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Abstract: Obesity represents a risk factor for a variety of diseases because of its inflammatory
component, among other biological patterns. Recently, with the ongoing COVID-19 crisis, a special
focus has been put on obesity as a status in which antibody production, among other immune
functions, is impaired, which would impact both disease pathogenesis and vaccine efficacy. Within
this piece of writing, we illustrate that such patterns would be due to the increased adiposity and
fat distribution pattern rather than obesity (as defined by the body mass index) itself. Within this
context, we also highlight the importance of the weight-loss-independent effects of exercise.
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Obesity is one of most challenging health problems for the modern medicine and
therapeutic research [1,2]. The main pattern that makes obesity challenging is that, once es-
tablished, it is hard to reverse, probably because the new “set up” of the biological reference
of body weight and adiposity as neuroendocrine adaptation changes with a broken energy
homeostasis [3,4]. The current ongoing coronavirus disease 2019 (COVID-19) pandemic
could worsen the obesity pandemic, which would negatively impact the development of
this COVID-19 crisis [5,6], especially with the impact that the measures imposed by govern-
ments might have on immunity [7]. Therefore, it is of high importance to understand how
obesity and adiposity impact the immunity and more specifically antibodies production
and function. This is because vaccine-induced antibodies represent the best shot we have
to end this pandemic.

Antibodies represent an important mediator and factor of the immune system [8]. On
the other hand, obesity represents a status in which different biological and homeostatic
processes, such as regeneration [9], energy balance [4] and neuroendocrine factors [3], are
impaired or impacted. Within this context, we would like to put a spotlight on selected
consequences and impacts obesity and adiposity have on antibody patterns in order to
explain some immunological specificities reported in obese patients. Obesity is defined by
an abnormal fat accumulation usually as a result of an unhealthy lifestyle that increases
the energy intake to more than the energy expenditure [1,4], leading to a variety of health
consequences [10,11] with increased impacts [5].

Regarding obesity-related antibody patterns, numerous results reflect the impacts obe-
sity has on antibody properties. For instance, adaptive immune response to influenza virus
is impaired during obesity [12], innate and adaptive immune responses against influenza
are delayed in obese patient [13] and obesity was suggested to decline influenza antibody
titers following influenza vaccination [14] as well as reduce vaccine efficacy [15] with poor
vaccine immunogenicity [16]. Similarly, lower COVID-19 mRNA vaccine-induced antibody
titers have been associated with central obesity [17] and severe acute respiratory syndrome
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corona Virus-2 IgG antibodies negatively correlate with body mass index in COVID-19
patients. This is important in the current pandemic context with the vaccination efforts
aiming to end this global health crisis. Furthermore, one key concept in obesity is that
obesity is an “autoinflammatory” disease characterized by a chronic and low-grade inflam-
mation [18,19], with several immune alterations including altered cell-mediated immune
responses and leucocyte counts [20], principally in adipose tissue [21], where we have
a localized inflammation [22]. Mechanisms beyond this are based on the links between
obesity and both adipose tissue remodeling [23] and regulatory T cells [24]. Macrophage
polarization [25], among other obesity-induced changes to macrophages [26], specifically
due to adipocyte–macrophage interaction [27], are also involved within the inflammatory
component of obesity.

The impacts obesity has on regeneration [9] could also explain, in part, such reduced
antibody production due to the impaired regeneration immunity cells could have. Such
observations would explain the reduced efficacy of vaccination in obese patients [28] as
illustrated by the impaired immune response to influenza vaccination in obese humans [14]
which could lead to recommend additional immunological stimulation (vaccination) for
obese patients.

Exercise (combined or not with diet and/or pharmacological therapies) is among the
most widely accepted approaches to controlling body weight and managing obesity [29–31].
Exercise has known benefits and effects on the immunity system [32,33] including antibod-
ies [34], B lymphocytes [35], cytokines such as Interleukin-6 [36], antioxidant effects [37],
regeneration adjuvants [38–40], and improved immunosurveillance and immunocompe-
tence with an anti-inflammatory effects [41] via macrophage infiltration suppression [42].
Importantly, as illustrated above, the antibody-related immunity decline with obesity
would be associated with the adiposity and its distribution rather than body weight [17].
This suggests that the benefits of exercise on antibodies for obese patients can be achieved
even without weight loss, as illustrated by the reduced hepatic and visceral lipids following
exercise training without weight loss [43]. The adiposity and fat distribution correlations,
rather than body weight, with antibodies and immunity-related functions have been shown
in other contexts such as inflammatory profiles [44,45] and IgG N-glycosylation [46]. Fur-
thermore, central adiposity has been highlighted in correlation with other diseases [47,48]
and health problems as well [49,50]. In addition, acute exercise (and therefore indepen-
dent of weight lost) has a broad impact on immune functions, including granulocytosis,
lymphocytosis (antibody-producing cells) and monocytosis [51], increased natural killer
cells [52], which are very responsive to acute exercise [53], increased lymphokine-activated
killer cells activity [54] and enhanced T cell activity [55]. Importantly, acute exercise might
promote a redistribution in lymphocyte subsets [56] including B cells that produce the
antibodies [57,58] and which are affected by obesity [59,60] via diverse pathways including
leptin-induced reduction in B cells function [61] as well. These benefits reverse most of
those induced by adiposity described earlier (Figure 1).

Such concepts indicate and support the importance of exercise even without weight
loss so that an interrelation between exercise and immunity regulation has been de-
scribed [62]. The absence of weight loss does not mean the absence of fat loss or fat
redistribution. Indeed, with exercise, body composition can improve toward increased
muscle development and/or a new fat distribution but without body weight loss. This
pattern could explain the benefits of exercise that does not lead to weight loss, which is
of a particular importance since among the anti-obesity therapies (diet, pharmacology,
etc.), exercise represents the one with the ability to shift the body composition as well as
fat distribution beyond weight loss [63,64]. Moreover, indirect weight-loss-independent
benefits of exercise can improve immunity, for instance by reducing hypertension [65] that
is associated with lower post COVID-19 vaccination antibodies titers [17].
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Figure 1. Antibody patterns and immunity performance between increased adiposity and exercise. Immunity functions 
and antibody-related patterns such as inflammation and regeneration are negatively impacted by adiposity development 
but corrected/improved by exercise and other adiposity-reducing approaches. 
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loss so that an interrelation between exercise and immunity regulation has been described 
[62]. The absence of weight loss does not mean the absence of fat loss or fat redistribution. 
Indeed, with exercise, body composition can improve toward increased muscle develop-
ment and/or a new fat distribution but without body weight loss. This pattern could ex-
plain the benefits of exercise that does not lead to weight loss, which is of a particular 
importance since among the anti-obesity therapies (diet, pharmacology, etc.), exercise rep-
resents the one with the ability to shift the body composition as well as fat distribution 
beyond weight loss [63,64]. Moreover, indirect weight-loss-independent benefits of exer-
cise can improve immunity, for instance by reducing hypertension [65] that is associated 
with lower post COVID-19 vaccination antibodies titers [17]. 

The benefits of exercise in the context of obesity are well documented in the context 
of energy balance, glucose metabolism, adiposity, muscles development, cardiorespira-
tory fitness and lipids profile [66–69]. However, within this piece of writing, we also illus-
trate the beneficial effects of exercise on obesity from an immunological perspective that 
focuses on antibodies. The interesting point is that the exercise effects are seen even with 
the absence of body weight loss. Therefore, this indicates that a focus on adiposity loss 
and fat distribution patterns [70] should replace the use of body weight as a medical pa-
rameter which correlates with the need to further focus, for instance, on waist circumfer-
ence, which reflects to some extent visceral obesity, in clinical practice [71]. The concept 
of fat distribution and adiposity vs. overweight would also explain the concept “metabol-
ically healthy obesity” [72,73], defined by body mass index that could lead to the concept 
of “immunologically healthy obesity”. 

We hope our work could represent an additional encouragement of physical activity 
and a healthy diet towards a better lifestyle for obese patients even if it does not neces-
sarily lead to weight loss, especially that the benefits shown without weight loss are vari-

Figure 1. Antibody patterns and immunity performance between increased adiposity and exercise. Immunity functions
and antibody-related patterns such as inflammation and regeneration are negatively impacted by adiposity development
but corrected/improved by exercise and other adiposity-reducing approaches.

The benefits of exercise in the context of obesity are well documented in the context of
energy balance, glucose metabolism, adiposity, muscles development, cardiorespiratory
fitness and lipids profile [66–69]. However, within this piece of writing, we also illustrate
the beneficial effects of exercise on obesity from an immunological perspective that focuses
on antibodies. The interesting point is that the exercise effects are seen even with the
absence of body weight loss. Therefore, this indicates that a focus on adiposity loss and fat
distribution patterns [70] should replace the use of body weight as a medical parameter
which correlates with the need to further focus, for instance, on waist circumference,
which reflects to some extent visceral obesity, in clinical practice [71]. The concept of fat
distribution and adiposity vs. overweight would also explain the concept “metabolically
healthy obesity” [72,73], defined by body mass index that could lead to the concept of
“immunologically healthy obesity”.

We hope our work could represent an additional encouragement of physical activity
and a healthy diet towards a better lifestyle for obese patients even if it does not necessarily
lead to weight loss, especially that the benefits shown without weight loss are various and
include decreased circulating interleukin-6 [74], reduced hepatic and visceral lipids [43],
increased insulin sensitivity [75] and improved endothelium-dependent vasodilation [76].
The possible application of such concepts would be the prescription of exercise to improve
the antibody properties of obese patients even if it does not lead to weight loss since, for
the COVID-19 mRNA vaccine for instance, low antibody titers have been associated with
a higher waist circumference rather than high body weights [17], suggesting, once more,
that the impact would be due to the fat distribution (central vs. peripheral obesity) [4,10]
rather than increased body weight or even body fat percentage. Indeed, exercise can impact
the body composition and fat distribution independently from body weight. This area of
interaction between adiposity, fat distribution and immunology is worth further exploring
in diverse contexts to develop new therapies, optimize the existing treatments and increase
the awareness of how important weight-loss-independent effects of exercise are.
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