell lineage; IgA, intestinal immune network for IgA production; LM, leukocyte endothelial migration; NK,

NK cell mediated cytotoxicity; RIG, RIG-I like receptor signaling; TLR, Toll like receptor signaling; TCR, T cell receptor signaling.

https://doi.org/10.1371/journal.pone.0247669.t002

PLOS ONE Immune gene expression networks in sepsis

PLOS ONE | https://doi.org/10.1371/journal.pone.0247669 March 5, 2021 7 / 16

https://doi.org/10.1371/journal.pone.0247669.t002
https://doi.org/10.1371/journal.pone.0247669


Fig 1. Network structure of GSE57065 of the (A) control group and (B) sepsis group. In the sepsis group, the adaptive immunity

network was prominent and isolated (green).

https://doi.org/10.1371/journal.pone.0247669.g001
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sepsis. Immune suppression, immune paralysis and hypo-inflammatory response are reported

in sepsis that is intermingled with hyperinflammatory state [6–8].

This study showed that in the adult sepsis group, there were more down-regulated path-

ways, whereas in the pediatric group, there were more up-regulated pathways. These data sug-

gest that immune suppression might be more dominant in the adult sepsis group, whereas

hyper-inflammatory states might be dominant in the pediatric sepsis group. The mechanism

of immune response was indeed different between adult and pediatric patients in sepsis. How-

ever, down-regulation of TCR and APC pathway and up-regulation of complement-coagula-

tion cascade pathway was found in most of adult and pediatric sepsis patients. These findings

are congruent with previous reports that, in sepsis, CD4+ T cell showed cell exhaustion,

increased apoptosis and decreased adhesion molecules, and CD28 and TCR diversity. In sep-

sis, CD8+ T cell also showed cell exhaustion, increased apoptosis, and decreased cytotoxic

function, cytokine secretion, and TCR diversity [8]. Antigen presentation by follicular den-

dritic cell or dendritic cells is decreased in sepsis [8]. In the present study, isolation and promi-

nent adaptive immune genes from the rest of the immune network were noted, and these data

imply that part of the adaptive immune function was not in equilibrium or in a regulated state.

As this isolated adaptive immune network was found in nonsurvivors, initial network state

along with down-regulated pathways related with adaptive immunity resulted in unfavorable

prognosis.

Fig 2. Network structure of GSE95233 of (A) sepsis survivors and (B) sepsis nonsurvivors. In the survivor group, the platelet (olive green)

and coagulation cascade network (yellow) were isolated and prominent. In the nonsurvivor group, the adaptive immunity (green) and innate

immunity networks (blue) were prominent and isolated.

https://doi.org/10.1371/journal.pone.0247669.g002

Table 3. Network topological parameters from gene expression data from GEO dataset for adult and paediatric patient.

GSE54514 GSE57065 GSE95233 GSE95233-1 GSE64456 GSE66099 GSE72829

Patient type Adult Adult Adult Adult Pediatric Pediatric Pediatric

Disease type Control septic

shock

control septic

shock

control septic

shock

survivor non

survivor

Control sepsis Control sepsis Control sepsis

Clustering

coefficient

0.319 0.323 0.328 0.280 0.328 0.367 0.390 0.337 0.367 0.390 0.337 0.388 0.381 0.435

Network density 0.013 0.016 0.012 0.010 0.012 0.039 0.026 0.014 0.039 0.026 0.014 0.012 0.030 0.034

Network

heterogeneity

1.039 1.142 1.151 1.172 1.151 1.504 1.358 1.193 1.504 1.358 1.193 1.091 1.249 1.129

Connected

components

27 30 42 61 42 34 33 47 34 33 47 32 16 25

Network diameter 19 17 14 15 14 12 19 11 12 19 11 14 13 9

Network

centralization

0.059 0.079 0.103 0.048 0.103 0.196 0.113 0.075 0.196 0.113 0.075 0.078 0.148 0.121

Shortest path 160514 80598 59638 17222 59638 142640 121152 11730 142640 121152 11730 36902 38092 22532

Characteristic path

length

7.418 5.267 5.276 5.088 5.276 3.862 7.211 3.482 3.862 7.211 3.482 4.705 3.92 2.824

Average degree,

<k>
5.93 7.42 5.30 3.64 5.30 17.87 11.71 4.04 17.87 11.71 4.04 4.50 8.43 10.27

Number of nodes, N 464 453 426 367 426 457 448 297 457 448 297 380 284 299

Degree correlation,

μ
0.489 0.508 0.422 0.810 0.422 0.403 0.715 0.546 0.403 0.715 0.546 0.210 0.475 0.346

Modularity, Mc 0.743 0.662 0.644 0.806 0.644 0.198 0.581 0.694 0.198 0.581 0.694 0.745 0.434 0.603

GSE95233-1 indicates survivors (n = 16) and non-survivors (n = 16) among sepsis patients.

https://doi.org/10.1371/journal.pone.0247669.t003
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Complement and coagulation pathway was up-regulated in sepsis patients. However, net-

work analysis showed that platelet and complement-and-coagulation-related genes were

prominent and isolated in survivors, and that this initial state resulted in a favorable prognosis.

On the contrary, it is reported that persistently activated complement system, including C3a

and C5a, is found in sepsis, which is associated with unfavorable prognosis [6–8]. Excessive

activation of complement system potentiated activated innate immune system in sepsis, and

this also resulted in an unfavorable prognosis in the sepsis group [6]. These findings imply that

initial inactivation of complement-coagulation pathway or persistent, uncontrolled activation

of these pathways might be associated with unfavorable prognosis.

Network analysis along with gene set enrichment analysis from gene expression profiles

may have elucidated sepsis pathogenesis and host immune response in sepsis [11–17]. In our

study, the interrelations among immune genes were analyzed using a network analysis

approach that might reflect the comprehensive aspects of the dynamics of gene expression.

Analysis of the topologic structure of the network in sepsis revealed that adaptive-immunity-

related genes formed a cluster in sepsis patients (S7–S18 Figs in S1 File), which tended to be

isolated.

Formation of a cluster or module with adaptive immune genes might be a normal process

to respond to sepsis or might be a pathologic process associated with immune dysregulation.

To elucidate the nature of the cluster, we analyzed survivors and nonsurvivors from the sepsis

group in GSE95233. The survivor group showed a prominent and isolated cluster with com-

plement-coagulation and platelet activity genes, whereas the nonsurvivor group showed a clus-

ter with prominent and isolated adaptive immunity genes (Fig 2). Although this analysis

included only one dataset, as a cluster of adaptive immunity was observed among the nonsur-

vivor group, these isolated and prominent genes seemed to be related to adverse effects. Plate-

let and complement cascade activation might be related to clearance of microbes, which

supports the adaptive immune response [43, 44]. Activation of adaptive immunity is required

to resolve sepsis, but the isolated and prominent adaptive immune response in this study

seemed to be dysregulated or impaired. Additional data from gene set enrichment for pathway

analysis showed that TCR pathway was down regulated in all the datasets. As the isolated clus-

ter in network analysis included genes related to TCR pathway, adaptive immunity seemed to

be suppressed or dysregulated, which resulted in an unfavorable prognosis [7, 45].

Clustering coefficient is one of the network topologic parameters that reflects the number

of links between neighboring nodes, and its increased values denote an increased probability

of similar biological function [45, 46]. In this study, the clustering coefficient was increased in

2/3 of adult datasets and 3/3 of pediatric datasets in the sepsis group, which implies increased

function of the immune network. Previous studies revealed that an increased clustering coeffi-

cient correlated with bloodstream C-reactive protein concentration or inflammation in hepa-

tocellular carcinoma patients before and after transarterial chemoembolization [47]. Network

analysis revealed that inflammatory process seemed to be activated in sepsis group; further

studies are required to understand the relation between the clustering coefficient and the

inflammatory response in the immune network.

Modularity of a network is related to subgroups or a clusters within that network [48, 49].

High modularity implies dense connections between nodes within the same cluster but sparse

connections between nodes in different clusters [50, 51]. Modularity is expected to promote

evolvability and multifunctionality, and functions as a driving biological process [52, 53]. In

this study, the sepsis group showed increased modularity values in 3/3 of the studied pediatric

datasets. On the contrary, only 1/3 of the adult datasets in the sepsis group showed increased

modularity. These results are consistent with the finding that, in the sepsis group, the pediatric

datasets showed more significant pathways compared to those of the adult datasets (Table 2).
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Extreme age groups (patients younger than 1 year or older than 50 years) are related with

increases incidence and mortality of sepsis [54, 55]. Although organ development, immunity,

immune cell subsets, cytokines response to antigen, and hormonal effects might be different

between the 2 extreme age groups, we found a common pattern in this study. In particular,

CD8A-related genes were isolated and TCR pathway was down-regulated, and antigen-pre-

senting cells were isolated from rest of the immune network. CD8A molecule is related with

CD8+ T cells, which is known to be quantitatively and qualitatively different in extreme age

groups. CD8+ T cells are decreased in older age group, and CD8+ T cell in neonates are biased

toward an innate immune response, unlike in adults, which functions as a cellular immune

response [55, 56]. These findings could be part of prior information or knowledge that could

help, directly or indirectly, elucidate pathobiology in sepsis, which might be associated with

management of the sepsis. Further studies are required in regard to the functional aspect of the

isolated cluster of adaptive immunity from network analysis and function of CD8+ T cell in

sepsis. On the other hand, network analysis showed that network heterogeneity was higher in

adult sepsis, whereas it was lower in pediatric sepsis. Gene set enrichment analysis showed that

the adult sepsis group had more down-regulated pathways compared to the pediatric group,

which had more up-regulated pathways. High network heterogeneity values imply that the

nodes are connected with other nodes of different types, while lower values denote that the

nodes are connected with similar other nodes. Altogether, these data suggest that immune

senescence or immune hyperactivation are a driving force of immune response in adult and

pediatric sepsis, respectively.

Among prominent clusters from survivors, IL1A, IL12, IL21, and IL23 genes were also

included. Although statistically insignificant, previous studies showed that the mean cytokines

levels (pg/mL) for survivors (n = 63) and nonsurvivors (n = 17) were as follows [49]: IL1A,

24.8, 7.4; IL12, 15.7, 0; and IL21, 138.9, 10.1, IL23, 75.4, 16.7, respectively. Mean cytokine level

of IL1A, IL12, IL21, IL23 was increased in survivors of sepsis. These data suggest that platelet,

complement and coagulation related molecules and IL1A, IL12, IL21, IL23 might be closely

related with convalescence process in sepsis.

Altogether, network analysis showed isolated components or isolated clusters of genes

related to adaptive immune response. The genes in the cluster were related to adaptive

immune response or T cells and the gene set enrichment analysis showed that the T cell signal-

ing pathway was decreased in 2/3 of adult and 3/3 of pediatric sepsis datasets. From these find-

ings, T cell signaling or T cell related functions seemed to be impaired or decreased in sepsis

cases. Among survivors of sepsis, complement and coagulation cascade and platelet-related

genes were prominent in network analysis. Gene set enrichment analysis showed that comple-

ment and coagulation cascade pathway was up-regulated in 2/3 of adult and 3/3 of pediatric

sepsis cases. From these findings, complement and coagulation pathway seemed to be associ-

ated with convalescence process during sepsis process. Clustering coefficient that was related

with inflammatory process was increased in 2/3 of adult and 3/3 in pediatric datasets.

A limitation of this study is that the use of various platforms might have increased varia-

tions among datasets. The cases recruited for normal control and sepsis was relatively small

because of the small sample size of the normal control group. Survivors and nonsurvivors net-

works were analyzed in only one dataset; thus further studies are required for more robust

results. In addition, only genes in the immune pathways were analyzed; though, other genes

related to metabolism and the endocrine system might have an effect on the sepsis network.

Multiple gene functional annotations were reduced to a gene function that included the most

frequent function from the KEGG, GO and Reactome pathways, which might have caused

some bias. As this study was a retrospective study using public datasets, sex and age was not
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matched for control and sepsis cases. The results might have been affected by these

parameters.

Conclusion

Immune dysfunction might be caused by prominence and isolation of the adaptive immune

response from the rest of the immune network. The isolated cluster included T cell receptor

signaling gene and that pathway was down-regulated as resulting from gene set enrichment

for pathway analysis. The increased clustering coefficient and modularity implied that an

inflammatory response was activated in the sepsis group. Survivors of sepsis showed a promi-

nent cluster of genes that was related to platelet and complement and coagulation cascade

pathways. Up-regulated complement and coagulation cascade pathway in sepsis seemed to be

related with convalescence process or with favorable prognosis. Network and gene set enrich-

ment analysis supported elucidation of sepsis pathogenesis.
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