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Abstract

Background: Feed efficiency is an important economic and environmental trait in beef production, which can be
measured in terms of residual feed intake (RFI). Cattle selected for low-RFI (feed efficient) have similar production
levels but decreased feed intake, while also emitting less methane. RFI is difficult and expensive to measure and is
not widely adopted in beef production systems. However, development of DNA-based biomarkers for RFI may
facilitate its adoption in genomic-assisted breeding programmes. Cattle have been shown to re-rank in terms of RFI
across diets and age, while also RFI varies by breed. Therefore, we used RNA-Seq technology to investigate the
hepatic transcriptome of RFI-divergent Charolais (CH) and Holstein-Friesian (HF) steers across three dietary phases to
identify genes and biological pathways associated with RFI regardless of diet or breed.

Results: Residual feed intake was measured during a high-concentrate phase, a zero-grazed grass phase and a final
high-concentrate phase. In total, 322 and 33 differentially expressed genes (DEGs) were identified across all diets for
CH and HF steers, respectively. Three genes, GADD45G, HP and MID1IP1, were differentially expressed in CH when
both the high-concentrate zero-grazed grass diet were offered. Two canonical pathways were enriched across all
diets for CH steers. These canonical pathways were related to immune function.

Conclusions: The absence of common differentially expressed genes across all dietary phases and breeds in this
study supports previous reports of the re-ranking of animals in terms of RFI when offered differing diets over their
lifetime. However, we have identified biological processes such as the immune response and lipid metabolism as
potentially associated with RFI divergence emphasising the previously reported roles of these biological processes
with respect to RFI.
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Background
Feed provision accounts for more than 70% of direct
costs in beef production systems [1]. Selection of feed ef-
ficient cattle would improve profits by reducing expend-
iture on feed while maintaining output [2]. Moreover,
there is increasing pressure on the global agri-food in-
dustry to improve its environmental footprint, while in-
creasing output to meet the growing demand for protein
[3]. Selection for feed efficient cattle could maintain

output while concurrently decreasing methane emis-
sions, as it has been suggested that low-RFI beef cattle
emit less methane than their inefficient counterparts [4].
Feed efficiency has several methods of measurement

including residual feed intake (RFI) [5], which is defined
as the difference between an animal’s actual and pre-
dicted feed intake. Residual feed intake has gained popu-
larity as a measure of feed efficiency due to its moderate
heritability and its phenotypic independence from pro-
duction traits [2]. It has been suggested that variation in
RFI may be due to differences in an animal’s physio-
logical processes, such as those that occur in the liver
[6]. The liver is a major metabolic organ in ruminants,
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typically consuming 24% of total energy [7]. The liver
distributes nutrients to organs for both maintenance and
production, amongst other functions such as gluconeo-
genesis [8]. The liver also plays a role in physiological
processes such as the immune response, glucose metab-
olism and lipid metabolism [9, 10]. Due to the multifac-
torial role of the ruminant liver, any variation in its gene
expression may reflect divergent efficiency of overall
metabolic and physiological function potentially leading
to phenotypic differences in RFI.
Incorporating RFI into breeding programmes would

enable selection of feed efficient cattle, thereby improv-
ing farm profits. The calculation of RFI requires an ex-
pensive and often labour intensive performance
measurement period during which individual feed intake
and weight gain are recorded for each animal [11]. Re-
sidual feed intake’s observed heritability, with an esti-
mated range of 0.26–0.54 [2], has led to considerable
international interest in the discovery of accurate and
robust biological markers of RFI or other means of iden-
tifying low-RFI cattle, such as by using genomic esti-
mated breeding values (GEBVs) or single-step genomic
prediction) [12, 13]. However, the use of GEBVs or
single-step genomic prediction shed little light on the
underlying biology of RFI.
Differences in breed [14, 15] and physiological ages

[16, 17], as well as genotype-by-environment interac-
tions, have been observed to cause re-ranking of cattle
for RFI status [18, 19]. This represents a challenge in
elucidating the underlying biology of RFI as re-ranking
of cattle for RFI across diets may indicate that diet
causes variation in the biological processes underlying
RFI [20]. Therefore, it is important to investigate the
biological mechanisms underpinning RFI-divergence
across physiological age, breed and diet in order to gain
a complete understanding of the biology underpinning
this trait.
RNA-Seq, a method by which all expressed genes

within a tissue are profiled [21], has been used to iden-
tify differentially expressed genes (DEGs) associated with
RFI. RNA-Seq offers several advantages over other tran-
scriptome profiling methods including that the technol-
ogy facilitates the entire transcriptome of an organism to
be investigated rather than known genes as is the case
for microarray analysis or real time PCR [21]. RNA-Seq
analyses have been conducted to investigate variation in
gene expression between RFI-divergent cattle in several
tissues including liver [22, 23], skeletal muscle [24] and
rumen epithelial tissue [25]. Recently, Mukiibi et al.,
(2018) observed five DEGs across three breeds of Canad-
ian cattle offered the same diet [26].
To identify genes associated with RFI across breed,

diet and physiological age, we conducted RNA-Seq ana-
lysis of the liver transcriptome of two breeds of cattle

subjected to three dietary regimens: a high-concentrate
diet, a zero-grazed grass diet and cattle were finished on
a high-concentrate diet. The aims of this study were: (i)
to elucidate the underlying biology of RFI by investigat-
ing key genes and pathways implicated in RFI divergence
and (ii) to identify genes and biological functions associ-
ated with RFI across multiple breeds and dietary phases
in order to highlight candidate genes for further interro-
gation as potential biomarkers for RFI.

Results
Animal model
Across all three dietary phases and within breed, cattle
were ranked in terms of RFI and divided into thirds. The
steers with the lowest-RFI values were deemed to be low
RFI, while those with the highest RFI values were desig-
nated to be high RFI. High RFI steers consumed more
feed on average than their low RFI counterparts (P <
0.001), while having a similar average daily gain (ADG)
(P > 0.05). As expected, within breed and dietary phase
no statistically significant difference in metabolic body
weight (MBW) and ADG was observed between the two
RFI groups (Table 1). Similar patterns are observed when
the animals for which RNA-Seq libraries were generated
(Table 2), however the high RFI CH steers offered the
zero-grazed grass (ZG) diet displayed a trend to consume
less feed than their low RFI counterparts (P = 0.07).

Differential gene expression analysis
A total of 160, 158 and 4 genes (adjusted P < 0.1) were
identified as differentially expressed between high and
low RFI Charolais (CH) cattle for the high-concentrate
phase 1 (H1), ZG and high-concentrate phase 2 (H2) di-
ets, respectively. For the Holstein-Friesian (HF) steers;
26, 2 and 5 (adjusted P < 0.1) were differentially
expressed between RFI cohorts for H1, ZG and H2, re-
spectively. The top DEGs for each comparison are repre-
sented in Tables 3 and 4 for CH and HF, respectively.
All DEGs for each breed and diet are listed in
Additional file 2.
In CH cattle, three DEGs were common to the H1 and

ZG diets, while no gene was common to all three diets.
These genes shared between H1 and ZG in CH were
growth arrest and DNA damage inducible gamma
(GADD45G), haptoglobin precursor (HP) and MID1
interacting protein 1 (MID1IP1). HP was upregulated in
low RFI steers across both diets, while MID1IP1 was
downregulated in the same diets. However, relative to
high RFI, GADD45G was upregulated in low RFI CH
steers offered the H1 diet, while it was downregulated in
low RFI steers offered the ZG diet. There were no com-
mon DEGs across dietary phases for HF cattle. Similarly,
no DEG was shared across breeds, for any of the three
dietary phases.
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Pathway analysis and functional enrichment
For the CH cohort 141 and 143 genes mapped to the In-
genuity Pathway analysis (IPA) knowledge database for
the H1 and ZG, respectively. For the HF steers, 26 genes
mapped to the H1 diet.
Following IPA analysis, 103 and 77 significantly

enriched (Fisher’s exact P-value < 0.05) canonical path-
ways were identified for H1 and ZG, respectively in the
CH cohort. Table 5 illustrates the top ten canonical
pathways affected by RFI divergence between CH steers
for the both diets examined via IPA. For the HF steers
offered the H1 diet, 27 significantly enriched canonical
pathways were identified. Table 6 lists the top ten canon-
ical pathways for the HF-H1 breed-diet combination,
while all enriched canonical pathways are listed in
Additional file 3. A total of two pathways were enriched
across both examined diets for CH (Table 7). The two

pathways for the CH cohort were interlukin-6 (IL-6) sig-
nalling and acute phase response signalling.
Following IPA analysis, 14 enriched (Fisher’s exact P-

value < 0.05) biological functions were significant across
all examined dietary phases for both low-RFI CH and
HF (Additional file 4).

Discussion
In order to identify genes associated with RFI status
which are not subject to environmental influences, we
carried out RNA-Seq on the liver transcriptome of CH
and HF steers divergent for RFI across three dietary
phases, on a breed-by-breed basis. This analysis identi-
fied two biological pathways significantly enriched across
all dietary phases for CH steers. Both of these pathways
are immune function related. At the individual gene
level, we found three DEGs common to two diets within
the CH breed. We also identified genes implicated in

Table 1 Feed intake, RFI and growth traits for the entire
population of low and high RFI steers during different dietary
phases

Trait Diet-Breed Low (S.D.) High (S.D.) P-value

DMI (kg/d) H1.CH 7.8 (0.68) 9 (0.58) < 0.001

H1.HF 8.3 (0.87) 9.3 (0.68) < 0.001

ZG.CH 8.8 (0.48) 9.4 (0.42) < 0.001

ZG.HF 9.1 (0.47) 10 (0.48) < 0.001

H2.CH 10.8 (0.69) 12.3 (0.90) < 0.001

H2.HF 11.6 (1.18) 13.6 (1.25) < 0.001

RFI (kg DM/d) H1.CH −0.5 (0.15) 0.56 (0.17) < 0.001

H1.HF −0.5 (0.27) 0.53 (0.26) < 0.001

ZG.CH −0.35 (0.16) 0.35 (0.17) < 0.001

ZG.HF −0.42 (0.27) 0.56 (0.18) < 0.001

H2.CH −0.75 (0.29) 0.76 (0.39) < 0.001

H2.HF −1.01 (0.54) 1.03 (0.28) < 0.001

ADG (kg) H1.CH 1.3 (0.36) 1.4 (0.26) 0.43

H1.HF 1.4 (0.35) 1.4 (0.20) 0.78

ZG.CH 1.4 (0.14) 1.4 (0.22) 0.96

ZG.HF 1.2 (0.18) 1.3 (0.24) 0.85

H2.CH 1.4 (0.25) 1.4 (0.28) 0.64

H2.HF 1.3 (0.47) 1.3 (0.16) 0.98

MBW (kg) H1.CH 95 (5.15) 96 (5.77) 0.79

H1.HF 81 (7.81) 80 (6.12) 0.90

ZG.CH 116 (7.26) 115 (6.41) 0.80

ZG.HF 102 (3.34) 104 (8.34) 0.90

H2.CH 139 (6.91) 140 (7.28) 0.79

H2.HF 131 (8.41) 141 (9.50) 0.90

DMI dry matter intake, RFI residual feed intake, ADG average daily gain, MBW
metabolic body weight, CH Charolais, HF Holstein-Friesian, Low low RFI, High
high RFI, S.D. Standard deviation, H1 high concentrate diet 1, H2 high
concentrate diet 2, ZG zero-grazed grass diet

Table 2 Feed intake, RFI and growth traits for the low and high
RFI steers for which RNA-Seq libraries were successfully
generated during different dietary phases

Trait Diet-Breed Low High P-value

DMI (kg/d) H1.CH 7.5 (n = 9) 9.1 (n = 11) < 0.001

H1.HF 7.7 (n = 7) 9.7 (n = 9) < 0.001

ZG.CH 8.4 (n = 3) 9.7 (n = 3) 0.07

ZG.HF 8.8 (n = 10) 10.3 (n = 8) < 0.001

H2.CH 10.5 (n = 9) 12.9 (n = 8) < 0.001

H2.HF 10.8 (n = 5) 13.6 (n = 8) 0.002

RFI (kg DM/d) H1.CH −0.8 0.8 < 0.001

H1.HF −0.9 0.8 < 0.001

ZG.CH −0.5 0.5 < 0.001

ZG.HF −0.7 0.7 < 0.001

H2.CH −1.1 1.2 < 0.001

H2.HF −1.9 1.3 < 0.001

ADG (kg) H1.CH 1.3 1.3 0.9

H1.HF 1.4 1.2 0.2

ZG.CH 1.3 1.3 0.6

ZG.HF 1.3 1.2 0.2

H2.CH 1.4 1.4 0.8

H2.HF 1.3 1.4 0.7

MBW (kg) H1.CH 95 95 0.76

H1.HF 81 80 0.59

ZG.CH 113 118 0.53

ZG.HF 105 104 0.55

H2.CH 137 142 0.45

H2.HF 130 127 0.56

DMI dry matter intake, RFI residual feed intake, ADG average daily gain, MBW
metabolic body weight, CH Charolais, HF Holstein-Friesian, Low low RFI, High
high RFI, H1 high concentrate diet 1, H2 high concentrate diet 2, ZG zero-
grazed grass diet
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processes previously associated with variation in RFI such
as oxidative phosphorylation and extracellular matrix or-
ganisation [25, 27]. The absence of consistently differen-
tially expressed genes within RFI groups across dietary
phase and breed supports the previously observed re-
ranking of cattle when offered different diets [17, 28].

Immune function
Two immune related pathways were enriched for genes
differentially expressed in CH steers offered the H1 and
ZG diets. For the CH steers, the IL-6 signalling pathway
was significantly enriched across all investigated diets.
This pathway is activated when IL-6 is released from
cells of the immune system in response to inflammatory
conditions [29]. The second enriched pathway in CH,
the acute phase response pathway, is an early step in
fighting infection and serves to initiate inflammation
upon the detection of pathogens or injury [30]. In sup-
port of the immune-related findings in CH, nine of the
ten canonical pathways enriched across all diet-breed
comparisons for HF steers were also related to immune
function or autoimmunity. Previous work by Salleh et
al., (2017) reported similar findings whereby they ob-
served that pathways related to immune function were
enriched in RFI divergent dairy cattle [31]. In beef cattle,
several studies have reported enrichment of immune-
related pathways in RFI-divergent cattle [32, 33]. These
results coupled with the findings of the current study
highlight the role of the immune system in efficient feed
usage.
Of the individual genes identified as differentially

expressed in more than one diet, GADD45G and HP have
been identified as associated with immune-related

functions. In the present study, GADD45G expression was
upregulated in low RFI steers offered the H1 diet, while its
expression was downregulated in low RFI CH steers fed
the ZG diet. The increased expression of GADD45G in
low-RFI steers offered a high-concentrate diet, which is
different from previous observations where GADD45G
was downregulated when Nellore cattle were offered a
forage-based diet [23]. However, it has been suggested that
liver inflammation may occur when an animal is fed a
high-concentrate diet [23, 34]. This may account for the
increased expression of GADD45G during the H1 phase.
The downregulation of GADD45G in low-RFI steers of-
fered the ZG diet may indicate that low-RFI steers experi-
ence less inflammation than their high-RFI counterparts
when offered a grass diet. Previous work in Canadian cat-
tle identified HP as downregulated in the liver of low-RFI
Angus steers offered a high-concentrate diet [26], however
in the present study HP expression was increased in low-
RFI CH steers offered both the H1 and ZG diets.

Table 3 The most significantly differentially expressed genes
between high and low RFI Charolais steers across three dietary
phases

Diet and Breed Gene LogFC P-value

CH.H1 TNFAIP3 0.66 0.0002

KRBA1 1.39 0.00069

SIK1 1.33 0.0043

IRS2 1.23 0.0043

CH.ZG SLC39A4 −2.68 4.58E-09

BHMT2 1.26 7.60E-08

TNC 2.02 2.95E-07

ENSBTAG00000016032 1.58 2.95E-07

ABCA6 1.16 0.0001

CH.H2 LOC768255 −3.55 0.00024

GIMAP4 −3.08 0.0065

RFI residual feed intake, CH Charolais, H1 high concentrate diet 1, H2 high
concentrate diet 2, ZG zero-grazed grass diet, LogFC log2fold-change in low-
RFI steers compared to high-RFI steers; P-value = Benjamini-Hochberg
corrected P-value to account for multiple testing

Table 4 The most significantly differentially expressed genes
between high and low RFI Holstein-Friesian steers across three
dietary phases

Diet and breed Gene LogFC P-value

HF.H1 SNRPD3 −0.37 0.0010

AK3 −0.35 0.0013

GSTM1 −0.87 0.0061

MOB3B 0.72 0.0061

LOC782233 −5.45 0.0061

HPRT1 −0.33 0.011

ENSBTAG00000032859 −0.66 0.016

ACMSD −1.04 0.024

PARM1 1.15 0.024

ANPEP 1.10 0.024

GUCY2D −0.89 0.024

GSTA4 −0.88 0.026

RAB4A −0.29 0.026

CYTH3 0.52 0.026

HSD17B6 −0.36 0.028

RAC1 0.35 0.038

HF.ZG INPP1 0.73 0.005

ALAS1 −0.94 0.074

HF.H2 UOX 0.85 0.028

C1R 7.45 0.055

LOC100295234 2.92 0.055

SNCA −3.61 0.055

FBP2 −3.06 0.055

RFI residual feed intake, HF Holstein-Friesian, H1 high concentrate diet 1, H2
high concentrate diet 2, ZG zero-grazed grass diet, LogFC log2fold-change in
low-RFI steers compared to high-RFI steers; P-value = Benjamini-Hochberg
corrected P-value to account for multiple testing
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Several groups have suggested that increased inflamma-
tion leads to poor feed efficiency due to increased energy
expended fighting infection, or other pro-inflammatory
challenges [35, 36]. However, others have suggested that
increased expression of pro-inflammatory genes enables
cattle to respond more efficiently to immune challenges
and therefore use less energy combating chronic infection
[33, 37]. Our results indicate that diet may also play a key
role in the effect of the immune system on RFI status by
causing a genotype-by-environment interaction, whereby
feed type causes inflammation or immune challenge.

Lipid metabolism
The final DEG identified in both H1 and ZG diets for
CH was MID1IP1, a gene required for fatty acid and
lipid synthesis [38]. MID1IP1 was observed to be down-
regulated in low-RFI CH steers offered H1 and ZG diets.
Downregulation of MID1IP1 in low-RFI CH cattle is in
agreement with previous work carried out in Canadian
beef cattle, where it was observed that low-RFI steers
displayed lower levels of hepatic lipid synthesis than
high-RFI steers [26]. The same authors suggested that
decreased lipid synthesis may be due to efficient cattle

Table 5 The top ten canonical pathways for Charolais steers within each dietary phase for which IPA was performed

Diet-Breed Combination Canoncial pathway Differentially Expressed Genes P-value

CH.H1 Toll-like Receptor Signalling IL1A, JUN, MAP2K6, NFKBIA, TNFAIP3, UBA52 8.71E-09

CD40 Signalling IRS2, JUN, MAP2K6, NFKBIA, TNFAIP3 0.00015

IL-6 Signalling CSNK2B, IL1A, IRS, JUN, MAP2K6, NFKBIA 0.00017

Aryl Hydrocarbon Signalling ALDH9A1, IL1A, JUN, MYC, TFDP1, TGM2 0.00028

Cholecystokinin/Gastrin mediated Signalling IL1A, JUN, MAP2K6, MAPK7, RND3 0.00046

p53 Signalling GADD45G, IRS2, JUN, TNFRSF10A, TP53INP1 0.00071

TNFR2 Signalling JUN, NFKBIA, TNFAIP3 0.00093

Acute Phase Response Signalling HP, IL1A, JUN, MAP2K6, NFKBIA, SAA1 0.00097

IL-10 Signalling IL1A, JUN, MAP2K6, NFKBIA 0.001

NFKB Signalling CSNK2B, IL1A, IRS2, MAP2K6, NFKBIA, TNFAIP3 0.0013

CH.ZG Glycine Betaine Degradation BHMT2, DMGDH, SARDH 0.000029

Acute Phase Response Signalling C5, FGG, HP, HRAS, LBP, SERPINA3 0.0009

Hereditary Breast Cancer Signalling CCND1, FGFR3, GADD45G, HDAC5, HRAS 0.0027

EIF2 Signalling ATF5, CCND1, EIF1, FGFR3, FGFR3, HRAS, RPL13 0.0033

Role of Macrophages, Fibroblasts and Endothelial
Cells in Rheumatoid Arthritis

C5, CCND1, FGFR3, HRAS, IL17RC, MIF, TRAF4 0.0043

Extrinsic Prothombin Activation Pathway F5, FGG 0.0045

Chronic Myeloid Leukemia Signalling CCND1, FGFR3, HDAC5, HRAS 0.0056

Germ Cell-Sertoli Junction Signalling BCAR1, FGFR3, HRAS, TUBA4A, TUBB4B 0.0057

Methylglyoxal Degradation VI LDHD 0.0063

GADD45 Signalling CCND1, GADD45G 0.0063

H1 high concentrate, phase 1, ZG Zero-grazed grass, CH Charolais; P-value = Fisher’s exact test P-value, bold text indicates gene downregulation in low-RFI steers

Table 6 The top ten canonical pathways for Holstein-Friesian steers offered the high-concentrate one diet

HF.H1 Glutathione-mediated Detoxification ANPEP, GSTA4, GSTM1 4.92E-08

2-amino-3-carboxymuconate Semialdehyde Degradation to Glutaryl-CoA ACMSD 1.693E-05

Branched-chain α-keto acid Dehydrogenase Complex DLD 0.00016

2-ketoglutarate Dehydrogenase Complex DLD 0.00024

2-oxobutanoate Degradation I DLD 0.00024

Glycine Cleavage Complex DLD 0.00034

Acetyl-CoA Biosynthesis I (Pyruvate Dehydrogenase Complex) DLD 0.00045

Fc Epsilon RI Signalling FCER1A, RAC1 0.00052

Phagosome Formation FCER1A, RAC1 0.00069

Aryl Hydrocarbon Receptor Signaling GSTM1, GSTA4 0.00076

H1 high concentrate, phase 1, HF Holstein-Friesian; P-value = Fisher’s exact test P-value, bold text indicates gene downregulation in low-RFI steers
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partitioning greater energy to muscle deposition than fat.
Lipid metabolism was also observed to be an enriched
biological function in all breed-diet comparisons in this
study, illustrating the integral role that this pathway plays
in RFI divergence as has been previously reported in other
hepatic transcriptome studies [22, 23, 26, 27].
Diacylglycerol acyltransferase (DGAT), a gene within

the lipid metabolism biological function, was identified
as downregulated in low-RFI CH steers offered the H1
diet. Similarly, Salleh et al. (2017) found this gene to be
down-regulated in the hepatic transcriptome of low-RFI
Holstein cattle [31]. Contrastingly, insulin receptor sub-
strate 2 (IRS2) was observed to be upregulated in low-
RFI CH steers offered the H1 diet. Previous work in pigs
also observed the upregulation of IRS2 in feed efficient
animals [39]. IRS2 knockout mice display increased adi-
posity and total body fat mass [40]. This potentially indi-
cates that downregulation of IRS2 observed in the high-
RFI CH steers offered the H1 diet may lead to increased
energy partitioned to fat deposition. Agouti signalling
protein (ASIP) and synuclein alpha (SNCA) were both
downregulated in the hepatic transcriptome of CH steers
offered the H2 diet. Both of these genes have previously
been associated with increased lipid synthesis [41, 42].
These results further support the hypothesis that feed effi-
cient cattle expend less energy for hepatic lipid synthesis
than their inefficient counterparts [26]. Efficient cattle
may partition more energy to muscle gain than lipid syn-
thesis, and are therefore more feed efficient [26].

Extracellular matrix proteins
Tenascin C (TNC) was observed to be upregulated in
low-RFI CH steers offered the ZG diet. This gene has
previously been identified as upregulated in the liver
transcriptome of low-RFI Angus bulls [27]. Those au-
thors hypothesized that the upregulation of TNC may
indicate that the liver of low-RFI cattle exhibit greater
cellular organisation than inefficient cattle. Our results
support this hypothesis as we also observed the upregu-
lation of TNC in efficient animals and that the biological
function cellular assembly and organisation was also
enriched in all diet-breed comparisons investigated. Pre-
vious work investigating differential gene expression in
the rumen epithelium found that tubulin alpha 4a
(TUBA4A) was upregulated in low-RFI crossbred steers
[25], further supporting the hypothesis that efficient

animals exhibit greater extracellular matrix organisation
than their inefficient counterparts. However, we have ob-
served that hepatic TUBA4A, was downregulated in the
low-RFI steers offered the ZG diet. Consequently, fur-
ther work is required to elucidate the role of extracellu-
lar matrix genes in the liver of RFI-divergent cattle, and
the role these genes play in feed efficiency.

Oxidative phosphorylation
Glutathione S-transferase Mu 1 (GSTM1) encodes for a
member of the glutathione S-transferase family. Chen et
al., (2011) observed that GSTM1 was downregulated in
low-RFI Angus bulls. These same authors hypothesized
that feed efficient cattle experience less oxidative stress
and consequently the mRNA abundance of genes in-
volved in the metabolism of oxidative stress products is
reduced. Similarly, in the present study, GSTM1 was
identified as a downregulated gene in low-RFI HF steers
offered the H1 diet. Our finding of decreased GSTM1
abundance is in agreement with the hypothesis sug-
gested by Chen et al., (2011) and others who observed
that efficient cattle experience less oxidative stress than
their inefficient counterparts [27]. This has also been ob-
served in poultry [43, 44]. However, Paradis et al., (2015)
and Tizioto et al., (2015) observed that GSTM1 tran-
script levels were increased in feed efficient crossbred
heifers and Nellore steers, respectively [22, 33]. From
their findings, Paradis et al., (2015) suggested that low-
RFI cattle respond in a more efficient manner to oxida-
tive stress than their high-RFI counterparts. It is possible
that observed variation in GSTM1 expression across
studies may represent a genotype-by-environment inter-
action whereby certain feed efficient animals experience
less oxidative stress, while others may be adapted to deal
with this stressor in a more effective manner.

Effect of differential dietary phases on RFI
The absence of commonly DEGs across all diets for ei-
ther breed investigated in this study may support previ-
ous findings highlighting re-ranking of animals in terms
of RFI when they are offered differing diets over their
lifetime [17, 28]. These results, as well as the variation in
direction of activation of immune genes, such as
GADD45G, and oxidative stress response genes, e.g.
GSTM1, across dietary phases highlights the previous
suggestions that diet effects RFI status [18]. However,
further work is required to validate this hypothesis in
larger sample sizes.
Furthermore, an additional method of analysis which

may identify genes consistently differentially expressed
across breeds within dietary phase would be to conduct
analysis in both breeds simultaneously, rather than inde-
pendently as was the case in this study. This would

Table 7 The canonical pathways shared across dietary phases
for which IPA was performed for Charolais steers

Canonical pathway H1 P-value ZG P-value

IL-6 Signalling 0.00017 0.0085

Acute phase response signalling 0.00076 0.00071

H1 high concentrate, phase 1, ZG zero-grazed grass, CH Charolais; P-value =
Fisher’s exact test P-value
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facilitate identification of genes associated with RFI re-
gardless of breed.

Conclusion
We investigated differential gene expression using RNA-
Seq analysis in the liver of CH and HF steers divergent in
RFI across three dietary stages, with the goal of identifying
genes and pathways associated with RFI across breed and
diet. We identified three DEGs shared across two diets for
CH steers. Fourteen biological pathways were shared
across all diets which were subjected to IPA for both
breeds. The identification of physiological processes such
as the immune response as enriched for genes implicated
in RFI highlights the importance of this biological process
in feed efficiency. Further work investigating genes within
identified pathways may enable discovery of biomarkers
for RFI that may be incorporated into genomic-assisted
breeding programmes, as well as enhancing our under-
standing of the underlying biology of variation in the RFI
trait. However, further work is required in this area in
order to replicate and validate these results in independent
and larger cattle populations.

Methods
Animal model
All procedures involving animals in this study were
reviewed and approved by the Teagasc animal ethics
committee and were conducted under an experimental
licence issued by the Health Products Regulatory Au-
thority (AE19132/P029), in accordance with the Cruelty
to Animals Act 1876 and the European Communities
(Amendment of Cruelty to Animals Act 1876) Regula-
tions 2002 and 2005.
This experiment was conducted as part of a larger

study examining genotype-by-environment interactions
for and repeatability of feed efficiency across growing
and finishing stages of beef production, during which di-
ets offered differed in energy density and chemical com-
position. The animal model used was described in detail
previously [17, 28]. The animals used in this study were
purchased from commercial herds and maintained solely
for the purposes described in the studies of Coyle et al.
[17, 28] and the current study. The experimental design
is outlined in Fig. 1. Following the study they were
slaughtered in an EU licenced abattoir.
Briefly, 90 CH and 77 HF steers were offered different

diets throughout their lifespan. All cattle were initially
offered H1 in the growing phase, ZG diet during the
growing phase and then H2 during the finishing phase
(Fig. 1). Between the H1 and ZG phases cattle were of-
fered a grass silage diet, and between phases ZG and H2
cattle were allowed a grazed grass diet. During these
grazed grass and grass silage diets, biopsies were not
taken, and data obtained were not included in any

analysis pertaining to this work. Individual dry matter
intake (DMI) and growth were measured over the three
individual feeding phases this study is focussing on, each
at least 70 days in duration, which were preceded by
dietary adaption periods. During these phases individual
feed intake values were measured for each steer daily
using a Calan gate system (American Calan Inc., North-
wood, NH). At the start of the first dietary phase (H1)
the mean age (standard deviation) of the steers was 283
days (18.3) and 306 days (7.7), for CH and HF, respect-
ively. During each individual feeding phase the health of
all cattle was monitored. Any animal which required
treatment was noted and excluded from downstream
analysis.
During H1 and H2, steers were individually offered the

same high-concentrate diet ad libitum and a restricted
allowance of grass silage daily in order to maintain
healthy rumen function. The high-concentrate diet con-
sisted of 860 g/kg rolled barley, 60 g/kg soya bean meal,
60 g/kg molasses and 20 g/kg minerals and vitamins.
During the ZG phase, steers were individually offered ad
libitum zero-grazed grass (DM 183 g/kg). Grass was har-
vested twice daily from Lolium perenne dominant swards
using a zero-grazer. Chemical composition of these diets
is as outlined in Additional file 1 [16, 34]. Cattle were
given unrestricted access to fresh, clean drinking water
throughout all phases of this study.
Steer body weight (BW) was measured, prior to feed-

ing, on at 14-day intervals throughout the dietary phases
as well as on two consecutive days at the beginning and
the end of each phase. The two measurements taking at
the start and end of each phase were averaged in order
to get the most accurate starting and finishing weight of
each animal, respectively.

Computation of traits
At the end of each dietary phase, ADG of individual
steers was calculated as the coefficient of the linear re-
gression of BW (kg) on time (days) using the GLM pro-
cedure of SAS 9.3 (SAS Inst. INC., Cary, NC, USA).
Mid-test metabolic weight was computed as BW0.75 half-
way through each test period, which was estimated from
the intercept and the slope of the regression line through
all BW0.75 observations.
Predicted DMI was computed for each steer, within

breed, by regressing DMI on MBW and ADG using a
multiple regression model. The model used to compute
predicted DMI was:

Y j ¼ β0 þ β1MBW j þ β2ADGj þ e j;

where Yj was the average DMI of the jth steer, β0 is the
regression intercept, β1 is the partial regression coeffi-
cient on MBW, β2 is the partial regression coefficient on
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ADG and ej is the random error associated with the jth
animal. RFI was calculated as the difference between ac-
tual and predicted DMI. Steers were ranked by RFI
within breed for each dietary phase, and the twelve most
efficient (low RFI) and the twelve least efficient (high
RFI) animals were identified for each breed and phase,
and biopsies from these animals were used for RNA-Seq
library generation.

Sample collection, RNA extraction and cDNA library
synthesis
Liver tissue was collected from all animals at the end of
each dietary phase by percutaneous punch as described
by McCarthy et al. (2009) [45]. Animals received local
anaesthetic (5 ml Adrenacaine, Norbrook Laboratories,
Ireland Ltd.) and care was taken to ensure samples were
consistently harvested from the same location for each

animal. All instruments used for biopsy collection were
sterilized, washed with 70% ethanol and treated with
RNaseZap (Ambion, Applera Ireland, Dublin, Ireland).
All samples were washed in sterile DPBS, snap frozen in
liquid nitrogen and stored at − 80 °C prior to further
analysis.
Fifty mg of the biopsied tissue was used for the isolation

of total RNA. Samples were homogenised using a rotor-
strator tissue lyser (Qiagen, UK) in 3ml of QIAzol (Qiagen,
UK). RNA was extracted and purified using the RNeasy
plus Universal kit (Qiagen, UK) as per the manufacturer’s
instructions. RNA quantity was determined using a Nano-
drop spectrophotometer (Nanodrop Technologies, Wil-
mington, DE, USA). Quality control checks were carried
out on isolated RNA using the RNA 6000 RNA Nano Lab
Chip Kit and the Agilent Bioanalyser 2100 (Agilent Tech-
nologies Ireland Ltd., Dublin, Ireland). Samples displaying a

Fig. 1 Outline of the feeding trial design during which RFI was measured. During each dietary stage, steers were offered the respective diet for
70 days following a period of dietary adaptation. At the end of each dietary stage, liver biopsies were taken and RFI was calculated. Within breed,
all steers were ranked for RFI. RNA-Seq libraries were generated from biopsies taken from the most RFI-divergent steers (n = 12 high and
n = 12 low)
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RNA integrity number of greater than 8 were deemed of
sufficient quality for analysis, and were subjected to cDNA
synthesis.
cDNA libraries were prepared for sequencing using the

Illumina TruSeq stranded mRNA sample prep kit (Illumina,
San Diego, CA, USA) as per manufacturer’s instructions. Li-
brary validation was conducted using the DNA 1000 Nano
Lab Chip which was read using the Agilent Bioanalyser 2100
(Agilent Technologies Ltd. Dublin, Ireland). Library concen-
tration was assessed using a Nanodrop Spectrophotometer
(Nanodrop Technologies, Wilmington, DE, USA). Samples
with a DNA concentration of greater than 25 ng/μl were
subjected to further analysis. Libraries were pooled and 50
base-pair, single-end sequencing was conducted using an
Illumina HiSeq 2500. Prior to library generation, some sam-
ples were excluded due to poor RNA quality. A total of 45
CH and 58 HF libraries were sequenced successfully (Fig. 1).
All sequence data generated as part of this study has been
submitted to the Gene Expression Omnibus repository and
can be accessed using the accession number GSE111464.

RNA-Seq data analysis
Sequencing data was supplied in FASTQ format. Adapter
and low quality sequence data was removed using cutadapt
(v. 1.13) [46]. Reads were retained if they had a base quality
of at least 30 and a minimum length of 20 bp. FastQC (v.
0.11.5) [47] was used for quality assessment of the filtered
data. Both cutadapt and FastQC were called using TrimGa-
lore! (v.0.4.3) [48]. After trimming, libraries with less than
107 reads were discarded. Before filtering an average of 29.05
million reads per sample was generated, and these reads had
an average GC-content of 47.99% with 96.92% of bases hav-
ing a quality score greater than 30. Following filtering, aver-
age reads per sample remained at 29.05 million, and average
GC-content increased to 48.06%. Post-filtering, 99.05% of
bases had a Q score greater than 30.
Reads were mapped to the bovine reference genome

(UMD3.1) [49] using STAR (v.2.5.1) [50]. Protein coding
genes were supplied from the Ensembl [51] version 87
annotation of the Bos Taurus genome [49]. The STAR
parameter “quantMode GeneCounts” was used to quan-
tify the mapped reads at the gene level.
Analysis of the gene count data was carried out using the

Bioconductor [52] package DESeq2 [53] (v. 1.16.1). Raw gene
counts were provided to DESeq2 and an analysis pipeline,
DESeq, was applied to the data to accurately calculate
dataset-specific analysis parameters and apply negative bino-
mial GLM fitting for use in the subsequent differential ex-
pression analysis. Any samples identified as outliers were
removed. Low count reads were removed within the DESeq
pipeline using the command “results()” which removed lowly
expressed genes from analysis [53]. The differential expres-
sion analyses were performed separately for each breed and
each dietary phase where RFI status was fitted as a variable.

For each pair of experimental groups under investigation, a
list of differentially expressed genes (DEGs) was extracted
directly from the DESeq2 data. A Benjamini-Hochberg cor-
rection was applied to account for multiple test burden [54].
Following correction, an adjusted P-value of < 0.1, the rec-
ommended threshold for DESeq2, was used to denote
significance.

Pathway and functional enrichment analysis
Each list of DEGs was further investigated using Ingenuity
Pathway Analysis (IPA; Ingenuity Systems, Redwood City,
CA, USA). DEGs, along with their respective fold-changes
and adjusted P-values were submitted to IPA for analysis. In-
genuity pathway analysis allows examination of over-
represented biological pathways and biological functions
[39]. Ingenuity pathway core analysis was performed on
genes identified as statistically significant (adjusted P < 0.1)
following DESeq2 analysis. However, if too few genes
reached an adjusted P-value < 0.1 within a diet-breed com-
bination for IPA to be performed, that combination would
be excluded from IPA. Consequently, 160 and 158 genes
were uploaded to IPA for the CH H1, ZG and H2 diets, re-
spectively, while 27 genes were uploaded to IPA for the HF
H1, diet.
Genes were then mapped to IPA biological functions

and canonical pathways. Biological functions and canon-
ical pathways were significantly enriched if the P-value
of the overlap between the input gene list and the genes
within the database for a given function or pathway was
less than 0.05. Upregulation or downregulation of func-
tions or pathways was determined by a z-score, as calcu-
lated by IPA from the expression levels of input genes in
a function or pathway. A negative z-score represented
downregulation of a function or pathway, while a posi-
tive z-score represented upregulation.

Additional files

Additional file 1: Chemical composition of the feed offered to steers
offered three different diets. (XLSX 11 kb)

Additional file 2: All genes deemed to be differentially expressed for
each individual dietary phase for Charolias and Holstein-Friesian
steers. (XLSX 30 kb)

Additional file 3: All canonical pathways identified as significantly
enriched by IPA across each dietary phase for both Holstein-Friesian and
Charolais steers. (XLSX 15 kb)

Additional file 4: The range of P-values for the biological functions that
were significantly enriched across all dietary phases for low-RFI Charo-
lais and Holstein-Friesian steers. (XLSX 10 kb)
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