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Abstract Developing broad-spectrum anti-coronavirus drugs is greatly important, since the novel

SARS-CoV-2 has rapidly become a threat to the public health and economy worldwide. SARS-CoV

3-chymotrypsin-like protease (3CLpro), as highly conserved in betacoronavirus, is a viable target

for anti-SARS drugs. A quantitative structure–activity relationship (QSAR) for inhibitory con-

stants (pKi) of 89 compounds against SARS-CoV 3CLpro enzyme was developed by using support

vector machine (SVM) and genetic algorithm. The optimal SVM model (C= 90.2339 and

c = 1.19826 � 10�5) based on six molecular descriptors has determination coefficients of 0.839

for the training set (65 compounds) and 0.747 for test set (24 compounds), and rms errors of

0.435 and 0.525, respectively. These results are accurate and acceptable compared with that in other

models reported, although our SVM model deals with more samples in the dada set. The SVM

model could be beneficial for search of novel 3CLpro enzyme inhibitors against SARS-CoV.
� 2021 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open

access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

COVID-19, caused by the SARS-CoV2 virus, has been found
all over the world since its first outbreak in Wuhan City,
China, in December 2019 [1,2]. COVID-19 is a potentially fatal

disease and becomes a global public health concern [3,4]. As of
1 May 2021, 8:36 pm GMT + 8, 150,989,419 cases have been
reported worldwide, resulting in 3,173,576 deaths (https://

www.who.int/). Two human coronavirus diseases previously
discovered in the 21st century, severe acute respiratory syn-
drome CoV (SARS-CoV) in 2002 and Middle East respiratory

syndrome CoV (MERS-CoV) in 2012, respectively, infected at
least 8422 and 1700 people. Their fatality rates were about
10% and 36%, respectively [5,6]. Although SARS-CoV disap-
peared mysteriously, the MERS-CoV has not been controlled

so far. SARS-CoV2 is the 3rd human coronavirus disease dis-
covered in the 21st century. At present, there are no specific
and effective drugs for COVID-19.

SARS-CoV 3-chymotrypsin-like protease (3CLpro) is one
of the major proteases produced by the 2019-nCoV, which
plays a pivotal role in the replication of the virus [7,8]. Most
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of the functional proteins of coronavirus are encoded by
ORF1ab gene. The coding RNAs are translated into a pro-
teome (7096aa), and then cut into multiple active proteins

(e.g. viral replication protein RdRp) by 3CLpro. In addition,
3CLpro may cleave the intracellular protein NEMO and inhi-
bit the activation of interferon signaling pathway. Therefore,

SARS-CoV 3CLpro plays an important role in the virus life
cycle and has become a viable target for anti-SARS drug devel-
opment. There is >95% sequence similarity in RdRp and

3CLpro between SARS-CoV-2 and SARS-CoV [3–8]. There-
fore, 3CLpro inhibitors developed on SARS-CoV could be
effective against SARS-CoV-2 [7,8].

Quantitative structure–activity relationship (QSAR) mod-

els can be used for drug screening and mechanistic understand-
ing of drug action. This technique has many advantages, such
as lower-cost and higher speed, even can be used to evaluate

drug candidates that have not been synthesized [9,10]. But only
a few researchers have carried out QSAR studies for inhibitor
activities against SARS-CoV.

Inhibitory constant (Ki) is the concentration of the inhibi-
tor that is required in order to decrease the maximal rate of
the reaction by half. Masand et al. introduced a QSAR model

for activities (Ki) of SARS-CoV 3CLpro inhibitors [7]. A six-
descriptor model was based on a training set (50 compounds)
and evaluated with a test set (12 compounds). Although the
data sets are relatively small, the coefficients of determination

R2 are 0.824 for the training set and 0.758 for the test set,
which are accurate and satisfactory. Kumar and Roy built
up an eight-descriptor model for inhibitory activities (IC50)

of 69 molecules against SARS-CoV 3CLpro enzyme [8]. The
data set was divided into a training set (56 molecules) and a
test set (13 molecules). Their coefficients of determination R2

are 0.764 and 0.711, respectively.
The two QSAR models referred to were developed with

multiple linear regression (MLR) analysis, which is suitable

for linear relationships between dependent variables and inde-
pendent variables. Generally, nonlinear regression techniques
can improve the prediction performance of QSAR models.
The aim of this study is to develop a six-descriptor QSAR

for inhibitory constants (Ki) of 89 molecules against SARS-
CoV 3CLpro enzyme, by applying support vector machine
(SVM) technique. It is hoped that our SVM model will be ben-

eficial for search of novel 3CLpro enzyme inhibitors against
SARS-CoV.

2. Methods

2.1. Experimental data

Table S1 in Supplemental Information shows the SMILES
notations and inhibitory constants (Ki) of 89 molecules against

SARS-CoV 3CLpro, which were taken from the binding data-
base [11] and references [12–14]. The experimental Ki values
varied from 3 to 56,000 nM, and their pKi (=�logKi) values
were in the range of 8.523–4.252 by converting to negative log-

arithm of Ki. A larger pKi value means a higher activity for
the inhibitor. Inhibition constants, Ki, were obtained through
measuring the apparent kinetic parameters at a constant sub-

strate concentration (10 mM) and different inhibitor concentra-
tions (0–200 mM) at 25 �C [12]. These experimental data were
randomly split into a training set (n= 65 inhibitors) and a test
set (n= 24 inhibitors). QSAR models were developed with the
training set and evaluated with test set.

2.2. Molecular descriptors

Besides three-dimensional (3D) QSAR methods based on
ligand-receptor interactions, the two-dimensional (2D) QSAR

models derived only from the ligand molecules can be used for
describing the activity of biologically active compounds. The
structural and physicochemical features of active compounds

become the critical factors determining inhibitory constant
(Ki) when the inhibitors have the same biological target (e.g.
SARS-CoV 3CLpro enzyme). In this study, the structures of

inhibitors were used to derive molecular descriptors for 2D-
QSAR models of inhibitory constants (Ki). According to the
SMILES notations in Table S1, molecular structures were
drawn using ChemBioDraw Ultra 12.0 in ChemBioOffice

2010. Subsequently, 3D-structures were generated using
ChemBio3D Ultra 12.0 and optimized with semi-empirical
AM1 method in Gaussian 09. Finally, the optimized molecules

were used to calculate molecular descriptors with Dragon 6.0
[15]. Totally, 648 descriptors were obtained when those molec-
ular descriptors with high co-linearity (|R| > 0.90) or being a

constant were removed.

2.3. SVM principle

For the nonlinear support vector regression machine, the low-

dimensional data need be mapped to the high-dimensional
space, from which the linearly separable hyperplane would
be found. Finally, the hyperplane in the high-dimensional

space should be mapped back to the low-dimensional space,
so as to realize SVM regression or classification. However,
mapping low-dimensional data to high-dimensional space

and then performing regression analysis involve a great quan-
tity of computations. Especially for high-dimensional data, the
problem of over-fitting can occur. Kernel function is intro-

duced to solve this problem. Replacing the linear terms in lin-
ear equations with kernel function can make the original linear
algorithm nonlinear, that is to say, it can do nonlinear regres-
sion. Thus, the introduction of kernel function can achieve the

purpose of increasing dimension and effectively control over
fitting. Radial basis function was used in this work. The
SVM parameters C (the regulation constant) and c (the width

of kernel function) need to be optimized with genetic algo-
rithm, since too large or too small C (and c) values may lead
to over-fitting or under-fitting and reduce model’s predictive

power.

3. Results and discussion

3.1. Optimal descriptor subset

Stepwise multiple linear regression (MLR) analysis was per-
formed using IBM SPSS Statistical 19 for 89 pKi (in
Table S1 in Supplemental Information) and 648 descriptors.
The increment of determination coefficient DR2 > 0.02 was

used as the criterion for introducing new variables. A subset
consisting of six descriptors (MATS6m, MATS1s, MATS3s,
nArNR2, C-028, and F10[N-O]) were obtained. The descriptor
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definitions were listed in Table 1. We found that the determi-
nation coefficients of MLR models were improved when these
descriptors were divided by their respective molecular weight

(MW) and used as new independent variables for MLR model.
Therefore, the new subset of descriptors (MATS6m/MW,
MATS1s/MW, MATS3s/MW, nArNR2/MW, C-028/MW,

and F10[N-O]/MW) (see Table S1 in Supplemental Informa-
tion) were used to develop QSAR in this work. The MLR
model has determination coefficients R2 of 0.598 for the train-

ing set and 0.659 for test set.
The three descriptors, MATS6m, MATS1s and MATS3s,

belong to Moran autocorrelation (MATSkw) [15], which are
calculated with:

MATSkw ¼
1
2D �

PnAT
i¼1

PnAT
j¼1 dij � ðwi � wjÞ2

1
nAT

�Pnsk
i¼1ðwi � w�Þ2 ð1Þ

where k denotes the lag value (from k = 1 to 8), w means the
atomic property (viz. atomic mass (m), atomic van der Waals
volume (v), atomic Sanderson electronegativity (e), atomic

polarizability (p), atomic ionization potential (i), or intrinsic
state (s)) used for weighting molecular graphs, nAT is the total
number of molecule atoms, dij denotes the Kronecker delta
and D denotes the sum of the Kronecker deltas [15]. MATSkw

are correlated with molecular size, geometry and symmetry
[16,17].

The descriptor nArNR2 denotes the number of tertiary

amines (aromatic), i.e. ArNYY (Ar being aromatic ring and
Y being aromatic ring or aliphatic groups). The descriptor
C-028 is defined as the number of R--CR--X group (R means

any group linked to C atom; X denotes any electronegative
atom, O, N, S, P, Se, or halogens). The descriptor F10[N-O]
is the frequency of N-O at topological distance 10. F10[N-O]
value is 1 or 0, representing the presence or absence of N-O

atom pairs at topological distance 10.
Table 2 shows the characteristics of new descriptors

(MATS6m/MW, MATS1s/MW, MATS3s/MW, nArNR2/

MW, C-028/MW, and F10[N-O]/MW) in MLR model. As is
shown in Table 2, the six new descriptors have low significance
values (<0.05), which mean that they are important indepen-

dent variables to correlate with the inhibitory constants (pKi).
The variance inflation factors (VIF) are less than 10, implying
no serious multicollinearity problem. By the t-test values in
Table 1 The definitions of molecular descriptors used.

Descriptor Definition Block

MATS6m Moran autocorrelation of lag 6

weighted by mass

2D

autocorrelations

MATS1s Moran autocorrelation of lag 1

weighted by intrinsic state

2D

autocorrelations

MATS3s Moran autocorrelation of lag 3

weighted by intrinsic state

2D

autocorrelations

nArNR2 Number of tertiary amines

(aromatic)

Functional

group counts

C-028 R–CR–X Atom-centered

fragments

F10[N-O] Frequency of N-O at topological

distance 10

2D Atom Pairs
Table 2, the |t-test| values increase in the sequence:
MATS1s/MW, MATS6m/MW, C-028/MW, nArNR2/MW,
F10[N-O]/MW, and MATS3s/MW, and the relative impor-

tance of descriptors increases in the same sequence.

3.2. SVM model

The new descriptors (MATS6m/MW, MATS1s/MW,
MATS3s/MW, nArNR2/MW, C-028/MW, and F10[N-O]/
MW) were used as independent variables to develop SVM

model for inhibitory constants pKi, by employing LibSVM
and MATLAB R2014a [18]. Leave-one-out (LOO) cross-
validation, together with genetic algorithm [19,20], was

selected to train the QSAR models for pKi of 65 compounds
in the training set. The ranges of C from 0 to 600 and c from
0 and 1 were searched. In the end, the relatively optimal
parameters C (=90.2339) and c (=1.19826 � 10�5) were

obtained. The optimal SVM (C = 90.2339 and
c = 1.19826 � 10�5) model was evaluated with 24 compounds
in the test set. The pKi values calculated from the SVM model

were listed in Table S1 in Supplemental Information and illus-
trated in Fig. 1. The determination coefficients of the training
and test sets are 0.839 and 0.747, respectively; and their rms

errors are 0.435 and 0.525, respectively. These results are accu-
rate and acceptable compared with that (R2 being 0.824 for the
training set and 0.758 for the test set; rms being 0.433 and
0.527, respectively) from the QSAR model reported [7],

although our SVM model dealt with more samples. According
to the prediction results in test set, we can obtain some statis-
tical parameters: k= 0.974, k’ = 1.021, qext

2 = 0.756,

R2 = 0.747, R0
2 = 0.745, R’0

2 = 0.696, which satisfy the crite-
ria: 0.85 � k (or k’) � 1.15, qext

2 > 0.5; R2 > 0.6; and
(R2 � R’0

2)/R2 < 0.1 [21]. Therefore, the pKi SVM model built

in this work is successful. Here k and k’ are slopes of regression
lines, qext

2 is external correlation coefficient, R2 is square of cor-
relation coefficient, R0

2 and R’0
2 determination coefficient.

These definitions of above parameters can be found in refer-
ences [21–23]. The test compounds have absolute prediction
error of 0.400, less than 0.15 � training set range
(=0.15 � 4.271 = 0.641), which indicates the model has good

prediction [24]. In addition, the SVM model has determination
coefficients of 0.839 for the training set and 0.747 for test set,
which are higher than the results (R2 = 0.598 and 0.659,

respectively) of the MLR model in this study. Therefore, there
are nonlinear relationships between the six molecular descrip-
tors used and inhibitory constants pKi.

To make a statistical performance comparison between
MLR and SVM algorithm, we develop another SVM model
II for pKi of 62 compounds, which have been studied by
Masand et al. with MLR [7]. The same six molecular descrip-

tors were used to divide the 62 samples into a training set (50
compounds) and a test set (12 compounds) by employing the
Kennard-Stone algorithm. The same procedures referred to

were used to develop SVM model of pKi. Finally, the SVM
model II (C= 337.692 and c = 0.0092516) was obtained,
which produces determination coefficient R2 and rms error of

0.817 and 0.428 for the training set; and of 0.789 and 0.430
for the test set. Obviously, the rms errors from the SVM model
II in this work are less that (0.435 and 0.525, respectively) in

reference [7], although the data sets of samples and descriptors
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Table 2 Characteristics of molecular descriptors in MLR model.

Descriptor Coefficients Std. Error t-test Sig. VIF

Constant 5.968 0.264 22.647 0.000 /

MATS6m/MW �0.010 0.003 �3.579 0.001 1.637

MATS1s/MW �0.046 0.013 �3.479 0.001 1.768

MATS3s/MW 0.034 0.005 6.566 0.000 1.439

nArNR2/MW 0.002 0.000 4.403 0.000 1.058

C-028/MW 0.001 0.000 3.765 0.000 1.122

F10[N-O]/MW �0.001 0.000 �6.348 0.000 1.211
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are same. Therefore, applying SVM algorithm to develop mod-
els for pKi is successful.

3.3. Applicability domain

Fig. 2 shows the Williams plot of the standardized residuals (r)
against the leverages (h) of both the training and test sets of the
optimal SVM model. The predictions may be considered reli-
able if the samples fall into the domain of Williams plot [19].

In Fig. 2, we can observe that there are only two samples
(Nos. 44 and 70) with |r| > 3. Their molecular structures are
shown in Fig. 3. The two samples have dissimilar structures
with other compounds in the training set. Of course, the pos-

sibility exists that they have large experimental errors. In addi-
tion, we calculated the warning leverage h* (=0.323 = 3�(p
+ 1)/n= 3�(6 + 1)/65, here p and n are, respectively, the

numbers of independent variables and samples in training
set). All the sample points have leverage values less than the
warning leverage h*, indicating the prediction results (except

Nos. 44 and 70) from the optimal SVM model in this work
reliable.

4. Conclusions

Six molecular descriptors, MATS6m/MW, MATS1s/MW,
MATS3s/MW, nArNR2/MW, C-028/MW, and F10[N-

O]/MW, were successfully used for developing a 2D-
QSAR model of inhibitory constants pKi of 89 compounds
against SARS-CoV 3CLpro enzyme, although many fac-
tors influence the inhibitory activity. The optimal SVM

(C = 90.2339 and c = 1.19826 � 10�5) model was based
on 65 compounds in the training set and evaluated with
24 compounds in the test set. The optimal SVM model pos-

sesses good statistical performance compared with other
models reported. There were non-linear relationships
between the six descriptors used and inhibitory constants

pKi of compounds against SARS-CoV 3CLpro enzyme.
It was reasonable applying the SVM algorithm to establish
this nonlinear model. The model developed in this work
could be beneficial for search of novel 3CLpro enzyme

inhibitors against SARS-CoV.



Fig. 3 Outliers based on the predictions of the optimal SVM model.

Prediction of inhibitory constants of compounds against SARS-CoV 3CLpro enzyme with
Declaration of Competing Interest

The authors declare that they have no known competing
financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Acknowledgments

This work was supported by the Open Project Program of
Hunan Provincial Key Laboratory of Environmental Catalysis
& Waste Regeneration (Hunan Institute of Engineering) (No.
2018KF11).

Appendix A. Supplementary data

Supplementary data to this article can be found online at

https://doi.org/10.1016/j.jscs.2021.101262.

References

[1] D. Kumar, R. Malviya, P.K. Sharma, Corona virus: a review of

COVID-19 history and origin, EJMO 4 (2020) 8–25.

[2] S.H. Nile, A. Nile, J. Qiu, L. Li, X. Jia, G. Kai, COVID-19:

Pathogenesis, cytokine storm and therapeutic potential of

interferons, Cytokine Growth Fact. Rev. 53 (2020) 66–70.

[3] B. Shanmugaraj, K. Siriwattananon, K. Wangkanont, W.

Phoolcharoen, Perspectives on monoclonal antibody therapy
as potential therapeutic intervention for Coronavirus disease-19

(COVID-19), Asian Pac. J. Allergy Immunol. 38 (2020) 10–18.

[4] C. Liu, Q. Zhou, Y. Li, L.V. Garner, S.P. Watkins, L.J. Carter,

J. Smoot, A.C. Gregg, A.D. Daniels, S. Jervey, D. Albaiu,

Research and development on therapeutic agents and vaccines

for COVID-19 and related human coronavirus diseases, ACS

Central Sci. 6 (2020) 315–331.

[5] C. Wu, Y. Liu, Y. Yang, P. Zhang, W. Zhong, Y. Wang, Q.

Wang, Y. Xu, M. Li, X. Li, M. Zheng, L. Chen, H. Li, Analysis

of therapeutic targets for SARS-CoV-2 and discovery of

potential drugs by computational methods, Acta Pharm. Sin.

B. 10 (2020) 766–788.

[6] Y. Zhou, Y. Hou, J. Shen, Y. Huang, W. Martin, F. Cheng,

Network-based drug repurposing for novel coronavirus 2019-

nCoV/SARS-CoV-2, Cell Discov. 6 (2020) 14.

[7] V. Masand, A. Gandhi, V. Rastija, M.K. Patil, Structure

Features of Peptide-Type SARS-CoV Main Protease Inhibitors:

Quantitative Structure Activity Relationship Study, ChemRxiv,

2020, Preprint https://doi.org/10.26434/chemrxiv.12196683.v1.

[8] V. Kumar, K. Roy, Development of a simple, interpretable and

easily transferable QSAR model for quick screening antiviral

databases in search of novel 3Clike protease (3CLpro) enzyme

inhibitors against SARS-CoV diseases, SAR QSAR Environ.

Res. 31 (2020) 511–526.

[9] V.H. Masand, D.T. Mahajan, A.M. Alafeefy, S.N. Bukhari, N.N.

Elsayed, Optimization of antiproliferative activity of substituted

phenyl 4-(2-oxoimidazolidin-1-yl) benzenesulfonates: QSAR and

CoMFA analyses, Eur. J. pharm. Sci. 77 (2015) 230–237.

[10] V.H. Masand, D.T. Mahajan, P. Gramatica, J. Barlow,

Tautomerism and multiple modelling enhance the efficacy of

https://doi.org/10.1016/j.jscs.2021.101262
http://refhub.elsevier.com/S1319-6103(21)00067-3/h0005
http://refhub.elsevier.com/S1319-6103(21)00067-3/h0005
http://refhub.elsevier.com/S1319-6103(21)00067-3/h0010
http://refhub.elsevier.com/S1319-6103(21)00067-3/h0010
http://refhub.elsevier.com/S1319-6103(21)00067-3/h0010
http://refhub.elsevier.com/S1319-6103(21)00067-3/h0015
http://refhub.elsevier.com/S1319-6103(21)00067-3/h0015
http://refhub.elsevier.com/S1319-6103(21)00067-3/h0015
http://refhub.elsevier.com/S1319-6103(21)00067-3/h0015
http://refhub.elsevier.com/S1319-6103(21)00067-3/h0020
http://refhub.elsevier.com/S1319-6103(21)00067-3/h0020
http://refhub.elsevier.com/S1319-6103(21)00067-3/h0020
http://refhub.elsevier.com/S1319-6103(21)00067-3/h0020
http://refhub.elsevier.com/S1319-6103(21)00067-3/h0020
http://refhub.elsevier.com/S1319-6103(21)00067-3/h0025
http://refhub.elsevier.com/S1319-6103(21)00067-3/h0025
http://refhub.elsevier.com/S1319-6103(21)00067-3/h0025
http://refhub.elsevier.com/S1319-6103(21)00067-3/h0025
http://refhub.elsevier.com/S1319-6103(21)00067-3/h0025
http://refhub.elsevier.com/S1319-6103(21)00067-3/h0030
http://refhub.elsevier.com/S1319-6103(21)00067-3/h0030
http://refhub.elsevier.com/S1319-6103(21)00067-3/h0030
http://refhub.elsevier.com/S1319-6103(21)00067-3/h0035
http://refhub.elsevier.com/S1319-6103(21)00067-3/h0035
http://refhub.elsevier.com/S1319-6103(21)00067-3/h0035
http://refhub.elsevier.com/S1319-6103(21)00067-3/h0035
http://refhub.elsevier.com/S1319-6103(21)00067-3/h0035
http://refhub.elsevier.com/S1319-6103(21)00067-3/h0040
http://refhub.elsevier.com/S1319-6103(21)00067-3/h0040
http://refhub.elsevier.com/S1319-6103(21)00067-3/h0040
http://refhub.elsevier.com/S1319-6103(21)00067-3/h0040
http://refhub.elsevier.com/S1319-6103(21)00067-3/h0040
http://refhub.elsevier.com/S1319-6103(21)00067-3/h0045
http://refhub.elsevier.com/S1319-6103(21)00067-3/h0045
http://refhub.elsevier.com/S1319-6103(21)00067-3/h0045
http://refhub.elsevier.com/S1319-6103(21)00067-3/h0045
http://refhub.elsevier.com/S1319-6103(21)00067-3/h0050
http://refhub.elsevier.com/S1319-6103(21)00067-3/h0050


6 X. Yu
QSAR: antimalarial activity of phosphoramidate and

phosphorothioamidate analogues of amiprophos methyl, Med.

Chem. Res. 23 (2014) 4825–4835.

[11] M.K. Gilson, T. Liu, M.G. Baitaluk, G. Nicola, L. Hwang, J.

Chong, BindingDB: A public database for medicinal chemistry,

computational chemistry and systems pharmacology, Nucleic

Acids Res. 19 (2015) 1045–1053.

[12] S. Konno, P. Thanigaimalai, T. Yamamoto, K. Nakada, R.

Kakiuchi, K. Takayama, Y. Yamazaki, F. Yakushiji, K. Akaji,

Y. Kiso, Y. Kawasaki, S.-E. Chen, E. Freire, Y. Hayashi,

Design and synthesis of new tripeptide-type SARS-CoV 3CL

protease inhibitors containing an electrophilic arylketone

moiety, Bioorgan. Med. Chem. 21 (2013) 412–424.

[13] P. Thanigaimalai, S. Konno, T. Yamamoto, Y. Koiwai, A.

Taguchi, K. Takayama, F. Yakushiji, K. Akaji, S.-E. Chen, A.

Naser-Tavakolian, A. Schön, E. Freire, Y. Hayashi,

Development of potent dipeptide-type SARS-CoV 3CL

protease inhibitors with novel P3 scaffolds: Design, synthesis,

biological evaluation, and docking studies, Eur. J. Med. Chem.

68 (2013) 372–384.

[14] P. Thanigaimalai, S. Konno, T. Yamamoto, Y. Koiwai, A.

Taguchi, K. Takayama, F. Yakushiji, K. Akaji, Y. Kiso, Y.

Kawasaki, S.-E. Chen, A. Naser-Tavakolian, A. Schön, E.

Freire, Y. Hayashi, Design, synthesis, and biological evaluation

of novel dipeptide-type SARS-CoV 3CL protease inhibitors:

Structure–activity relationship study, Eur. J. Med. Chem. 65

(2013) 436–447.

[15] Talete srl, DRAGON (Software for Molecular Descriptor

Calculation) Version 6.0, 2012, http://www.talete.mi.it/.
[16] X.L. Yu, R.M. Zhan, J.Y. Deng, X.W. Huang, Prediction of the

maximum nonseizure load of lubricant additives, J. Theor.

Comput. Chem. 16 (2017) 1750014.

[17] X.L. Yu, L. Huang, Prediction of the onset temperature of

decomposition of lubricant additives, J. Therm. Anal. Calorim.

130 (2017) 943–947.

[18] C.C. Chang, C.J. Lin, LIBSVM: A library for support vector

machines, Acm. T. Intel. Syst. Tec. 2 (2011) 27.

[19] X. Yu, Quantitative structure-toxicity relationships of organic

chemicals against Pseudokirchneriella subcapitata, Aquat.

Toxicol. 224 (2020) 105496.

[20] K. Khanand, K. Roy, Ecotoxicological QSAR modelling of

organic chemicals against Pseudokirchneriella subcapitata using

consensus predictions approach, SAR QSAR Environ. Res. 30

(2019) 665–681.

[21] X. Yu, B. Yi, W. Yu, X. Wang, DFT-based quantum theory

QSPR studies of molar heat capacity and molar polarization of

vinyl polymers, Chem. Pap. 62 (2008) 623–629.

[22] V.H. Masand, N.N.E. El-Sayed, M.U. Bambole, V.R. Patil, S.

D. Thakur, Multiple quantitative structure-activity relationships

(QSARs) analysis for orally active trypanocidal N-

myristoyltransferase inhibitors, J. Mol. Struct. (2019, 1175,)

481–487.

[23] V.H. Masand, N.N.E. El-Sayed, D.T. Mahajan, V. Rastija,

QSAR analysis for 6-arylpyrazine-2-carboxamides as

Trypanosoma brucei inhibitors, SAR QSAR Environ. Res. 28

(2017) 165–177.

[24] K. Roy, P. Ambure, S. Kar, How precise are our quantitative

structure–activity relationship derived predictions for new query

chemicals, ACS Omega 3 (2018) 11392–11406.

http://refhub.elsevier.com/S1319-6103(21)00067-3/h0050
http://refhub.elsevier.com/S1319-6103(21)00067-3/h0050
http://refhub.elsevier.com/S1319-6103(21)00067-3/h0050
http://refhub.elsevier.com/S1319-6103(21)00067-3/h0055
http://refhub.elsevier.com/S1319-6103(21)00067-3/h0055
http://refhub.elsevier.com/S1319-6103(21)00067-3/h0055
http://refhub.elsevier.com/S1319-6103(21)00067-3/h0055
http://refhub.elsevier.com/S1319-6103(21)00067-3/h0060
http://refhub.elsevier.com/S1319-6103(21)00067-3/h0060
http://refhub.elsevier.com/S1319-6103(21)00067-3/h0060
http://refhub.elsevier.com/S1319-6103(21)00067-3/h0060
http://refhub.elsevier.com/S1319-6103(21)00067-3/h0060
http://refhub.elsevier.com/S1319-6103(21)00067-3/h0060
http://refhub.elsevier.com/S1319-6103(21)00067-3/h0065
http://refhub.elsevier.com/S1319-6103(21)00067-3/h0065
http://refhub.elsevier.com/S1319-6103(21)00067-3/h0065
http://refhub.elsevier.com/S1319-6103(21)00067-3/h0065
http://refhub.elsevier.com/S1319-6103(21)00067-3/h0065
http://refhub.elsevier.com/S1319-6103(21)00067-3/h0065
http://refhub.elsevier.com/S1319-6103(21)00067-3/h0065
http://refhub.elsevier.com/S1319-6103(21)00067-3/h0070
http://refhub.elsevier.com/S1319-6103(21)00067-3/h0070
http://refhub.elsevier.com/S1319-6103(21)00067-3/h0070
http://refhub.elsevier.com/S1319-6103(21)00067-3/h0070
http://refhub.elsevier.com/S1319-6103(21)00067-3/h0070
http://refhub.elsevier.com/S1319-6103(21)00067-3/h0070
http://refhub.elsevier.com/S1319-6103(21)00067-3/h0070
http://refhub.elsevier.com/S1319-6103(21)00067-3/h0080
http://refhub.elsevier.com/S1319-6103(21)00067-3/h0080
http://refhub.elsevier.com/S1319-6103(21)00067-3/h0080
http://refhub.elsevier.com/S1319-6103(21)00067-3/h0085
http://refhub.elsevier.com/S1319-6103(21)00067-3/h0085
http://refhub.elsevier.com/S1319-6103(21)00067-3/h0085
http://refhub.elsevier.com/S1319-6103(21)00067-3/h0090
http://refhub.elsevier.com/S1319-6103(21)00067-3/h0090
http://refhub.elsevier.com/S1319-6103(21)00067-3/h0095
http://refhub.elsevier.com/S1319-6103(21)00067-3/h0095
http://refhub.elsevier.com/S1319-6103(21)00067-3/h0095
http://refhub.elsevier.com/S1319-6103(21)00067-3/h0100
http://refhub.elsevier.com/S1319-6103(21)00067-3/h0100
http://refhub.elsevier.com/S1319-6103(21)00067-3/h0100
http://refhub.elsevier.com/S1319-6103(21)00067-3/h0100
http://refhub.elsevier.com/S1319-6103(21)00067-3/h0105
http://refhub.elsevier.com/S1319-6103(21)00067-3/h0105
http://refhub.elsevier.com/S1319-6103(21)00067-3/h0105
http://refhub.elsevier.com/S1319-6103(21)00067-3/h0110
http://refhub.elsevier.com/S1319-6103(21)00067-3/h0110
http://refhub.elsevier.com/S1319-6103(21)00067-3/h0110
http://refhub.elsevier.com/S1319-6103(21)00067-3/h0110
http://refhub.elsevier.com/S1319-6103(21)00067-3/h0110
http://refhub.elsevier.com/S1319-6103(21)00067-3/h0115
http://refhub.elsevier.com/S1319-6103(21)00067-3/h0115
http://refhub.elsevier.com/S1319-6103(21)00067-3/h0115
http://refhub.elsevier.com/S1319-6103(21)00067-3/h0115
http://refhub.elsevier.com/S1319-6103(21)00067-3/h0120
http://refhub.elsevier.com/S1319-6103(21)00067-3/h0120
http://refhub.elsevier.com/S1319-6103(21)00067-3/h0120

	Prediction of inhibitory constants of compounds �against SARS-CoV 3CLpro enzyme with �2D-QSAR model
	1 Introduction
	2 Methods
	2.1 Experimental data
	2.2 Molecular descriptors
	2.3 SVM principle

	3 Results and discussion
	3.1 Optimal descriptor subset
	3.2 SVM model
	3.3 Applicability domain

	4 Conclusions
	Declaration of Competing Interest
	Acknowledgments
	Appendix A Supplementary data
	References


