
RESEARCH ARTICLE

Algorithms for the executable programs

planning on supercomputers

Abdullah M. AlgashamiID*

Department of Computer Science and Information, College of Science at Zulfi, Majmaah University, Al-

Majmaah, Saudi Arabia

* a.algashami@mu.edu.sa

Abstract

This research dealt with the problem of scheduling applied to the supercomputer’s execu-

tion. The goal is to develop an appreciated algorithm that schedules a group of several pro-

grams characterized by their time consuming very high on different supercomputers

searching for an efficient assignment of the total running time. This efficient assignment

grantees the fair load distribution of the execution on the supercomputers. The essential

goal of this research is to propose several algorithms that can ensure the load balancing of

the execution of all programs. In this research, all supercomputers are assumed to have the

same hardware characteristics. The main objective is to minimize the gap between the total

running time of the supercomputers. This minimization of the gap encompasses the devel-

opment of novel solutions giving planning of the executable programs. Different algorithms

are presented to minimize the gap in running time. The experimental study proves that the

developed algorithms are efficient in terms of performance evaluation and running time. A

comparison between the presented algorithms is discussed through different classes of

instances where in total the number of instances reached 630. The experiments show that

the efficient algorithm is the best-programs choice algorithm. Indeed, this algorithm reached

the percentage of 72.86%, an average running time of 0.0121, and a gap value of 0.0545.

1 Introduction

This paper focuses to develop an algorithm for the problem related to the scheduling of the

execution programs by supercomputers. Different programs are received by the administrator

to be scheduled on the available supercomputers. Each program has its own executing time.

The supercomputers must be operated in the same way and with the same use of time. This is

can be reached by an appropriate algorithm that can schedule the received programs with a

fair way distribution. Otherwise, when fairness is not applicable, one supercomputer can be

more exploited than another one.

The problem presented in this paper can be defined as follows. Suppose that there are sev-

eral executable programs. These programs need a big amount of memory and a robust

recourses like processor to ensure the accomplishment of the total execution. Each program is

described by its own running time. The objective is concerned with finding a method that give

a schedule for these executable programs guaranteeing a fair distribution in term of running

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0275099 September 26, 2022 1 / 17

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Algashami AM (2022) Algorithms for the

executable programs planning on supercomputers.

PLoS ONE 17(9): e0275099. https://doi.org/

10.1371/journal.pone.0275099

Editor: Ali Safaa Sadiq, Nottingham Trent

University School of Science and Technology,

UNITED KINGDOM

Received: March 17, 2022

Accepted: September 11, 2022

Published: September 26, 2022

Copyright: © 2022 Abdullah M. Algashami. This is

an open access article distributed under the terms

of the Creative Commons Attribution License,

which permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the manuscript.

Funding: The authors would like to thank the

Deanship of Scientific Research at Majmaah

University for supporting this work under project

no R-2022-198.

Competing interests: The authors have declared

that no competing interests exist.

https://orcid.org/0000-0002-8675-4115
https://doi.org/10.1371/journal.pone.0275099
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0275099&domain=pdf&date_stamp=2022-09-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0275099&domain=pdf&date_stamp=2022-09-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0275099&domain=pdf&date_stamp=2022-09-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0275099&domain=pdf&date_stamp=2022-09-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0275099&domain=pdf&date_stamp=2022-09-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0275099&domain=pdf&date_stamp=2022-09-26
https://doi.org/10.1371/journal.pone.0275099
https://doi.org/10.1371/journal.pone.0275099
http://creativecommons.org/licenses/by/4.0/


time. There is no previous research in the literature that studied the proposed problem. How-

ever, many research works can be referred to the load balancing problem.

The load balancing treated the budget distribution is developed in [1]. A mathematical for-

mulation was proposed to give an objective function for the problem. This formulation applied

the minimization of the gap in the cumulative income between different regions. Three algo-

rithms were treated to solve the latter problem. The randomization procedure is used as the

first approximate solution. The second one is an iterative algorithm. The last one is the moving

of the probabilistic values. In the same context, another work treated the project assignment

was studied in [2]. In this work, the authors formulated the problem by giving a new objective

function. Indeed, a minimization of the maximum revenue was studied. In this latter research,

different algorithms were developed. These algorithms utilize the dispatching rules method

and the multi-fit method. Different groups of instances are tested to measure the efficacy of

the given algorithms.

In [3], the authors developed solutions regarding the cloud repository problem using the

load balancing procedures. This paper focus on the issues in relation to good operation of stor-

age servers in the cloud environment. The main objective of this research will contribute in

handling several challenges concerning the load balancing in the cloud environment. Though

analyzing the researches discussing topics in this field, in this paper 2 distributed load-balanc-

ing procedures. Similar work can be cited as [4]. A review regarding the load-balancing

approaches in cloud context is proposed in [5].

Load-balancing dispatches the workload through several nodes to obtain better results

when exploited the system. Different load balancing procedures occur to reach better resource

exploitation. In [6], authors developed a discussions of load balancing procedures. In addition,

the authors in the latter paper, give a comparison between the proposed algorithms on the

basis of different indicators like mean no-waiting time, processing time, and data cost time.

The load balancing procedures are used in literature in the domain of the projects and bud-

gets distribution. Indeed, in [7], several lower bounds were proposed, different heuristics, and

a exact method for the project distribution were dedicated to propose solution. In this latter

paper, the objective function is proposed as a new one compared with the one given in [2]. In

[1], the author proposed three heuristics to solve the problem of the projects revenues assign-

ment problem. In the same context, in [8] the authors proposed an exact algorithm for the

budget scheduling problem. Different heuristics and algorithms were proposed to be used in

the exact approach. The load balancing problem is studied and applied on many domains in

literature.

The load balancing used on the storage spaces is utilized in [9]. In fact, several algorithms

were developed. These algorithms are used in different by the dispatching rules approach. A

comparison between the proposed algorithms are discussed.

A load balancing procedures regarding the supercomputers are treated in different previous

works. A periodic load balancing procedure are studied in [10]. The load balancing regarding

the message-passing in supercomputer were treated in [11].

On the other hand, the utilization of the load balancing is adopted in the network field.

Indeed, several algorithms were developed to find an acceptable solution that ensuring the

equity transmission of the give data [12].

Another field that the load balancing is applied, is the aircraft field [13]. Authors proposed

several lower bounds regarding the load balancing applied on the gas turbine field. These

lower bounds are based basically on the iterative approach, subset sum problem and the knap-

sack problem. In [14], the authors treated the same problem studied in [13] by using the ran-

domization method.

PLOS ONE Programs planning on supercomputers

PLOS ONE | https://doi.org/10.1371/journal.pone.0275099 September 26, 2022 2 / 17

https://doi.org/10.1371/journal.pone.0275099


In the domain of health care, several clustering algorithms which are used two sets is the

best algorithm with 96% for the small scale instances and 98% for the big instances. The nov-

elty of this research is the utilization of the dispatching rules by different modifications; ran-

domized method, clustering approach; probability application algorithm, and multi-start

algorithm to schedule quality reports to available physicians. The objective is to guarantee the

fair assignment of the number of papers workload [15].

Authors in [16] developed a cost model related to the correctness of the load imbalance.

This model offers discussions of the efficiency of load balancing procedures in any particular

imbalance case. The developed process, in this latter paper, correctly selects the algorithm that

carry out the lowest running time in up to 96% of the total cases, and may accomplish a 19%

profit over selecting a single balancing procedure for all generated cases.

Utilizing loop parallelism is obviously most critical in accomplishing high system and rou-

tine efficiency. Because of the clarity of this method, guided self-scheduling is specifically

adapted for execution on real parallel machines. This approach accomplishes concurrently the

two most significant goals: load balancing and extremely low synchronization overhead. For

particular types of repeating the results prove analytically that guided self-scheduling utilize

minimal overhead and accomplishes optimal schedules. Two other interesting properties of

this approach are its insensitivity to the first processor configuration (in time) and its parame-

terized nature which enables us to tune it for different systems [17].

In the industrial domain, the load balancing algorithms are used in [18] to ensure a better

utilization of the machines and guarantee an equity use of machines. In the same context, the

authors in [19] solve the equity distribution of the jobs on the machines by the multi-start algo-

rithms applying the probabilistic method.

A dynamic balancing algorithm assumes the low effects of two main elements of the system

which related to job behavior and the general state of the system, i.e., load balancing procedure

using the actual status of the system. The establishment of an efficacious dynamic load balanc-

ing procedure encompasses several essential issues: load cost, load standard comparison,

assessment indicators, system stability, amount of data exchanged between nodes, job resource

required, job’s chosen for transfer, remote nodes chosen, and more [20].

In addition, dispatching the persons into vehicle ti ensure an equity distribution of these per-

sons on the available parking is proposed in [21]. Recently, authors in [22] proposed novel algo-

rithms to solve the parking managment. Several researches have been uploaded in the literature

in order to cover some aspects in relation to the execution period and the gap valuation, which

have been used to explore the assessment of the development procedures. Analyzing the gath-

ered experiments shows a good indication in the assessment behavior of the proposed algo-

rithm. In addition, it shows the proposed algorithm can narrow the gap in issues in relation to

gap and time calculation in the developed researches. The MR heuristic reached an exceptional

assessment results compared this result with the best algorithms proposed in [21]. The MR heu-

ristic reached a percentage of 96%, a gap of 0.02, and a running time of 0.007s.

The usage of the supercomputers is largely referred in the literature. In fact, the utilization

of the scheduling on the supercomputers filed may be cited to the different works. In [23], the

authors studied the resource management through the usage of the supercomputers by an

energy-performance procedure. The parallelism of the processing in the supercomputers is

proposed by [24].

In [25], authors considered the methods of optimal load balancing and the storage require-

ments of algorithms. Other algorithms proposed in [26] can be utilized in future work to

enhance the proposed algorithms. A mathematical model for scheduling activities while there

are priorities between devices are proposed in [27]. In [28], authors treated the scheduling

algorithms into networks. These algorithms can be exploited to give a new solutions for the

PLOS ONE Programs planning on supercomputers

PLOS ONE | https://doi.org/10.1371/journal.pone.0275099 September 26, 2022 3 / 17

https://doi.org/10.1371/journal.pone.0275099


presented problem. In [29], authors developed algorithms for the category constraint into net-

work based on scheduling problem. Authors in [30] developed algorithms for the read fre-

quency of data. These algorithms may be exploited on and adopted for the presented problem.

A recent similar work for the latter paper are proposed in [31].

In this paper, a mathematical model of the presented problem is proposed. In addition,

many algorithms were proposed to manage the studied problem. The problem can be defined

as follows. Several programs characterized by its estimated execution time need to be ran by

several supercomputers. All the supercomputers are assumed to be characterized by the same

criteria as the hardware. The goal is to search for an efficient algorithm to schedule these pro-

grams to the available supercomputers. This is can be mathematically written as the load bal-

ancing of programs to supercomputers.

The rest of the paper is structured as follows. Section 2 presents the justification and moti-

vation to work the studied problem. In section 3, the problem definition is described. Section 4

presents the research method and design. The developed algorithms to solve the presented

problem are detailed in Section 5. The experimental results and discussions are analysed in

Section 6. Section 7 is reserved for the conclusions and perspectives.

2 Justification and motivation

The presented problem may be defined as follows. Suppose that there are a set of several pro-

grams characterized by its estimated running time. This set of programs need to be executed

by many available supercomputers. The set of programs is homogeneous. This is means that

all the programs in the set have the same hardware characteristics. In addition, these programs

are supposed to consume more resources in memory and time execution. Consequently, it is

primordial to seek an efficient way to schedule the given programs on the available supercom-

puters. This may be mathematically written as the equity assignment of programs to the super-

computers. The goal of this paper is to concept and design an algorithm that may minimize

the execution time gap between all supercomputers. The first phase toward achieving the goal

of this paper is to formulate mathematically the proposed problem. After that, this mathemati-

cal formulation is utilized to develop different algorithms to solve the presented problem. This

is constitute the second phase. A detailed discussions and explanation of these two phases are

presented in this paper.

3 Problem definition

Table 1 gives an overview for all variable notations and definitions used in the paper.

Example 1 explains the presented problem using all above definitions.

Example 1 Suppose that nsu = 2 and npr = 7. The ep value for each program is illustrated in
Table 2.

Now, an algorithm is ran to assign the programs detailed in Table 2 to the available super-
computers. This algorithm is the shortest execution time algorithm, the obtained schedule is illus-
trated in Fig 1. It is evident to see that programs {1, 5, 6, 7} are executed by Su1 and programs {2,

3, 4} are executed by Su2.

Fig 1 shows that Su1 has a total execution time of 1264. Moreover, Su2 has a total execution
time of 893. Accordingly, the execution time gap between Su1 and Su2 is Rt1 − Rtmin = 1264

− 893 = 371. The goal is to conecpt and design an algorithm that can reduce the returned gap
between supercomputers. In fact, for Example 1 another schedule must be given with a better
solution comparing with schedule 1. This is means that an algorithm giving a gap less than 371.

PLOS ONE Programs planning on supercomputers

PLOS ONE | https://doi.org/10.1371/journal.pone.0275099 September 26, 2022 4 / 17

https://doi.org/10.1371/journal.pone.0275099


Table 2. The estimated running time for each program.

Prp Pr1 Pr2 Pr3 Pr4 Pr5 Pr6 Pr7

ep 261 291 231 371 491 201 311

https://doi.org/10.1371/journal.pone.0275099.t002

Table 1. Variable notations and definitions.

Variable Definition

Pr Set of programs that will be executed by the different supercomputers

npr Number of programs delivered by the administrator

Sr Set of supercomputers

nsu Number of supercomputers

p The program index

Prp The program number p
i The supercomputer index

Sui The supercomputer number i
ep The estimated execution time for the program p
ctp Cumulative execution time when p is scheduled

Rti The total execution time for each i after accomplishing the execution of all programs

Rtmin min
i¼f1;���;nsg

Rti

Ab The minimum gap value reached after finishing the workload of all algorithms

A The gap value given by the presented algorithm

Gp ¼ A� Ab
A

The gap between the minimum value and the presented one

Time Average running time in seconds. In Tables “�” means that the execution time is less than 0.0001 s

Pcg Percentage of programs where Ab = A among all tested instances

https://doi.org/10.1371/journal.pone.0275099.t001

Fig 1. Shortest execution time schedule for Example 1.

https://doi.org/10.1371/journal.pone.0275099.g001

PLOS ONE Programs planning on supercomputers

PLOS ONE | https://doi.org/10.1371/journal.pone.0275099 September 26, 2022 5 / 17

https://doi.org/10.1371/journal.pone.0275099.t002
https://doi.org/10.1371/journal.pone.0275099.t001
https://doi.org/10.1371/journal.pone.0275099.g001
https://doi.org/10.1371/journal.pone.0275099


Example 2 For this example, the instance detailed in Table 2 is examined. Calling the longest
execution time algorithm, the result given the schedule is illustrated in Fig 2. It is easy to see that
programs {2, 3, 5} are executed by Su1 and programs {1, 4, 6, 7} are executed by Su2.

Fig 2 shows that Su1 has a total execution time of 1013. Moreover, Su2 has a total execution
time of 1144. Thus, the execution time gap for Su1 and Su2 is Rt2 − Rtmin = 1144 − 1013 = 131.

For this example, the schedule 2 gives a better results than schedule 1.

In general, facing on different supercomputers, an indicator must be determined to evaluate

the gap of the algorithm that searching the load balancing. Eq 1 represent the gap of the execu-

tion. This gap is calculated between the supercomputer that having the minimum total execu-

tion time and all others supercomputers. This gap must be minimized to guarantee the load

balancing. Hereafter, this gap is denoted by Grt.

Grt ¼
Xns

i¼1

ðRti � RtminÞ: ð1Þ

Proposition 1 Based on Eq 1, the gap Grt may be formulated such that in Eq 2.

Grt ¼
Xns

i¼1

Rti � nsRtmin: ð2Þ

Proof 1 Grt ¼
Pns

i¼1
ðRti � RtminÞ ¼

Pns
i¼1

Rti �
Pns

i¼1
Rtmin. It is clear to see that

Pns
i¼1

Rtmin

¼ nsRtmin. Thus, the Eq 2 is obtained.

4 Research method and design

In this section, six components are proposed for the proposed model. To more understand the

model proposed in this research, an example is given of two supercomputers and four pro-

grams as shown in Fig 3. The first component is “supercomputer”. For the example given in

This component contain the supercomputer. The “data center” is a component that can

Fig 2. Longest execution time schedule for Example 2.

https://doi.org/10.1371/journal.pone.0275099.g002

PLOS ONE Programs planning on supercomputers

PLOS ONE | https://doi.org/10.1371/journal.pone.0275099 September 26, 2022 6 / 17

https://doi.org/10.1371/journal.pone.0275099.g002
https://doi.org/10.1371/journal.pone.0275099


receive the results of the executed programs by the supercomputers. In addition, this compo-

nent is responsible to send all new programs to be executed to the administrator. The compo-

nent which guarantee an efficient transmission between the supercomputers and the data

center is the “Wireless Access Point”. The “administrator” is the component represented by

the user that having all access authorization and can decide for choosing the programs sent by

the data center. Finally, the component “scheduler” is responsible to apply the developed algo-

rithms to propose a solution regarding the good distribution of programs to the different

supercomputers. The main component in this research work is the “scheduler”.

In this paper, a new design of the studied problem regarding the planning of the executable

program on the available supercomputers is proposed as illustrated in Fig 3. The proposed

components are focalized on the scheduler one. The scheduler is responsible to call all the algo-

rithms to solve the scheduling problem and decide which program must be executed on the

fixed supercomputer. Several variants of probabilistic method are proposed. In general, using

a probabilistic method and the randomization approach give an efficient approximate solution

for the scheduling solution problem. It is important to notice that the developed problem is

NP-hard one. This is confirm that a good approximate solution represent a great archive for

the studied problem.

Based on the example of 4-programs and 2-supercomputers shown in Fig 3, a generaliza-

tion of the model as shown in Fig 4 can be illustrated. The general model is composed by five

fundamental components: Supercomputers engine, scheduler, Programs engine, wireless

access point, and data center.

Fig 3. 4-programs and 2-supercomputers example for the design model.

https://doi.org/10.1371/journal.pone.0275099.g003

PLOS ONE Programs planning on supercomputers

PLOS ONE | https://doi.org/10.1371/journal.pone.0275099 September 26, 2022 7 / 17

https://doi.org/10.1371/journal.pone.0275099.g003
https://doi.org/10.1371/journal.pone.0275099


5 Developed algorithms

In this section, seven proposed algorithms will be presented and detailed. Indeed, each algo-

rithm will be explained and a pseudo-code will be illustrated for some algorithms to explain

the functionality of these algorithms. The complexity of each algorithm is given.

5.1 Longest execution time algorithm

A dispatching rule method is applied for the longest-running time algorithm (LTA). Firstly, all

programs are listed in the non-increasing order of its execution time. Next, the programs that

have the longest execution time will be executed by the supercomputer that has the minimum

ctp and so on until completing all the workload.

5.2 Shortest execution time algorithm

A dispatching rule method is applied for the longest-running time algorithm (STA). Firstly, all

programs are listed in the increasing order of its execution time. Next, the programs that have

Fig 4. Design of the supercomputers-program model.

https://doi.org/10.1371/journal.pone.0275099.g004

PLOS ONE Programs planning on supercomputers

PLOS ONE | https://doi.org/10.1371/journal.pone.0275099 September 26, 2022 8 / 17

https://doi.org/10.1371/journal.pone.0275099.g004
https://doi.org/10.1371/journal.pone.0275099


the longest execution time will be scheduled on the supercomputer that has the minimum ctp,
and so on until completing all workload.

5.3 Programs choosing probabilistic algorithm (PCP)

This algorithm applies the probabilistic approach. The first program which will be chosen to

be ran by the supercomputer is picked by a probability β. After that, the second program will

be picked among the remaining programs applying the same probability β and so on until

completing all workload. In the implementation code, the calculation of the probability is

determined as follows. In the first, a number h is generated and returned randomly in [1, ns].
Now, Prh is selected and executed by the available supercomputer. The set Pr will be updated

by removing Prh from this set. So, Pr = Pr \ Prh. This procedure is repeated Lmt = 1000 times

and the minimum value of the returned gap Grt will be stored.

Hereafter, Rad(x, y) denoted the function that give a random number in [x, y]. SLg(r, z) is

the function that schedules Prr on Suz.
This algorithm is PCP and all details are illustrated in Algorithm 1. The complexity of PCP

algorithm is O(n2).

Algorithm 1 PCP algorithm
1: for (v = 1 to Lmt) do
2: Fix x = nsu
3: while (x � 1) do
4: Fix k = Rad(1, x)
5: Available supercomputer is Suz
6: Call SLg(k, Suz)
7: Fix x− −
8: end while
9: Determine Grtv
10: end for
11: Determine Grt ¼ min

1�v�Lmt
Grtv

5.4 Non-decreasing-order-programs choosing probability algorithm

This algorithm applies the probability-approach as detailed in the Subsection 5.3. In the first,

the programs is sorted in the non-decreasing order of its estimated execution time. The

selected program that can be ran by the free supercomputer is picked by a probability γ. This

instruction will be repeated Lmt = 1000 times and the minimum obtained gap Grt will be

stored. Hereafter, ICG(m) represent the function that sort Prm in the non-decreasing order of

its estimated execution time. The complexity of NCP algorithm is O(n2).

This algorithm is denoted by NCP. The instructions of NCP are illustrated in Algorithm 2.

Algorithm 2 NCP algorithm
1: Call ICG(Pr)
2: for (v = 1 to Lmt) do
3: Fix x = nsu
4: while (x > 0) do
5: Fix k = Rad(1, x)
6: Available supercomputer is Suz
7: Call SLg(k, Suz)
8: Fix x− −
9: end while
10: Determine Grtv
11: end for
12: Determine Grt ¼ min

1�v�Lmt
Grtv

PLOS ONE Programs planning on supercomputers

PLOS ONE | https://doi.org/10.1371/journal.pone.0275099 September 26, 2022 9 / 17

https://doi.org/10.1371/journal.pone.0275099


5.5 Decreasing-order-choosing probabilistic algorithm

This algorithm applies the randomization approach as detailed in the Subsection 5.3. In the

first, the programs is sorted in the non-increasing order of its ep. The picked program which

will be ran by the free supercomputer is chosen by a probability γ. This instruction is repeated

Lmt = 1000 times. The minimum gap will be stored. Denoted by DRG(Pm) the procedure that

sort the programs Pm in the non-increasing order of its estimated execution time. The com-

plexity of DCP algorithm is O(n2).

This algorithm is DCP. The details of DCP are illustrated in Algorithm 3.

Algorithm 3 DCP algorithm
1: Fix DRG(Pr)
2: for (v = 1 to Lmt) do
3: Fix x = nsu
4: while (x > 0) do
5: Fix k = Rad(1, x)
6: Available supercomputer is Suz
7: Call SLg(k, Suz)
8: Fix x− −
9: end while
10: Determine Grtv
11: end for
12: Determine Grt ¼ min

1�v�Lmt
Grtv

13: Return Grt

4.6 Three-variant-programs choosing probabilistic algorithm

This algorithm applies the probabilistic approach as detailed in the above subsections. In first,

PCP algorithm is called. The solution obtained by PCP is Denoted by Grt1. After that, the NCP
algorithm is called. Denoted by Grt2 the returned solution. Finally, DSP algorithm is called

and denoted by Grt3 the returned solution. The best solution between Grt1, Grt2 and Grt3 is

picked. The complexity of TSP is O(n2). Denoted by PCP(Pm), NCP(Pm), and DCP(Pm) the

functions calling the algorithms PCP, NCP, and DCP, respectively.

This algorithm is TVP. The details of TVP are illustrated in Algorithm 4.

Algorithm 4 TVP algorithm
1: Call PCP(Pm)
2: Determine Grt1.
3: Call NCP(Pr)
4: Determine Grt2.
5: Call DCP(Pr)
6: Determine Grt3.
7: Determine Grt = min(Grt1, Grt2, Grt3)
8: Return Grt

5.7 Best-programs choosing algorithm

This algorithm use LRT and TVP algorithms. Indeed, LRT and TVP algorithms are called sepa-

rately and the best result is selected. This algorithm is BPC.

6 Experimental results and discussions

Many indicators are given to assess the efficiency of the presented algorithms. Through these

indicators, a comparison between the proposed algorithms are discussed. All proposed algo-

rithms were implemented in C++. The computer executing all the developed code is an Intel

(R) Core (TM) i5-3337U CPU and the operating system is Windows 10.

PLOS ONE Programs planning on supercomputers

PLOS ONE | https://doi.org/10.1371/journal.pone.0275099 September 26, 2022 10 / 17

https://doi.org/10.1371/journal.pone.0275099


6.1 Instances and tests

Three classes are proposed in the subsection “Instances” to measure the efficiency of the pre-

sented algorithms and three indicators are presented in the subsection “Tests”.

6.1.1 Instances. Different instances are tested and experimented. The types of classes

applied in this paper are the uniform distribution which is denoted by UN[x1, x2]. The com-

parative study between the algorithms and the manner that the instances are generated are

inspired from the study [32].

The ep values will be as:

• Class A: x1 = 1 and x2 = 100, ep 2 UN[1, 100].

• Class B: x1 = 10 and x2 = 150, ep 2 UN[10, 150].

• Class C: x1 = 100 and x2 = 500, ep 2 UN[100, 500].

The permutation of the pair (npr, nsu) discussed in this experimental results are listed as fol-

lows. The small scale is for npr = {10, 25, 30} the number of supercomputers is nsu = {4, 5, 6}.

The big scale is for npr = {50, 60, 80, 100} the number of supercomputers is nsu = {5, 6, 10, 12}

For each pair (npr, nsu) and each class, 10 instances were tested. The total generated

instances is 630.

6.1.2 Tests. The indicators Gb, Time, and Per used to asses the algorithms are defined in

Table 1.

Fig 5 represented the performance test measurement of the proposed algorithms. In this lat-

ter figure, it is supposed that there are four different values of the Grt obtained by four different

algorithms. These values are Grt1, Grt2, Grt3 and Grt4. It is clear to see that Grt1 is better than

Grt2, Grt3 and Grt4 because Grt1 is the minimum value and the objective is to minimize Grt.
The value LB in Fig 5 represented the value of the lower bound for the studied problem. In gen-

eral, the exact solution is in LB, Grt, with Grt is the value obtained by any algorithm. The closest

value of Grt to LB is reached by Grt1. This is meaning the interval [LB, Grt1] which represent

the exact solution interval is the smallest interval comparing when choosing Grt2, Grt3 and Grt4.

This is prove that the choice of Gb value to asses the performance of the developed algorithms.

6.2 Results

Table 3 illustrated the overview of all algorithms. The variation of Per, Gb, and Time are pre-

sented in this latter table. The best algorithm that have the minimum gap is BPC reaching a

percentage of 72.86%, an average gap of 0.0545 and average execution time of 0.0121 s. The

second best algorithm is TVP reaching a Pcg value of 45.08%, a Gp value of 0.1944, and a Time
value of 0.0121 s. The STA never obtained a minimum gap value.

Table 4 shows the Gp values variation for all proposed algorithms according to the number

of programs. This table displays that the best Gp value of< 0.0001 is reached by TVP and BPC
where npr = 10. On other hand, a maximum Gp value of 0.8905 is reordered by SRT where npr
= 30. For npr = 100, the best Gp value of 0.0531 is recorded by BPC and a maximum Gp value

of 0.7803 is recorded by STA.

Table 5 shows the Gp values for the proposed algorithms when nsu according to the number

of supercomputers. This table displays that the best Gp value of 0.0263 is reached by BPC
where nsu = 14. On other hand, a maximum Gp value of 0.8817 is returned by SRT where nsu =

4. Where nsu = 14, a maximum Gp value of 0.6952 is returned by STA.

Table 6 illustrates the Gp values for all algorithms and for each class.

Table 7 shows the Time variation for all proposed algorithms when npr changes. For BPC
algorithm, the Time values increases when npr increase. In addition, the minimum Time value

PLOS ONE Programs planning on supercomputers

PLOS ONE | https://doi.org/10.1371/journal.pone.0275099 September 26, 2022 11 / 17

https://doi.org/10.1371/journal.pone.0275099


Table 3. Overview of all proposed algorithms.

LTA STA PCP NCP DCP TVP BPC
Pcg 38.10% 0.00% 25.87% 25.40% 25.56% 45.08% 72.86%

Gp 0.3508 0.7626 0.2877 0.2924 0.2937 0.1944 0.0545

Time � � 0.0041 0.0042 0.0041 0.0121 0.0121

https://doi.org/10.1371/journal.pone.0275099.t003

Fig 5. Performance test measurement.

https://doi.org/10.1371/journal.pone.0275099.g005

Table 4. The Gp values variation for all proposed algorithms according to the number of programs.

npr LTA STA PCP NCP DCP TVP BPC
10 0.1954 0.4983 0.0016 0.0103 0.0117 0.0000 0.0000

25 0.4607 0.8321 0.3165 0.3183 0.2746 0.1212 0.0836

30 0.5422 0.8905 0.3840 0.3897 0.4094 0.2876 0.1072

50 0.3501 0.7428 0.2369 0.2648 0.2638 0.1337 0.0557

60 0.0181 0.8118 0.5773 0.5610 0.5652 0.5141 0.0050

80 0.5652 0.7824 0.1805 0.1634 0.2055 0.0771 0.0771

100 0.3242 0.7803 0.3173 0.3392 0.3254 0.2269 0.0531

https://doi.org/10.1371/journal.pone.0275099.t004

PLOS ONE Programs planning on supercomputers

PLOS ONE | https://doi.org/10.1371/journal.pone.0275099 September 26, 2022 12 / 17

https://doi.org/10.1371/journal.pone.0275099.t003
https://doi.org/10.1371/journal.pone.0275099.g005
https://doi.org/10.1371/journal.pone.0275099.t004
https://doi.org/10.1371/journal.pone.0275099


of 0.0027 s is returned where npr = 10 and the maximum Time value of 0.0236 s is returned

where npr = 100.

Table 8 shows the Time variation for all proposed algorithms when nsu changes.

Each triple (npr, nsu, class) will be denotes by Tp. The values of npr are {10, 25, 30, 50, 60, 80,

100} and the values of nsu are {4, 6, 8, 12, 14}. Three classes are proposed. So, in total 63 values

of Tp are presented. Fig 6 shows the Gp values variation when Tp changes for BPC.

Fig 7 shows the Time behavior when Tp changes for BPC. This figure prove that the Time
values are constantly increasing when npr increase. The maximum Time value of 0.0281 s is

returned where (npr, nsu, class) = (100, 14, 1) and the minimum Time value of 0.0022 s is

returned where (npr, nsu, class) = (10, 4, 1).

Table 5. The Gp values for all algorithms when nsu according to the number of supercomputers.

nsu LTA STA PCP NCP DCP TVP BPC
4 0.7875 0.8817 0.2524 0.2733 0.2631 0.1240 0.1240

6 0.4217 0.8021 0.2921 0.3103 0.3137 0.1773 0.0673

8 0.2625 0.6156 0.1363 0.1510 0.1413 0.0784 0.0413

12 0.1791 0.7549 0.3624 0.3488 0.3612 0.2895 0.0305

14 0.2374 0.6952 0.2501 0.2467 0.2424 0.1735 0.0263

https://doi.org/10.1371/journal.pone.0275099.t005

Table 6. The Gp values for all algorithms and for each class.

Class LTA STA PCP NCP DCP TVP BPC
1 0.3582 0.7828 0.3010 0.3072 0.2875 0.1989 0.0545

2 0.3689 0.7014 0.2679 0.2764 0.2802 0.1927 0.0586

3 0.3254 0.8035 0.2943 0.2935 0.3132 0.1915 0.0506

https://doi.org/10.1371/journal.pone.0275099.t006

Table 7. The Time variation for all proposed algorithms when npr changes.

npr LTA STA PCP NCP DCP TVP BPC
10 � � 0.0008 0.0012 0.0010 0.0027 0.0027

25 � � 0.0018 0.0020 0.0020 0.0058 0.0058

30 � � 0.0024 0.0024 0.0022 0.0061 0.0061

50 � � 0.0045 0.0044 0.0046 0.0123 0.0123

60 � � 0.0049 0.0048 0.0048 0.0150 0.0150

80 � � 0.0066 0.0065 0.0063 0.0195 0.0196

100 � � 0.0079 0.0083 0.0076 0.0236 0.0236

https://doi.org/10.1371/journal.pone.0275099.t007

Table 8. The Time variation for all proposed algorithms when nsu changes.

nsu LTA STA PCP NCP DCP TVP BPC
4 � � 0.0014 0.0016 0.0016 0.0042 0.0042

6 � � 0.0038 0.0038 0.0039 0.0108 0.0108

8 � � 0.0021 0.0023 0.0020 0.0052 0.0052

12 � � 0.0063 0.0065 0.0060 0.0192 0.0192

14 � � 0.0065 0.0067 0.0064 0.0198 0.0198

https://doi.org/10.1371/journal.pone.0275099.t008

PLOS ONE Programs planning on supercomputers

PLOS ONE | https://doi.org/10.1371/journal.pone.0275099 September 26, 2022 13 / 17

https://doi.org/10.1371/journal.pone.0275099.t005
https://doi.org/10.1371/journal.pone.0275099.t006
https://doi.org/10.1371/journal.pone.0275099.t007
https://doi.org/10.1371/journal.pone.0275099.t008
https://doi.org/10.1371/journal.pone.0275099


6.3 Discussions

Seven algorithms are proposed and tested in this paper. Table 3 shows the overview of the

results given by all algorithms. this table shows that the best algorithm that reached the maxi-

mum percentage is BPC with a percentage of 72.86%. This percentage is not reaching the value

of 100%, this is means that there is no dominance between the proposed algorithms. Indeed,

Fig 6. The Gp values variation when Tp changes for algorithm BPC.

https://doi.org/10.1371/journal.pone.0275099.g006

Fig 7. Time variation when Tp changes for algorithm BPC.

https://doi.org/10.1371/journal.pone.0275099.g007

PLOS ONE Programs planning on supercomputers

PLOS ONE | https://doi.org/10.1371/journal.pone.0275099 September 26, 2022 14 / 17

https://doi.org/10.1371/journal.pone.0275099.g006
https://doi.org/10.1371/journal.pone.0275099.g007
https://doi.org/10.1371/journal.pone.0275099


for certain instances, the other algorithms excepting BPC give best results than BPC but in

total BPC reaches 72.86%. The algorithms PCP, NCP, and DCP give closer results in the range

of 25%. The maximum average time obtained by all algorithms is around 0.0121 s. This gives a

remarkable runtime to reach an efficient solution. It is worth noting that, the TVP reached a

45.08% as performance compared with BPC that has 72.86% as a performance, in the same

average runtime of 0.0121 s. Therefore, by consuming the same time a better solution can be

reached by choosing the algorithm BPC. In this paper, the choice of three classes is based on

several works in literature that use these classes and the generation of the instance to test the

obtained results. Indeed, the choice is to give a variety of different ranges of the scale of the

proposed problem. For Class 1, the range is for the small instances. For Class 2, the range is for

the medium instances. Finally, Class 3 is for the big-scale instances reaching 500 programs. On

other hand, a different range of scales is proposed for the number of programs and the number

of supercomputers. The runtime of the algorithms is related to the structure of the utilization

of the loop instructions in each algorithm. For LTA and STA, the average execution time is

always less than 0.0001 s. This is obtained because these algorithms utilizing the dispatching-

rules which are executed by calling the heap-sort algorithm which is O(nlogn). However, for

algorithms PCP, NCP and DCP the complexity is O(n2). This explains the average execution

time which is very close.

The algorithms proposed in this paper are based on several variants of the probabilistic

method. In practice, the probabilistic method and the randomization approach provide a bet-

ter solution for the scheduling problem. This is due to the multiple choice selection of the pro-

grams and the repetitive procedure. This observation is always applicable for the studied

problem when the best-programs choosing algorithm is the best compared with other algo-

rithms. Consider the two case studies for the presented problem: the small-scale instances and

the big-scale instances. The small-scale instances are the instances such as npr� 50. However,

the big-scale instances are the instances such as npr> 50. The BPC algorithm gives remarkable

results for the first case study which is the small-scale instances and for the second case study

which is the big-scale instances in term of gap. Indeed, the average gap of all small-scale

instances is 0.0616 and the average gap of all big-scale instances is 0.0451. In term of running

time, the BPC algorithm gives remarkable results for the first case study and for the second

case study. Indeed, the average running time of all small-scale instances is 0.0067 and the aver-

age running time of all big-scale instances is 0.0194. The proposed algorithms can be applied

on several real applications. Indeed, the parallel computing which is a type of computation in

which several calculations must be executed at the same time. Big problems can be classed into

many small problems, which may then be solved simultaneously. Other real application of the

proposed algorithms is the parallel programming which is the process of utilizing a group of

resources to solve a problem in minimum time by partitioning the big work. It is worth noting

that the studied problem is an NP-hard one. Consequently, a good approximate solution rep-

resents a great archive for the studied problem. Several meta-heuristics can be applied using

the proposed algorithms to enhance the obtained results.

7 Conclusion

This paper discussed the program’s planning problem. These programs must be executed by a

fixed number of available supercomputers. Each program requires a long period of time to be

executed. the presented problem is strongly very hard. Especially, the hardness of the problem

appears face on a big number of programs. In this paper, seven algorithms were developed to

present solution of the studied problem. These algorithms utilize the dispatching rules and the

randomization approach with several variants. The experimental results show that an efficient

PLOS ONE Programs planning on supercomputers

PLOS ONE | https://doi.org/10.1371/journal.pone.0275099 September 26, 2022 15 / 17

https://doi.org/10.1371/journal.pone.0275099


feasible solution can be offered in an acceptable running time. The best-developed algorithm

is the best-programs choosing algorithm in 72.86% of instance cases. In addition, the experi-

ments show that the developed algorithms do not impose any dominance on them.

From a perspective of the studied problem, the developed algorithms can be exploited to

develop a new better solution based on metaheuristics like a genetic algorithm or swarm opti-

mization. The optimal of the studied problem can be constructed by an exact solution method

based on the tree searching. In this case, the developed algorithms will be used to test and cal-

culate certain rules in the node of the research tree.

Author Contributions

Conceptualization: Abdullah M. Algashami.

Formal analysis: Abdullah M. Algashami.

Methodology: Abdullah M. Algashami.

Supervision: Abdullah M. Algashami.

Validation: Abdullah M. Algashami.

Visualization: Abdullah M. Algashami.

Writing – original draft: Abdullah M. Algashami.

Writing – review & editing: Abdullah M. Algashami.

References
1. Jemmali M. Approximate solutions for the projects revenues assignment problem. Communications in

Mathematics and Applications. 2019; 10(3):653–658. https://doi.org/10.26713/cma.v10i3.1238

2. Jemmali M. Budgets balancing algorithms for the projects assignment. International Journal of

Advanced Computer Science and Applications. 2019; 10(11):574–578. https://doi.org/10.14569/

IJACSA.2019.0101177

3. Gupta Y. Novel distributed load balancing algorithms in cloud storage. Expert Systems with Applica-

tions. 2021; 186:115713. https://doi.org/10.1016/j.eswa.2021.115713

4. Agarwal R, Sharma DK. Machine learning & Deep learning based Load Balancing Algorithms tech-

niques in Cloud Computing. In: 2021 International Conference on Innovative Practices in Technology

and Management (ICIPTM). IEEE; 2021. p. 249–254.

5. Shafiq DA, Jhanjhi N, Abdullah A. Load balancing techniques in cloud computing environment: A

review. Journal of King Saud University-Computer and Information Sciences. 2021.

6. Nandal P, Bura D, Singh M, Kumar S. Analysis of Different Load Balancing Algorithms in Cloud Com-

puting. International Journal of Cloud Applications and Computing (IJCAC). 2021; 11(4):100–112.

https://doi.org/10.4018/IJCAC.2021100106

7. Alharbi M, Jemmali M. Algorithms for investment project distribution on regions. Computational Intelli-

gence and Neuroscience. 2020; 2020. https://doi.org/10.1155/2020/3607547 PMID: 32802026

8. Jemmali M. An optimal solution for the budgets assignment problem. RAIRO–Operations Research.

2021; 55(2).

9. Alquhayz H, Jemmali M, Otoom MM. Dispatching-rule variants algorithms for used spaces of storage

supports. Discrete Dynamics in Nature and Society. 2020; 2020. https://doi.org/10.1155/2020/1072485

10. Zheng G, Bhatele A, Meneses E, Kale LV. Periodic hierarchical load balancing for large supercomput-

ers. The International Journal of High Performance Computing Applications. 2011; 25(4):371–385.

https://doi.org/10.1177/1094342010394383

11. Xu J, Hwang K. Heuristic methods for dynamic load balancing in a message-passing supercomputer.

In: Conference on High Performance Networking and Computing: Proceedings of the 1990 ACM/IEEE

conference on Supercomputing. vol. 12; 1990. p. 888–897.

12. Jemmali M, Alquhayz H. Equity data distribution algorithms on identical routers. In: International Confer-

ence on Innovative Computing and Communications. Springer; 2020. p. 297–305.

PLOS ONE Programs planning on supercomputers

PLOS ONE | https://doi.org/10.1371/journal.pone.0275099 September 26, 2022 16 / 17

https://doi.org/10.26713/cma.v10i3.1238
https://doi.org/10.14569/IJACSA.2019.0101177
https://doi.org/10.14569/IJACSA.2019.0101177
https://doi.org/10.1016/j.eswa.2021.115713
https://doi.org/10.4018/IJCAC.2021100106
https://doi.org/10.1155/2020/3607547
http://www.ncbi.nlm.nih.gov/pubmed/32802026
https://doi.org/10.1155/2020/1072485
https://doi.org/10.1177/1094342010394383
https://doi.org/10.1371/journal.pone.0275099


13. Jemmali M, Melhim LKB, Alharbi SOB, Bajahzar AS. Lower bounds for gas turbines aircraft engines.

Communications in Mathematics and Applications. 2019; 10(3):637–642. https://doi.org/10.26713/cma.

v10i3.1218

14. Jemmali M, Melhim LKB, Alharbi M. Randomized-variants lower bounds for gas turbines aircraft

engines. In: World Congress on Global Optimization. Springer; 2019. p. 949–956.

15. Jemmali M, Melhim LKB, Alourani A, Alam MM. Equity distribution of quality evaluation reports to doc-

tors in health care organizations. PeerJ Computer Science. 2022; 8:e819. https://doi.org/10.7717/peerj-

cs.819 PMID: 35174262

16. Pearce O, Gamblin T, De Supinski BR, Schulz M, Amato NM. Quantifying the effectiveness of load bal-

ance algorithms. In: Proceedings of the 26th ACM international conference on Supercomputing; 2012.

p. 185–194.

17. Polychronopoulos CD, Kuck DJ. Guided self-scheduling: A practical scheduling scheme for parallel

supercomputers. Ieee transactions on computers. 1987; 100(12):1425–1439. https://doi.org/10.1109/

TC.1987.5009495

18. Jemmali M, Alourani A. Mathematical model bounds for maximizing the minimum completion time prob-

lem. Journal of Applied Mathematics and Computational Mechanics. 2021; 20(4):43–50. https://doi.org/

10.17512/jamcm.2021.4.04

19. Jemmali M, Otoom MM, al Fayez F. Max-min probabilistic algorithms for parallel machines. In: Proceed-

ings of the 2020 International Conference on Industrial Engineering and Industrial Management; 2020.

p. 19–24.

20. Alakeel AM, et al. A guide to dynamic load balancing in distributed computer systems. International

Journal of Computer Science and Information Security. 2010; 10(6):153–160.

21. Jemmali M. Intelligent algorithms and complex system for a smart parking for vaccine delivery center of

COVID-19. Complex & Intelligent Systems. 2021; p. 1–13.

22. Jemmali M, Melhim LKB, Alharbi MT, Bajahzar A, Omri MN. Smart-parking management algorithms in

smart city. Scientific Reports. 2022; 12(1):1–15. https://doi.org/10.1038/s41598-022-10076-4 PMID:

35444220

23. Kiselev E, Telegin P, Shabanov B. An energy-efficient scheduling algorithm for shared facility super-

computer centers. Lobachevskii Journal of Mathematics. 2021; 42(11):2554–2561. https://doi.org/10.

1134/S1995080221110147

24. Lin FPC, Phoa FKH. Runtime estimation and scheduling on parallel processing supercomputers via

instance-based learning and swarm intelligence. International Journal of Machine Learning and Com-

puting. 2019; 9(5). https://doi.org/10.18178/ijmlc.2019.9.5.845

25. Kameda H, Li J, Kim C, Zhang Y. Optimal load balancing in distributed computer systems. Springer Sci-

ence & Business Media; 2012.

26. Delgoshaei A, Ariffin M, Baharudin B, Leman Z. Minimizing makespan of a resource-constrained sched-

uling problem: A hybrid greedy and genetic algorithms. International Journal of Industrial Engineering

Computations. 2015; 6(4):503–520. https://doi.org/10.5267/j.ijiec.2015.5.002

27. Delgoshaei A, Rabczuk T, Ali A, Ariffin MKA. An applicable method for modifying over-allocated multi-

mode resource constraint schedules in the presence of preemptive resources. Annals of Operations

Research. 2017; 259(1):85–117. https://doi.org/10.1007/s10479-016-2336-8

28. Alquhayz H, Jemmali M. Fixed Urgent Window Pass for a Wireless Network with User Preferences.

Wireless Personal Communications. 2021; 120(2):1565–1591. https://doi.org/10.1007/s11277-021-

08524-x

29. Sarhan A, Jemmali M, Ben Hmida A. Two routers network architecture and scheduling algorithms

under packet category classification constraint. In: The 5th International Conference on Future Net-

works & Distributed Systems; 2021. p. 119–127.

30. al Fayez F, Melhim LKB, Jemmali M. Heuristics to Optimize the Reading of Railway Sensors Data. In:

2019 6th International Conference on Control, Decision and Information Technologies (CoDIT). IEEE;

2019. p. 1676–1681.

31. Jemmali M, Melhim LKB, Al Fayez F. Real time read-frequency optimization for railway monitoring sys-

tem. RAIRO-Operations Research. 2022; 56(4):2721–2749. https://doi.org/10.1051/ro/2022094

32. Ben Hmida A, Jemmali M. Near-Optimal Solutions for Mold Constraints on Two Parallel Machines.

Studies in Informatics and Control. 2022; 31(1):71–78. https://doi.org/10.24846/v31i1y202207

PLOS ONE Programs planning on supercomputers

PLOS ONE | https://doi.org/10.1371/journal.pone.0275099 September 26, 2022 17 / 17

https://doi.org/10.26713/cma.v10i3.1218
https://doi.org/10.26713/cma.v10i3.1218
https://doi.org/10.7717/peerj-cs.819
https://doi.org/10.7717/peerj-cs.819
http://www.ncbi.nlm.nih.gov/pubmed/35174262
https://doi.org/10.1109/TC.1987.5009495
https://doi.org/10.1109/TC.1987.5009495
https://doi.org/10.17512/jamcm.2021.4.04
https://doi.org/10.17512/jamcm.2021.4.04
https://doi.org/10.1038/s41598-022-10076-4
http://www.ncbi.nlm.nih.gov/pubmed/35444220
https://doi.org/10.1134/S1995080221110147
https://doi.org/10.1134/S1995080221110147
https://doi.org/10.18178/ijmlc.2019.9.5.845
https://doi.org/10.5267/j.ijiec.2015.5.002
https://doi.org/10.1007/s10479-016-2336-8
https://doi.org/10.1007/s11277-021-08524-x
https://doi.org/10.1007/s11277-021-08524-x
https://doi.org/10.1051/ro/2022094
https://doi.org/10.24846/v31i1y202207
https://doi.org/10.1371/journal.pone.0275099

