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ABSTRACT

Triplex formation is a promising strategy for real-
izing artificially controlling of gene expression, re-
versible assembly of nanomaterials and DNA
nanomachine and single-walled nanotubes (SWNTs)
have been widely used as gene and drug delivery
vector or as ‘building blocks’ in nano-/microelec-
tronic devices. CGC+ triplex is not as stable as
TAT triplex. The poor stability of CGC+ triplex limits
its use in vitro and in vivo. There is no ligand that has
been reported to selectively stabilize CGC+ triplets
rather than TAT. Here, we report that SWNTs can
cause d(CT)�d(AG) duplex disproportionation into
triplex d(C+T)�d(AG)�d(CT) and single-strand d(AG)
under physiological conditions. SWNTs can reduce
the stringency of conditions for CGC+ triplex forma-
tion studied by UV–vis, CD, DNA melting, light scat-
tering and atomic force microscopy. Further studies
indicate that electrostatic interaction is crucial for
d(CT)�d(AG) repartition into triplex d(C+T)�d(AG)�
d(CT). Our findings may facilitate utilization of
SWNTs–DNA complex in artificially controlling of
gene expression, nanomaterials assembly and
biosensing.

INTRODUCTION

Nucleic acid triplex formation has received much attention
because of their potentials in biomedical and biotechno-
logical applications, such as exploiting the third strand
binding as an artificial mechanism for the selective inhib-
ition of gene expression and as a tool for site-specific
delivery of reagents to genomes (1–3). Stretches of
duplex sequence d(A–G)6 d(C–T)6 are well known in
eukaryotic genomes (4), particularly in promoter and

gene switch regions (4,5), where they are thought prone
to form triplex through protonation of dC residues in the
third strand d(C-T)6 (6). Although forming the iso-
structural triplet, the interaction of C+ with GC base
pairs is much weaker than T with AT under physiological
conditions (6). The poor stability of CGC+ triplex limits
its use in vitro and in vivo (7,8). To overcome this draw-
back, one way is to screen small molecules to increase
triplex stability. A series of natural and synthetic com-
pounds have been reported to bind specifically to triplex
DNA or RNA, some even can induce triplex formation
(9–13). However, there is no ligand that has been reported
selectively to stabilize CGC+ triplets rather than TAT,
presumably because the positive charge on the protonated
cytosine prevents binding of the cationic ligand (14). The
other way is to use artificial DNA analogues. Although
many DNA analogues remove pH dependency, none of
these have been widely used (7). Greater efforts are still
needed on how to selectively stabilize CGC+triplex as well
as how to promote this triplex formation under physio-
logical conditions.
Single-walled carbon nanotubes (SWNTs) have been

considered as the leading candidate for nanodevice appli-
cations because of their one-dimensional electronic band
structure, molecular size, biocompatibility, controllable
property of conducting electrical current and reversible re-
sponse to biochemical reagents (15–20), SWNTs are widely
used as gene and drug delivery vector or as ‘building
blocks’ in nano-/micro-electronic devices. Among the mol-
ecules that can non-covalently bind to SWNTs, DNA has
been the research focus, which adsorbs as single-stranded
(ssDNA) or double-stranded DNA (dsDNA) complex.
Previous studies have shown that ssDNA can helically
wrap around SWNTs by means of �-stacking interactions
between nucleotide bases and SWNT sidewalls (21), while
dsDNA can bind to SWNTs via groove binding and DNA
end absorption (22,23). Further studies demonstrate that
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DNA binding to SWNTs may influence DNA structure
(24–31). In a recent report, duplex DNA can absorb on
SWNTs to give an ordered multilayered structure (24). We
have reported that SWNTs can induce a sequence depend-
ent DNA B–A transition and selectively induce human
telomeric i-motif DNA formation (25–30). In addition,
SWNTs can cause single-stranded poly(rA) to self-
structure and form a duplex structure (31). However, to
our knowledge, there is no report to show that SWNTs
can facilitate triplex DNA formation.
In the present work, we report that duplex d(CT)�

d(AG) can be disproportioned into triplex d(C+T)�
d(AG)�d(CT) and single-strand d(AG) in the presence of
carboxyl-modified SWNTs (SWNTs–COOH) at pH 6.5
(Scheme 1). The disproportionation increases SWNTs sta-
bility in solution. However, at pH 8.5, duplex DNA is
condensed on the surface of SWNTs, which decreases
SWNTs stability. Carboxyl-/hydroxyl-modified SWNTs
can induce the formation of triplex d(C+T)�d(AG)�
d(CT), while positively charged amino-modified SWNTs
cannot. This indicates that electrostatic interaction is crucial
for d(CT)�d(AG) repartition into triplex d(C+T)�d(AG)�
d(CT) except hydrophobic interaction and p–p stacking.

MATERIALS AND METHODS

Materials

Single-walled carbon nanotubes (j=1.1 nm, purity
>90%) were purchased from Aldrich (St Louis, MO,

USA). The details of preparation of SWNT–COOH,
SWNT–OH and SWNT–NH2 were described (25,31) in
Supplementary Data. The stock solution of these three
kinds of modified SWNTs (0.10mg ml�1) was obtained
by sonicating the samples for 8 h in pH 7.0 aqueous
solution (25–30).

DNA oligomers were synthesized by Sangon
Biotechnology Co. (Shanghai, China) and used as
received: d(AG), 50-GAG AGG AGA GAG AAG AGG
AAG-30; d(CT), 50-CTT CCT CTT CTC TCT CCT
CTC-30; d(TC), 50-CTC TCC TCT CTC TTC TCC
TTC-30; 20A, 50-GAA CGA AAC CAT TAT ACG
AT-30; 20B, 50-ATC GTA TAA TGG TTT CGT TC-30.
Concentrations of DNA oligomers were determined by
measuring the absorbance at 260nm after melting using
extinction coefficient: e260nm=242 100M�1 cm�1 (d(AG)),
e260nm=160400M�1 cm�1(d(CT)), e260nm=
160 400M�1 cm�1(d(TC)), e260nm=207 900M�1 cm�1

(20A) and e260nm=192 900M�1 cm�1 (20B). The extinc-
tion coefficient was calculated from mononucleotide and
dinucleotide data by using nearest-neighbor approxima-
tion (25–30). Single-strand d(CT) and single strand
d(AG) were mixed at pH 6.5 in a 1:1 ratio, heating to
95�C and slowly cooling to room temperature. The
formed duplex DNA is denoted as d(CT)·d(AG).
Control duplex DNA (CO-duplex) refers to mixing
single strand 20A and single strand 20B at pH 6.5 in a
1:1 ratio, heating to 95�C and slowly cooling to 4�C.
Unlike d(CT)·d(AG) DNA, CO-duplex cannot form

Scheme 1. Schematic representation of disproportionation of d(CT)·d(AG) and condensation of control duplex DNA (CO-duplex) in the presence
of SWNTs under physiological conditions. The control duplex cannot form triplex DNA.
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triplex DNA. All experiments were carried out in aqueous
cacodylic buffer (1mM cacodylic acid/sodium cacodylate/
200mM NaCl) unless stated otherwise (25–30).

In order to illustrate, SWNTs can facilitate CGC+

triplex DNA formation, we used a reversible sequence
d(TC)(30-CTCTCCTCTCTCTTCTCCTTC-50) instead of
d(CT) (50-CTT CCT CTT CTC TCT CCT CTC-30),
which can form a perfect matched CGC+ triplex DNA
with d(CT)·d(AG). In the mismatched triplex or the
perfect matched triplex, the same duplex d(CT)·d(AG)
was used to perform the experiment, while the other
ssDNA are different.

Bioassay

UV absorbance measurements and melting experiments
were carried out on a Jasco-V550 UV/Vis spectrophotom-
eter equipped with a Peltier temperature control accessory.
All UV/Vis spectra were measured in 1.0 cm path length
quartz cuvettes with the same concentration of SWNTs
aqueous solution as the reference. Dry purified nitrogen
was passed through the cell compartment to prevent con-
densation on the cells at low temperature. Flow rate was
set low enough so as not to create a temperature gradient
between the sample and the Peltier, which was confirmed
by monitoring the temperature in the sample and the
Peltier during trial melting profiles (6). Absorbance
changes at 260 nm versus temperature were collected at a
heating rate of 1�C min�1 for DNA melting experiments.
The sample solution was prepared by mixing SWNT–
COOH and DNA and then stood overnight at 4�C to
perform melting experiment.

CD spectra were measured on a JASCO J-810 spectro-
polarimeter equipped with a temperature-controlled water
bath at 4�C. The optical chamber of CD spectrometer was
deoxygenated with dry purified nitrogen for 45min before
use and kept the nitrogen atmosphere during experiments.
Three scans were accumulated and automatically
averaged.

The light scattering (LS) was measured with a JASCO
FP-6500 spectrofluorometer. The sample solution was pre-
pared by mixing 15 mgml�1 SWNT and 1 mM d(CT)·
d(AG) and then stood for 24 h at 4�C followed by centri-
fugation (1000 rpm, 111.5g). The supernatant was
decanted and collected for LS measurements. The LS
spectra were obtained by simultaneously scanning the ex-
citation and emission monochromators from 220 nm to
700 nm with the slit width for the excitation and emission
of 5 nm (32).

Atomic force microscopy (AFM) measurements (25,31)
were performed using Nanoscope V multimode atomic
force microscope (Veeco Instruments, Santa Barbara,
CA, USA). The sample solution was stood overnight at
4�C, then deposited onto a piece of freshly cleaved mica
with APTES and rinsed with water and dried before meas-
urements. Tapping mode was used to acquire the images
under ambient conditions (25,31,33). Images were col-
lected at a 1Hz scan rate and 512� 512 pixel resolution.
Image analysis of SWNTs-DNA was performed using
Nanoscope v7.30 software (Veeco Instruments).
Measurements were made for the height of over 100

peaks and are reported as the Gaussian center (calculated
using Origin6.0, OriginLab Corp., Northampton, MA,
USA).

RESULTS AND DISCUSSION

UV melting profiles of d(CT)�d(AG) at pH 6.5 in the
absence or presence of SWNTs are shown in Figure 1A.
In the absence of SWNTs, there is only one transition
(Tm=60.8�C). This transition corresponds to the dissoci-
ation of a Watson–Crick duplex, which reveals triplex is
not formed under these conditions (1mM cacodylic,
200mM NaCl, pH 6.5). However, in the presence of
SWNTs, there are two well resolved transitions: the first
transition at low temperature (Tm1) is relative to the dis-
sociation of the Hoogsteen base-paired strand from the
target duplex, the second higher temperature transition
(Tm2) is attributed to the denaturation of the Watson–
Crick double helix (6,34,35). This is because, we have
investigated the melting at different pH values
and found that Tm1 is pH dependent. According to
our melting profiles, the lower pH value gives a higher
melting temperature, which is the character of
Hoogsteen base pairs (6). Furthermore, the negative
band at 212 in CD spectrum also suggests the formation
of Hoogsteen base pairs of triplex DNA (6,34,35).
The two obvious transitions suggest that SWNTs

binding drives d(CT)�d(AG) disproportionation into
triplex DNA. Further studies indicate that both Tm1
and hyperchromicity are increased as SWNTs concentra-
tion increased. Upon increasing concentration of SWNTs,
Tm1 for triplex transition is systematically increased from
18�C up to a maximal shift of 28�C. In marked contrast,
Tm2 for duplex transition is hardly changed (Figure 1B).
The melting and cooling curves indicate that the triplex
cannot be re-formed after thermal denaturation
(Supplementary Figure S2B) (34), that might be due to
the irreversible aggregation of SWNTs occurred at high
temperature.
CD spectra of d(CT)�d(AG) with or without SWNTs

are shown in Figure 1C. Without SWNTs, CD spectrum
shows that d(CT)�d(AG) forms canonical B-form duplex
DNA: a large positive band at 276 nm, a small negative
band at 242 nm and a small positive band at 220 nm
(25,34). Upon addition of SWNTs, the positive band at
276 nm is reduced in magnitude and shifted to higher
wavelength while the negative band at 242 nm is reduced
slightly in magnitude. As the concentration of SWNTs
goes up to 15 mgml�1, the spectrum has a positive band
at 280 nm and negative bands at 246 nm and 212 nm.
Negative band at 212 nm has been used to indicate
triple-stranded DNA formation (6,34,35).
To verify that SWNTs can facilitate d(C+T)�d(AG)�

d(CT) formation, we investigate d(C+T)�d(AG)�d(CT)
formation under basic conditions. Without SWNTs,
d(CT) can interact with d(CT)�d(AG) to form the triplex
structure d(C+T)�d(AG)�d(CT) at pH 6.5 (Supplementary
Figure S3). At pH 8.5, SWNTs cannot disproportion
d(CT)�d(AG) into triplex DNA (Figure 2A). Only in the
presence of d(CT) strand, two obvious transitions are
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observed (Figure 2B). As d(CT) cannot form a high order
structure induced by SWNTs (Figure 2A), the two transi-
tions suggest d(CT) interact with d(CT)�d(AG) to form a
triplex structure. This assignment agrees with the CD
result (Figure 2C), which reveals that, in the presence
of SWNTs, a band at 212 nm with large magnitude is
characteristic for the formation of CGC+ triple helices
(6,34,35). As shown in Scheme 1, the single-strand d(CT)
sequence has overhang around the triplex formation
region. The overhang may act as the arms to immobilize
the triplex structure on the surface of SWNTs and to pro-
mote the triplex structure formation. In the control experi-
ment, we used perfect-matched triplex sequence. SWNTs
can also induce a complete CGC+ triplex formation
(Supplementary Figure S4A). However, the melting ex-
periment suggests that the weak binding between
perfect-matched DNA and SWNTs is not strong enough
to induce CGC+ triplex formation (Supplementary
Figure S4B).
Our results indicate that the mismatched triplex DNA is

much more easily formed in the presence of SWNTs. As
shown in Supplementary Figure S4B, formation of the
perfect matched triplex needs much more SWNTs than
that of partial triplex structure. This result indicates that
the weak binding between perfect-matched triplex DNA
and SWNTs may be not be strong enough to induce
CGC+ triplex formation. The overhang and mismatched
structure help the triplex to immobilize on SWNTs by

increasing the interaction between SWNTs and DNA.
Therefore, the single-strand overhang and mismatch struc-
ture are important and can enhance DNA binding to
SWNTs that can induce CGC+ triplex formation.
Although the mismatched DNA cannot form a complete
CGC+ triplex DNA, some bases in d(CT) can be compat-
ible with d(CT)·d(AG) to form a partial triplex structure
(Scheme 1). The partial triplex structure contains the re-
peating sequences 30-TCTCTCT-50/50-AGAGAGA-30;
therefore, our results would be helpful for the application
of carbon nanotubes in nanomedicine.

As SWNTs can induce the perfect matched triplex DNA
formation while MWNTs (Supplementary Figure S4C) do
not have the effect, which suggests the diameter of nano-
tubes is very important for DNA binding. MWNTs
(10–20 nm-sized) are too large to bind to the major
groove (26). In our previous study, SWNTs (1.1 nm-
sized) can bind to the groove of TAT triplex DNA and
decrease the stability of TAT triplex DNA (25). In the pre-
sent study, this selectivity can be attributed to the size of
the groove and negatively charged carboxyl-modified
SWNTs binding to the groove can further stabilize
CGC+ triplex DNA.

Lavelle and Fresco (6) have shown that increasing NaCl
concentration from 0.1M to 0.4M does not influence
CGC+triplex stability. Nevertheless, for the triplex formed
by d(CT)·d(AG) duplex disproportionation, increasing
NaCl can decrease triplex stability. Figure 3A shows the

Figure 1. UV melting profiles and CD spectra of d(CT)d(AG) at pH 6.5 illustrate triplex formation in the presence of SWNTs. (A) UV melting
profiles of 1 mM d(CT)·d(AG) in the absence (black line) or presence of SWNTs: 5 mgml�1 (red line), 10 mgml�1 (green line), 15 mgml�1 (blue line) in
cacodylic buffer (1mM cacodylic acid /sodium cacodylate/200mM NaCl/pH 6.5) (B) Plot of �Tm (the difference in the apparent Tm in the presence
of SWNTs relative to d(CT)·d(AG). Filled circles are for the transition for dissociation of the third strand. �Tm3-2 (triplex ! duplex+single
strand) is calculated by assuming a �Tm3-2 of 4�C in the absence of SWNTs (no transition seen). Open circles are for the duplex melting transition.
(C) CD spectra of 2 mM d(CT)·d(AG) at pH 6.5 in the absence (black line) or presence of SWNTs: 5 mg·ml�1 (red line), 10 mgml�1 (green line),
15 mgml�1 (blue line) in cacodylic buffer (1mM cacodylic acid /sodium cacodylate/200mM NaCl/pH 6.5). (D) Plot of CD intensity at 212 nm (solid
circle) versus concentration of SWNTs. The data were adopted from C.
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melting profiles of d(CT)·d(AG) in the presence of
SWNTs at different salt concentration. As NaCl concen-
tration increased from 50mM to 200mM, Tm1 of
d(C+T)·d(AG)·d(CT) decreased from 30�C to 14�C.
Meanwhile, duplex dissociation temperature, Tm2,
increased from 52�C to 61�C. According to polyelectrolyte
theory, increasing NaCl concentration can have two
effects: one is to shield the negative charges of phosphate
that can increase d(CT)·d(AG) duplex stability (36); the
other is to shield the negative charges of SWNTs that can
decrease the favorable electrostatic interaction (36–38)
between SWNTs and d(C+T)·d(AG)·d(CT). Therefore,
inverse dependence of triplex stability on NaCl concentra-
tion shows that electrostatic attraction is important for
d(CT)·d(AG) duplex disproportionation switched by

SWNTs. Since CGC+ triplex formation requires proton-
ation of the third strand dC residues (6), it is not
surprising that increasing proton concentration favors
triplex stability (6,34,35). Figure 3C shows the melting
profiles of d(CT)·d(AG) in the presence of SWNTs at
different pH. When increasing pH values from 5.5 to
7.0, Tm1 of triplex DNA decreased to 16�C while Tm2
of duplex hardly changed (Figure 3D). These observations
provide further evidence that electrostatic attraction
between SWNTs and d(C+T)·d(AG)·d(CT) is important.
Since ssDNA can wrap on the surface of SWNTs, this

results in SWNTs surface more negatively charged and
SWNTs become more stable, while dsDNA does not
have the effect (39,40). So, ssDNA can prevent SWNTs
from aggregation in electrolyte solution while dsDNA
cannot. With this in mind, if duplex d(CT)�d(AG) dispro-
portionate into triplex d(C+T)�d(AG)�d(CT) and
single-strand d(AG), single-strand d(AG) would wrap on
SWNTs and enhances their stability. In our experiment,
SWNTs in the absence or presence of d(CT)�d(AG) show
different pH dependent response. In the absence of
dsDNA, SWNTs–COOH sample is stable at pH 8.5
over 24 h, while obvious aggregation occurs at pH 5.0
(Figure 4A). Light scattering signals of the supernatant
also support the results, the signal intensity decreases
with decrease of pH (Figure 4C). This result is attributed
to the surface modification with the carboxylate groups
that serve as pH-sensing groups through protonation
and deprotonation. So at low pH value, SWNTs come
into contact and aggregate without electrostatic repulsion
(41). However, in the presence of d(CT)·d(AG), the
dispersed SWNTs sample in low pH buffers is much
more stable than at pH 8.5 (Figure 4B and D). The
sample at pH 6.5 shows fewer amounts of aggregations
and the supernatant has stronger scattering signals than
that at pH 8.5, showing that d(CT)·d(AG) disproportion-
ation enhanced SWNTs stability.
To better understand that dsDNA disproportionation

enhances SWNTs stability in solution, we used AFM to
study the morphology of SWNTs-dsDNA complexes at
different pH values (25,31). Samples were deposited on
an 3-(aminopropyl)trimethoxysilane (APTES) treated
mica surface and analyzed by tapping-mode AFM
(25,31,33). AFM imaging reveals a typical pattern on the
SWNT–DNA surface consisting of peaks and valleys in
height along the length of the tube, as well as corres-
ponding shifts in the phase of the cantilever oscillation.
Figure 5A shows that the height of SWNT–AG was
3.8±0.5 nm at the peaks at pH 6.5. At pH 8.5, the
peak-height distribution of SWNTs-d(CT)�d(AG)
exhibits only one peak which corresponds to height of
15.0±0.5 nm. However, at pH 6.5, the peak-height distri-
bution exhibits two peaks, corresponding to heights of
3.9±0.5 nm and 15.4±0.3 nm, which suggests SWNT
and single-strand DNA complexes were formed in the
solution (Figure 5B). At pH 6.5, SWNTs are mostly dis-
persed on the mica surface (Supplementary Figure S5A
and B). However, large SWNTs-aggregates coated by
condensed DNA were observed at pH 8.5
(Supplementary Figure S5C and D). In control experi-
ments, the CO-duplex DNA which cannot form CGC+

Figure 2. UV melting profiles and CD spectra of d(CT)d(AG) and
d(CT) at pH 8.5 illustrate triplex formation in the presence of
SWNTs. (A) UV melting profiles: d(CT)·d(AG) (black),
d(CT)·d(AG) in the presence of 15 mgml�1SWNTs (red) and d(CT)
in the presence of 15 mgml�1SWNTs (blue) in cacodylic buffer (1mM
cacodylic acid /sodium cacodylate/200mM NaCl/pH 8.5) (B) UV
melting profiles of solution containing a 1:1 stoichiometry of
d(CT)·d(AG) and d(CT) in the absence (black line) or presence of
SWNTs: 5mgml�1 (red line), 10 mgml�1 (blue line) in cacodylic buffer
(1mM cacodylic acid /sodium cacodylate/200mM NaCl/pH 8.5). (C)
CD spectra of triplex in the absence (black line) or presence of
10 mgml�1 SWNTs (red line) in cacodylic buffer (1mM cacodylic acid
/sodium cacodylate/200mM NaCl/pH 8.5).
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triplex DNA exhibits only one peak for the peak-height
distribution and shows similar aggregates at different pH
values (Supplementary Figure S6–8), further indicating
that the enhanced SWNTs stability is due to d(CT)·
d(AG) duplex disproportionation (Figure 4B and D).

These results are consistent with CD and DNA melting
results.

As for DNA binding to functionalized SWNTs, various
interactions of DNA bases and backbone with SWNTs,
such as hydrophobic, van der Waals and electrostatic

Figure 3. UV melting profiles of d(CT)·d(AG) in the presence of SWNTs at different salt concentration and pH values. (A) UV melting profiles of
1mM d(CT)·d(AG) added 5mgml�1 SWNTs in 1mM Cacodylic, 50mM NaCl (black line), 100mM NaCl (red line), 150mM NaCl (blue line) and
200mM NaCl (green line) at pH 6.5. (B) The third strand melting temperature (Tm1) and the duplex melting temperature (Tm2) as a function of
NaCl concentration. (C) UV melting profiles of 1 mM d (CT)·d (AG) added 5 mgml�1 SWNTs in 1mM Cacodylic, 200mM NaCl at pH 5.5 (black
line), pH 6.0 (red line), pH 6.5 (blue line) and pH 7.0 (green line). (D) The third strand melting temperature (Tm1) and the duplex melting
temperature (Tm2) as a function of pH.

Figure 4. Photo images of (A) SWNT–COOH and (B) SWNTs-d(CT)·d(AG) of different pH values after 24 h at 4�C. Light scattering spectra of
supernatants for (C) SWNT–COOH and (D) SWNT-d(CT)·d(AG) at different pH values after 24 h at 4�C.
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interactions, can take place (42). Simulation studies
indicate that duplex DNA can bind to SWNTs via DNA
groove binding or DNA end adsorption (22).
Experimental results indicate that SWNTs groove binding
can cause DNA condensation (25), while the interaction
between DNA end base pair and SWNT wall surface
involves spontaneous unzipping of partially bound
strands of ds-DNA (24). Intriguingly, Cathcart et al.
(24) recently reported that SWNTs can act like DNA
helicase and demonstrate that long, natural dsDNA can
bind to SWNTs and the dsDNA is separated into ssDNA
to form an ordered helical wrapping on carbon nanotubes
through long time interaction (25). In their dsDNA-
SWNTs system, SWNTs can be considered as helicase to
catalyze the unwinding of dsDNA. However, due to the
length of the DNA sequence, this reassembly process
needs long time (25). In our experiment, there are two
aspects that can influence d(CT)·d(AG) disproportion-
ation. The first is SWNTs unwinding d(CT)·d(AG)
duplex, in which SWNTs act as helicase destabilizes
d(CT)·d(AG) at junction. Since d(CT)·d(AG) has a
short length (21-mer), the unwinding will easily take
place. The second is protonation of dC residues.
Previous studies have shown that SWNTs can promote

protonation of conjugated polymers by changing their
pKa values (43). With addition of SWNTs, the pKa of
dCMP was shifted from 4.65 (44) to 5.19
(Supplementary Figure S9). In the control experiment,
triplex d(C+T)�d(AG)�d(CT) is formed at low pH in the
absence of SWNTs, showing that protonation can
promote triplex formation (Supplementary Figures S2A
and S3). Thus, when d(CT)·d(AG) binding to SWNTs,
the interaction between SWNTs and d(CT)·d(AG) can
promote protonation of dC residues by changing pKa
values of dC residues. The protonated d(C+T) and
d(CT)·d(AG) would form triplex DNA under these con-
ditions, that will accelerate the unwinding of
d(C+T)·d(AG). It should be pointed out that SWNTs-
induced disproportionation is related to DNA sequence.
For control duplex DNA (CO-duplex), SWNTs cannot
induce disproportionation because CO-duplex cannot
form CGC+ triplex DNA. In addition, the electrostatic
repulsion between negatively charged SWNT–COOH
and CO-duplex would decrease SWNTs helicase activity,
that can cause CO-duplex condensed on SWNTs
(Supplementary Figures S6–S8). These results demon-
strate that electrostatic interaction is crucial for the dis-
proportionation. To clarify the charge effect, we prepare

Figure 5. AFM height (left), phase (middle) images and distribution of the peaks (right) of SWNT-d(AG) (A1,A2,A3), SWNT-d(CT)·d(AG) at pH
6.5 (B1, B2, B3) and pH 8.5 (C1, C2, C3) (n> 100 peaks). All the experiments were carried out in cacodylic buffer (1mM cacodylic acid/sodium
cacodylate/200mM NaCl). The images are 3mm� 3 mm.
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another two functionalized SWNTs, positively charged
amino group-modified SWNTs and hydroxyl–SWNTs
(26,31). Our DNA melting data clearly indicate that posi-
tively charged amino group-modified SWNTs cannot
induce triplex DNA formation, while carboxyl-/
hydroxyl-SWNTs can induce d(CT)·d(AG) dispropor-
tionation and promote CGC+ triplex DNA formation
(Figure 6) although hydroxyl-SWNTs has weaker effect
than carboxyl-SWNTs.

CONCLUSIONS

We have shown for the first time that SWNTs can induce
CGC+ triplex formation under physiological conditions.
Targeting triplex structure is important and useful for de-
veloping new molecular biology tools as well as therapeut-
ic agents, however, CGC+ triplex poor stability limits its
use in vitro and in vivo. Our results indicate that SWNTs
can reduce the stringency of conditions that CGC+triplex
formation requires. Therefore, this finding would facilitate
utilization of SWNTs–DNA complex in artificially
controlling of gene expression, nanomaterials assembly
and biosensing.
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