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What Is Gluten—Why Is It Special?
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Wheat gluten has an immense impact on human nutrition as it largely determines the

processing properties of wheat flour, and in particular the ability to make leavened breads,

other baked products, pasta and noodles. However, there has been increasing interest in

wheat gluten over the past two decades because of its well-established role in triggering

coeliac disease, and its perceived role in other adverse reactions to wheat. The literature

on wheat gluten is vast and extends back over two centuries, with most studies focusing

on the structures of gluten proteins and their role in determining the functional properties

of wheat flour and dough. This article provides a concise account of wheat gluten,

focusing on properties, and features which are relevant to its role in triggering coeliac

disease and, to a lesser extent, other gluten-related disorders. It includes descriptions

of the biological role of the gluten proteins, the structures and relationships of gluten

protein families, and the presence of related types of protein which may also contribute

to functional properties and impacts on health. It therefore provides an understanding

of the gluten protein system at the level required by those focusing on its impact on

human health.
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INTRODUCTION

Wheat gluten was one of the earliest proteins to be studied scientifically, by Jacopo Beccari
(Professor of Chemistry at the University of Bologna) in his article “De Frumento” (Concerning
Grain) in 1745 (1, 2). It has since been studied in great detail by cereal chemists, because of its role
in underpinning the ability to make leavened bread, other baked goods, pasta, and noodles. These
properties are only shared to a very limited extent by related cereals (barley and rye). Hence, gluten
underpins the production of staple foods for a substantial proportion of the global population,
particularly in temperate zones.

Although gluten was identified as the trigger for coeliac disease almost 70 years ago (3), interest
in gluten outside the scientific community was limited to those unfortunate enough to suffer
from coeliac disease until early in the present century, which has seen an explosion of interest,
particularly in the popular press and social media. As an example, a “Google” search carried out in
December 2018 gave almost 400 million hits in less than a minute. This interest relates, of course, to
the proposed role of gluten in triggering a range of adverse reactions, with substantial proportions
of the population in many countries choosing to adopt a gluten-free, or low-gluten, diet. However,
despite this massive interest few people have a clear understanding of gluten itself: what is it, what
is the origin, why is it special?

This article, which forms part of the Special Research Topic “Gluten, from Plant to Plate:
Implications for People with Celiac Disease,” therefore, provides a broad account of wheat gluten
including its synthesis and deposition in the developing grain, the structures, and evolutionary
relationships of its component proteins, and its unique properties which are exploited in grain
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processing, focusing on features which are relevant to its role
in triggering coeliac disease. It does not cover other impacts of
wheat proteins on human health, notably allergy, and non-coeliac
gluten sensitivity (NCGS) which are discussed in other recent
review articles (4, 5).

WHAT IS GLUTEN?

Gluten Is Defined Based on Its Origin
and Solubility
Gluten is classically defined as the largely proteinaceous mass
which remains when a dough made from wheat flour and
water is gently washed in an excess of water or dilute salt
solution to remove most of the starch and soluble material
(6). The remaining material, which has been described as
“rubbery,” comprises about 75–80% protein on a drymatter basis,
depending on how well the material is washed. Hence “gluten
proteins” are defined as those present in this mass and, because
similar material cannot be isolated from doughs made with flours
from other cereals, gluten proteins are restricted to the grain of
wheat (species of the genus Triticum). However, related proteins
are present in other cereals (as discussed below) and these are
frequently referred to as gluten in the non-specialist literature
and the wider popular media.

More correctly, gluten and related proteins from other cereals
are classified as “prolamins.” This name was coined by T.B.
Osborne, the father of plant protein chemistry who worked
at the Connecticut Agricultural experiment station from 1886
till 1928. During this period he published some 250 papers,
including studies of seed proteins from 32 species. This allowed
him to develop a broad classification of proteins based on their
extraction in a series of solvents (7). This extraction is often
performed sequentially (and called “Osborne fractionation”) with
the four Osborne fractions being called albumins (soluble in
water), globulins (soluble in dilute saline), prolamins (soluble in
60–70% alcohol), and glutelins (insoluble in the other solvents
but may be extracted in alkali). The first two fractions are readily
distinguished and the names are still in use, while prolamins
were recognized as a defined group present only in cereal grains
with the name being based on their high contents of proline and
amide nitrogen (now known to be derived from glutamine). This
fraction is given specific names in different cereal species: gliadin
in wheat, hordein in barley, secalin in rye, zein in maize etc.

However, the final fraction (glutelin) is more difficult to define,
as it effectively comprises all proteins which are insoluble in the
three previous solvents but can be solubilized under conditions
of extreme pH. In fact, glutelins are now known to comprise
a mixture of unrelated proteins, including insoluble structural
and metabolic proteins such as those bound to membranes and
cell walls. However, these proteins are only present in small
amounts and in wheat (and most other cereals) the major
glutelin components are in fact prolamin subunits which are
not extractable with alcohol/water mixtures due their presence
as high molecular mass polymers stabilized by inter-chain
disulphide bonds. In wheat these proteins are called glutenin
and are present in about equal amounts to the alcohol-soluble
gliadins, the two groups comprising gluten.

Gluten Proteins Are the Major Storage
Protein Fraction
Gluten proteins are the major group of proteins which are stored
in the grain to support germination and seedling development.
They are restricted in distribution to the starchy endosperm
cells of the grain, and have not been detected in any other
tissues of the grain or plant. Their pathway and mechanisms
of synthesis and deposition have been studied in detail [see
Tosi (8)] but two points are particularly relevant here. Firstly,
they are initially deposited in discrete protein bodies, which fuse
during the later stages of grain development to form a continuous
matrix surrounding the starch granules (Figure 1A). This matrix
forms a continuous protein network within the cell, which can
be revealed when the starch is removed from a flour particle
by enzyme digestion (Figure 1B). It is easy to envisage how the
protein networks present in the individual cells can be brought
together during dough mixing to form the continuous gluten
network in dough.

The second important point is that gluten proteins are
not uniformly distributed in the starchy endosperm cells, but
enriched in the outer 2 to 3 layers of cells (which are called the
sub-aleurone cells). This is illustrated in Figure 1C, which shows
a section of the starchy endosperm cells and outer layers from
the lobe of the grain at a late stage of development stained with
toluidine blue to show protein. In fact, Kent (11) calculated that
the protein content of the cells of the starchy endosperm varies
by over 4-fold, from 45% in the sub-aleurone cells to 8% in the
central region. Furthermore, the gluten protein composition also
varies, with the percentage of high molecular weight glutenin
subunits (HMW subunits) increasing and the proportion of low
molecular weight (LMW) subunits and gliadins (except for ω-
gliadins) decreasing (these protein types are discussed below)
(12). These gradients in composition are reflected to some extent
in the contents and compositions of gluten proteins in the flour
streams produced by commercial roller milling, meaning that
these fractions may also vary in their impact on health (13).

Implications for Coeliac Disease

Fractionation by conventional milling combined with pearling
(abrasion) or peeling (friction) could lead to flour streams that are
enriched or depleted in coeliac-active proteins. The use of vital
gluten (which is produced commercially for fortification of food
products) also has implications. This will contain all of the gluten
proteins present in the flour of origin, but may also contain other
biologically active proteins as “co-passengers.”

GLUTEN PROTEINS

Gluten Comprises Several Related Families
of Proteins Encoded by Multigene Families
The gluten protein fraction comprises a complex mixture
of components which can be separated into groups by
electrophoresis. Electrophoresis of the gliadins at low pH
separates four groups of bands, called (in terms of decreasing
mobility) α-gliadins, β-gliadins, γ -gliadins, and ω-gliadins.
However, comparisons of amino acid sequences show that the
α- and β-gliadins form a single group, sometimes called α-
type gliadins.
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FIGURE 1 | The origin of wheat gluten. (A) Transmission electron microscopy of starchy endosperm cells at a late stage of grain development (46 days after anthesis)

shows that the individual protein bodies have fused to form a continuous proteinaceous matrix. Taken from Shewry et al. (9) with permission, provided by Dr. M.

Parker (IFR, Norwich, UK). (B) Digestion of a flour particle to remove starch reveals a continuous proteinaceous network. Taken from Amend and Beauvais (10) with

permission. (C) Transverse section of the lobe region of a developing wheat grain stained with Toluidine Blue to show the tissue structure and deposited protein (in

blue). Figure kindly provided by Cristina Sanchis Gritsch and Paola Tosi (Rothamsted Research).

The glutenin polymers are too big to be separated by
conventional electrophoresis, but reduction of the inter-chain
disulphide bonds that stabilize the polymers allows the subunits
to be separated by sodium dodecylsulphate polyacrylamide gel
electrophoresis (SDS-PAGE) into two groups of bands, called
the HMW and LMW subunits. The latter group can be further
sub-divided into a major group of components (B-type LMW
subunits) and two minor groups (C-type and D-type).

Comparisons of amino acid sequences of these groups
of gluten protein components clarifies their relationships,
showing that the HMW subunits and ω-gliadins form
discrete groups, with the α-gliadins, γ -gliadins, and B-
type LMW subunits forming a third group. The minor
groups of C-type and D-type LMW subunits appear to be
modified forms of gliadins in which mutations to form
cysteine residues allow their incorporation into glutenin
polymers, with the C-type LMW subunits being modified
α-gliadins or γ -gliadins and the D-type modified ω-
gliadins. This classification is summarized in Table 1,
which also shows their relative amounts and summarizes
their characteristics (molecular masses and partial amino
acid compositions).

Table 1 also groups the types of gluten proteins discussed

above into three “families” (the HMW, sulfur(S)-rich, and S-

poor prolamins), which were defined about 30 years ago based

on emerging sequence data (15). This classification remains
valid despite the vast increase in our knowledge of gluten
protein sequences over the past few decades. For example, in
May 2015 Bromilow et al. (16) retrieved over 24,000 sequences
related to gluten proteins from the UniProt database. Removal
of redundant, partial and mis-assigned sequences allowed the
assembly of a curated database of 630 sequences.

The retrieval of over 600 sequences of gluten proteins
does not, of course, mean that individual wheat genotypes
contain this number of gluten proteins. Although the precise
number of gluten proteins present in mature seed has
not been determined, examination of two-dimensional (2D)
electrophoretic separations indicates that the number of gluten
proteins present in detectable amounts is probably between 50
and 100. This is consistent with the recent study of Bromilow
et al. (17), who identified 63 gluten proteins in a single cultivar,
using mass spectrometry and a curated sequence database (16).
However, this study identified eight individual HMW subunit
proteins, which is twice the number known to be present in
the cultivar studied. This highlights the problems inherent in
identifying gluten proteins based on short peptide sequences.

Although the prolamin groups discussed above undoubtedly
account for the vast majority of the gluten proteins, recent work
has shown that small amounts of a further type of gluten protein
are present. These have been defined as δ-gliadins, although
sequence comparisons indicate that they form part of the wider
family of γ -prolamins (being closest in sequence to the γ 3-
hordeins of barley) (18, 19). Proteomic analysis indicates that
they account for 1.2% of the total normalized spot volume in
grain of Chinese Spring wheat (20).

Molecular Basis for Gluten
Protein Polymorphism
The large numbers of individual gluten proteins present in
single genotypes, and the 10-fold greater number of sequences
in databases, arises from three factors: the presence of multigene
families, the high level of polymorphism between genotypes and,
to a more limited extent, post-translational modification. It is
therefore, necessary to consider these factors in turn.
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TABLE 1 | Summary of the types and characteristics of wheat gluten proteins

[based on Shewry and Halford (14)].

Gluten

protein type

Molecular

mass

% total gluten

fraction

Polymers or

monomers?

Partial amino

acid

composition

(mol %)

HMW prolamins

HMW

subunits

65–90,000 6–10 Polymers 30–35%

glutamine,

10–16% proline,

15–20% glycine,

0.5–1.5%

cysteine,

0.7–1.4% lysine

S-rich prolamins

α-gliadins 30–45,000 70–80 Monomers 30–40%

glutamine,

15–20% proline,

2–3% cysteine,

<1% lysine

γ -gliadins

B-type and

C-type LMW

subunits

Polymers

S-poor prolamins

ω-gliadins 30–75,000 10–20 Monomers 40–50%

glutamine,

20–30% proline,

0–0.5% phenyl

alanine, 0–0.5%

lysine, 0 cysteine,

1 cysteine residue

in D-type LMW

subunitsD-type

LMW subunits

Polymers

Common wheat (Triticum aestivum), which includes modern
bread wheat and spelt, is a hexaploid species, with three
genomes (called A, B, and D) derived from related wild grasses.
Only two of these genomes (A and B) are present in the
tetraploid durum (pasta) wheat and emmer (forms of Triticum
turgidum) while einkorn (Triticum monococcum) is diploid
with only the A genome. Gluten proteins are encoded by
loci on the group 1 and group 6 chromosomes of all three
genomes, meaning that the gluten fraction can be expected
to comprise more individual protein components in common
wheat than in the other species. A detailed discussion of
the genetics of gluten proteins is outside the scope of this
article, but the reader can refer to Shewry et al. (21) for a
detailed account.

Furthermore, all of the gluten protein loci comprise multiple
genes. The simplest loci are the Glu-1 loci which are located on
the long arms of the group 1 chromosomes. Each of these loci
comprises two genes which encode two types of HMW subunit
of glutenin (called x-type and y-type). However, because not all
of the Glu-1 genes are expressed in all genotypes, the number of
HMW subunit proteins in cultivars of bread wheat varies from
3 to 5 (22). Because of the simple genetic system, and the fact
that the HMW subunits have been studied in more detail than
most groups of gluten proteins, it is possible to define alleles at
all three loci. Thus, the widely occurring pairs of subunits called
1Dx2 + 1Dy12 and 1Dx5 + 1Dy10 are alleles, while the pairs of

subunits called 1Dx2+ 1Dy12 and 1Bx7+ 1By9 are homeoalleles
(alleles on different genomes). The greater complexity of other
gluten protein loci makes it much more difficult to recognize
allelic forms of genes and proteins, although detailed analyses of
allelic variation in LMW subunits have been reported [reviewed
by Juhász et al. (23)].

However, whereas the individual HMW subunits can be
assigned to sequenced genes, this is very difficult, if not
impossible, for many other gluten proteins because of the
complexity of the loci. For example, Huo et al. (19) assembled
sequences of the α-gliadin loci on the three genomes of bread
wheat, showing a total of 47 genes of which 26 encoded
intact full-length protein products. Similarly, Qi et al. (24)
reported the sequences of 29 putatively functional γ -gliadin
genes (encoded by genes at the Gli-1 loci on the short
arms of the group 1 chromosomes) in a single cultivar.
Further information on the structures of the gluten protein
multigenic loci are being provided by genome analysis [see,
for example, (5, 25, 26)].

It is also likely that the numbers of expressed genes
vary between genotypes. Thus, the high polymorphism in
gluten protein composition observed between genotypes
may arise both from variation in the numbers of
expressed genes, and variation in the sequences of the
encoded proteins.

A third factor which may contribute to protein polymorphism
is post-translational modification. Gluten proteins contain
between about 20 and 50mol % of glutamine residues so
post-translational deamidation has long been recognized as a
possibility. It may, for example, account for the fact that HMW
subunits often form “trains” of spots in 2D electrophoresis,
while Dupont et al. (27) reported the presence of HMW subunit
sequences in 43 spots separated on 2D gels. However, the
extent of deamidation has never been quantified. Other proposed
modifications, such as glycosylation (28) and phosphorylation
(29) have not been substantiated by further studies. Other types
of post-translational modification may include cyclisation of N-
terminal glutamine to give pyroglutamate (which is likely to
be responsible for many gluten proteins having “blocked” N-
termini), differential processing of the signal peptide (30) and
proteolysis by legumain-like asparaginyl endoproteinase (31).

Finally, the proportions of gluten proteins may also be
affected by the environment, including temperature during grain
development and availability of nutrients (nitrogen and sulfur)
[reviewed by DuPont and Altenbach (32) and Altenbach (33)].
In particular, increases in the proportions of gliadins occur
under high nitrogen availability and of ω-gliadins when nitrogen
availability is high but sulfur is limiting.

Implications for Coeliac Disease

Protein polymorphism is clearly a challenge for attempts
to eliminate “toxic” proteins and to develop coeliac-safe
wheats, whether by exploiting natural variation or by genetic
engineering/genome editing.

Effects of environment on gluten protein composition will
also have impacts on the abundances of specific coeliac
disease epitopes.
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Gluten Proteins Contain Unique
Repetitive Domains
The most important characteristic of wheat gluten proteins in
relation to their role in coeliac disease is the presence of protein
domains comprising repetitive sequences. The domains vary in
extent, but generally account for between about 30 and 50%
of the protein sequence in S-rich gliadins and LMW subunits,
between 75 and 85% in HMW subunits, and almost the whole
protein in ω-gliadins [reviewed by Shewry et al. (34)]. They
comprise tandem repeats of short peptides comprising between
three and nine amino acid residues, and may be based on tandem
repeats of one motif or tandem and interspersed repeats of two
or more motifs.

Themost widely studied repetitive sequences are those present
in the HMW subunits of glutenin. These comprise repeats based
on three motifs: the hexapeptide PGQGQQ, the nonapeptide
GYYPTSPQQ or GYYPTSLQQ, and in x-type subunits only, a
tripeptide GQQ (P, proline; G, glycine; Q, glutamine, Y, tyrosine;
P, proline; T, threonine, S, serine; L, leucine) (34). The motifs
present in the other groups of gluten proteins are generally
less well-conserved and the identification of consensus motifs
is more subjective than in the HMW subunits, but all are rich
in proline and glutamine, for example, PQQPFPQQ (F, phenyl
alanine) in γ -gliadins. It should be noted that these sequences
are responsible for the characteristic amino acid compositions
of the whole proteins, notably the high contents of glutamine
(35–55 mol%) and proline (10–25 mol%) in all groups of
prolamins, high glycine in HMW subunits (11–12 mol%), and
high phenyl alanine (about 11 mol%) in ω-gliadins [reviewed by
Shewry et al. (34)].

The repeated sequences may also be responsible for the
unusual solubility properties of gluten proteins. Although
glutamine is a hydrophilic amino acid, the regularly repeated
glutamine residues in gluten proteins are considered to form
protein:protein hydrogen bonds resulting in insolubility in water
(as discussed by Belton (35) for HMW subunits). However, in
most gluten proteins, all of the cysteine residues, which may
form interchain or intrachain disulphide bonds, are located in the
non-repetitive domains.

The repetitive sequences also play a crucial role in triggering
coeliac disease. In fact, all of the 31 “coeliac disease relevant
T-cell epitopes” listed by Sollid et al. (36) are present in the
repetitive domains of wheat or related cereals (barley, oats,
rye) and all groups of gluten proteins (gliadins and glutenins)
contain epitopes. Nevertheless, some individual proteins within
these groups may lack recognized coeliac epitopes (although the
current list of epitopes is considered to be incomplete). This is
illustrated by Figure 2 (37) and discussed in detail by Shewry and
Tatham (37), Gilissen et al. (38), and Juhasz et al. (5).

Implications for Coeliac Disease

As discussed above, all of the coeliac-toxic epitopes in wheat
gluten proteins are present in the repeated sequences, with
multiple epitopes present in some repetitive domains. This clearly
poses a significant challenge for attempts to “remove” epitopes by
transgenesis or gene editing.

THE PROLAMIN SUPERFAMILY

The prolamins, including wheat gluten proteins, were historically
defined as a unique class of proteins restricted to the grain
of cereals and related grass species, based on their unusual
amino acid compositions and solubility properties (7) and this
dogma was not questioned until the increasing availability of
protein sequence data allowed wider comparisons to be made.
The first report that prolamins were related to a wider range of
proteins was in 1985, when Kreis et al. (39) showed the sequences
present in the cysteine-rich non-repetitive regions of prolamins
were related to sequences in two other groups of seed proteins:
cereal inhibitors of α-amylase and trypsin (now called ATIs) and
2S albumin storage proteins of dicotyledonous seeds. Although
these groups of proteins have little sequence identity with each
other or with prolamins, the homology was based on very high
conservation in the numbers and spacing of cysteine residues.
Further comparisons exploiting the vast increase in sequence
data have since identified several other groups of related proteins,
which are together referred to as the “prolamin superfamily.”

The prolamin superfamily includes proteins which are not
restricted to cereals and grasses, and present in tissues other than
seeds (40). However, several types are present in wheat grain,
and may contribute to the functional properties and role in diet
and health (34). They are therefore, briefly discussed here and
summarized in Table 2.

Farinins and Purinins
It has been known for many years that wheat flour contains
proteins with molecular masses below 30 kDa which are related
to gluten proteins, including types described as globulins,
LMW gliadins, and avenin-like proteins. Kasarda et al. (41)
have recently discussed the relationships of these proteins and
suggested that they should be classified into two types, which
they termed farinins and purinins. Both are more closely related
to gliadins than the other protein types discussed below, but
lack the repeated sequences which are typical of gliadins. Hence
they have been classed as globulins based on solubility. The
farinins correspond to the avenin-like proteins (defined based on
homology with the avenin proteins of oats) with two types called
a (which correspond to LMW gliadins) and b (42). These groups
differ in that the b-type proteins contain a duplicated sequence
of about 120 residues, resulting in a higher molecular weight
(about 30 kDa compared with 17 kDa). The b-type proteins are
associated with the surface of the starch granule and are post-
translationally cleaved to give two subunits (11 and 19 kDa)
linked by a single disulphide bond (41). Ma et al. (43) showed
that over-expression of a transgene encoding a b-type protein
resulted in improved flour mixing properties and an increased
proportion of large glutenin polymers, presumably due to their
ability to form inter-chain disulphide bonds.

The LMW gliadins/purinins have masses of about 17–19
kDa (44) and are more closely related to the γ -gliadins in
sequence (41, 45). They may, perhaps, be considered to be
similar to the “ancestral” prolamin proteins, before they diverged
due to the development and amplification of the repetitive
sequence domains. Mixing of heterologously expressed proteins
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FIGURE 2 | The distribution of T-cell epitopes (shown as red bars) in representative wheat gluten proteins (identified by GenBank accession codes). The epitopes are

based on Sollid et al. (36). α-gliadin P18573: DQ2.5-glia-α1a, DQ2.5-glia-α1b, DQ2.5-glia-α2, & DQ8-glia-α1. γ-gliadin AAK84774: DQ2.5-glia-ω1/hor-1/sec-1,

DQ8-glia-γ1a, DQ8-glia-γ2, DQ8-glia-γ4c, & DQ8-glia-γ5. ω-gliadin (A/D) AAT74547: DQ2.5-glia-γ5, DQ8-glia-γ1a, DQ2.5-glia-ω1/hor-1/sec-1, DQ8-glia- γ1b, &

DQ2.5-glia- γ3. ω-gliadin (B) AB181300 no coeliac toxic epitopes present. LMW subunit AAS66085:DQ2.5-glut-L1. HMW Subunit (1Bx17) BAE96560:

DQ8.5-glut-H1. HMW Subunit (1Dy10) AAU04841: DQ8.5-glut-H1. Modified from Shewry and Tatham (37).

into dough showed similar effects to the incorporation of
gliadins (45).

Puroindolines (Pins) and Grain Softness
Protein (GSP)
Hardness is one of the major characteristics used to divide wheat
into end use classes. It is determined by the Hardness (Ha)
locus on the short arm of chromosome 5D of bread wheat,
although the name is misleading because the encoded genes
actually determine softness. This locus is not present in durum
wheat which is therefore ultrahard. The Ha locus comprises

three genes (46), encoding proteins called puroindoline a (Pin
a), puroindoline b (Pin b) and grain softness protein (GSP).
The mature Pin a and Pin b proteins comprise about 120
amino acid residues including 10 cysteine residues which form
inter-chain disulphide bonds. They also contain five (in Pin
a) or three (in Pin b) tryptophan residues which are grouped
together in the sequences. Comparison of wholemeal flours
of 40 wheat cultivars (19 soft and 21 hard) grown on four
French sites showed 0.029–0.060 % dry wt of Pin a and 0.004–
0.031% dry wt of Pin b (47). Differences in the expression
of these proteins, and/or their amino acid sequences, account
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TABLE 2 | Wheat grain proteins of the prolamin superfamily (based on literature discussed in the text).

Protein group Molecular mass Characteristics Abundance Functional properties/impact

on health

Farinins 17,000–30,000 Correspond to avenin-like

proteins and LMW gliadins

Not determined Transgenic expression results in

improved mixing properties

Purinins (low molecular

weight gliadins)

17,000–19,000 Possibly correspond to

“ancestral” type of prolamin

Not determined Behave like gliadins in dough

Puroindolines a and b 13,000 Tryptophan-rich loop region

which may be involved in binding

to starch granule surface

0.029–0.060 % dry wt

of Pin a and

0.004–0.031 % dry wt.

of Pin b in wholemeal

flour

Determine about 75% of the

variation in softness in European

wheats

Grain softness protein (GSP) ∼15,000 Associated with the starch

granule surface

Not determined Small effect on grain softness

+

Arabinogalactan peptide

(AGP)

23,000 15 residue peptide

o-glycosylated with

arabinogalactan chains at 3

hydroxyproline residues

0.39% dry wt. white

flour

Prebiotic properties in vitro

Non-specific lipid-transfer

proteins (LTP)

9,000 (LTP1) +

7,000 (LTP2)

Bind and transport lipids in vitro

Concentrated in aleurone layer

and embryo

Not determined LTP1 is a food and respiratory

allergen

α-amylase/trypsin inhibitors

(ATIs)

12,000 to 16,000 Monomeric, dimeric, and

tetrameric forms, some subunits

inhibit trypsin or α-amylase

0.34–0.41% dry wt. of

wholemeal flour

Include respiratory and food

allergens, putative links to

coeliac disease, NCWS, and

other adverse reactions to wheat

Contribute to

pasta-making quality

for about 75% of the variation in grain hardness in bread
wheat (48).

The third gene at the Ha locus encodes a protein which is
cleaved post-translationally, probably in the vacuole by a similar
legumain-type asparaginyl endoproteinase to the enzyme(s)
responsible for proteolysis of gluten proteins (as discussed
above). This releases a 15 residue peptide from the N-terminus
(49). This peptide contains three proline residues which are
hydroxylated to give hydroxyprolines and then o-glycosylated
with arabinogalactan chains to give a mass of about 23 kDa
(50). The resulting “arabinogalactan peptide” (AGP) accounts
for about 0.39% of the dry weight of white flour (50) and is
readily fermented by the colonic microflora (51). The remaining
part of the protein, termed “grain softness protein” (GSP), may
contribute to hardness to a limited extent [by about 10 units
measured by the Perten Single Kernal Characterization System
(SKCS)] (52), but the biological roles of AGP and GSP are
not known.

Non-specific Lipid Transfer Proteins (LTPs)
Unlike the other proteins discussed here, LTPs are not
restricted to seed tissues, or to cereals and other grass species.
Although they were initially defined on their ability to transfer
phospholipids between liposomes and membranes in vitro, their
true physiological role is unknown with one possible function
being to contribute to defense to biotic stresses. They occur in two
classes, with masses of about 9 kDa (LTP1) and 7 kDa (LTP2) and
are concentrated in the aleurone layer and embryo of the wheat
grain [reviewed by Marion et al. (53)]. Many LTPs have been

identified as allergens, in seeds, fruit, and pollen (53), with LTP1
of wheat contributing to both food allergy and Bakers’ asthma
(respiratory allergy to wheat flour) (54, 55).

α-Amylase/Trypsin Inhibitors
Wheat inhibitors of α-amylase and trypsin have been studied for
over 40 years, resulting in an extensive and somewhat confusing
literature. This results partly from the complexity of the
fraction but also from use of different nomenclatures, based on
relative electrophoretic mobilities (the major components being
called 0.19, 0.28, and 0.53), solubility in chloroform:methanol
(called CM1 to CM17) and subunit structure (monomeric,
dimeric, and tetrameric forms occurring) (56). Dupont et al.
(27) used mass spectrometry of proteins separated by 2D
electrophoresis to identify two spots corresponding to forms of
the putative monomeric trypsin inhibitor(s) CM1/3, two related
to the monomeric amylase inhibitor WMAI, two related to
the homodimeric amylase inhibitor WDAI1, and nine related
to subunits of the heterotetrameric amylase inhibitor WTAI (1
× CM1, 2 × CM2, 2 × CM3, 2 × CM16, and 2 × CM17).
More recently, Geisslitz et al. (57) have used targeted LC-MS to
quantify the amounts of the major ATIs (WDAI/0.19 + 0.53;
WMAI1/0.28, CM2, CM3, CM16, and CM17), showing that
they together accounted for 3.4–4.1 mg/g in wholemeal flour of
bread wheat.

Wheat ATIs are well-characterized as wheat allegens,
particularly in Bakers’ asthma but also on ingestion of food
[reviewed by Salcedo et al. (58)]. In addition, they have been
studied widely over the past few years because of putative roles in
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other adverse reactions to wheat consumption, including coeliac
disease, and non-coeliac wheat/gluten sensitivity (as discussed in
other contributions to this special section).

ATIs have also been reported to contribute to the cooking
quality of pasta, where they were initially reported to be glutenin
components (called durum sulfur-rich glutenin, DSG) (59–61).

Implications for Coeliac Disease

Wheat grain contains many other proteins including other
families of protease and amylase inhibitors, thionins, ribosome-
inactivating proteins, and putative defense-related proteins with
unknown functions [reviewed by Shewry et al. (34)]. All of
these may be present in food products, present either in flours
or as “contaminants” in vital gluten. However, the proteins
discussed above share some properties which may be particularly
relevant. Firstly, most are small globular proteins which are
tightly folded and stabilized by multiple interchain disulphide
bonds. Hence, they are particularly stable to heating during
food processing and to degradation in the gastro-intestinal
tract: although proteolysis may occur, the proteins will not
disintegrate because the fragments are held together by the
disulphide bonds. Secondly, they may interact strongly with
gluten proteins and hence be present in vital gluten. These
interactions may be stabilized by non-covalent forces, such as the
LMW gliadins/purinins, or by disulphide bonds formed either
during grain development and maturation or re-arrangements
during processing. Irrespective of the mechanism, the fact that
they may be present in “gluten protein” fractions shows that
they must be considered when interpreting studies carried out
on human responses to wheat proteins.

GLUTEN PROTEINS HAVE UNIQUE
BIOPHYSICAL PROPERTIES WHICH
UNDERPIN GRAIN PROCESSING

Several factors have contributed to the global success of wheat,
one being its wide adaptability. However, the main reason why
it is grown in preference to other cereal crops in many countries
is the functional properties of wheat flour. As discussed above,
wheat is the only cereal which can be baked to give leavened
bread and other baked products, as well as pasta and noodles.
The quality for these end uses is determined largely by the
gluten proteins, which form a continuous network in dough.
This network provides the cohesiveness required for making
products such as pasta as well as the visco-elasticity required
for breadmaking.

Despite a massive literature the molecular basis for
the biophysical properties of gluten is still not completely
understood, and it is not possible to provide a detailed discussion
here. However, two points are particularly relevant. Firstly, the
properties depend on the contributions of both the gliadins
and glutenins, with the glutenin subunits forming large three
dimensional networks stabilized by inter-chain disulphide bonds
which interact with gliadins, and with other glutenin networks,
by non-covalent forces, particularly hydrogen bonds. Secondly,
the polymers are stabilized by a combination of forces. The

importance of disulphide bonds is readily demonstrated as these
can be disrupted using reducing agents, with catastrophic effects
on functionality. The importance of hydrogen bonds is less easy
to demonstrate, but Belton (35) has proposed that hydrogen
bonds are particularly important in developing optimal protein
interactions during dough mixing.

Implications for Coeliac Disease

The clearest implication for coeliac disease is that any drastic
modification to the composition of the gluten protein fraction
and/or to the sequences of the individual subunits are likely
to have effects on functionality. Although these effects are not
easy to predict, that fact that bread making wheats have been
selected for functional properties for almost a century suggests
that most modifications will be detrimental. Thus, although it
may be possible to produce “acceptable” loaves from modified
lines of wheat in the laboratory and in small scale systems [see,
for example, (62, 63)], this is a much greater challenge for large
scale commercial production where profit margins are narrow
and small differences in parameters such as loaf height, crumb
texture, color and shelf life will affect the quality of the product
and hence acceptability by consumers.

CONCLUSION

Wheat gluten fulfills an essential biological role as the major
grain storage protein fraction, and is the major determinant
of the functional (processing) properties of the grain. It is
a highly complex mixture of proteins, encoded by multigene
families at multiple loci on the three genomes of bread wheat,
with a high degree of polymorphism between genotypes. The
individual proteins also have unusual structures, including
extensive domains of repetitive sequences. In addition, a range
of related proteins are present in the grain and may be present in
isolated gluten fractions. All of these factors must be considered
when studying the role of gluten in coeliac disease and other
adverse responses to wheat consumption, and in designing
strategies to develop safe types of wheat and wheat products.
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