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AI and Heart Failure
Present State and Future With
Multimodal Large Language Models
Baljash Cheema, MD, MSCI, MSAI,a,b Jay Pandit, MDc
M achine learning and the larger field of arti-
ficial intelligence (AI) have the potential
to revolutionize health care by over-

coming the limitations of the human mind to ingest
large quantities of clinical and scientific data and
use it in real time for complex decision-making.1

With advances in deep learning including a novel
neural network architecture known as the trans-
former, AI can now take large sources of patient
data, derived from both clinical care and a plethora
of sensor-based devices from both the biome and
exposome of each individual, and generate clinical
insights.2 This is built upon major advances over the
last decade-plus across the field of AI, including
breakthroughs in computer vision, reinforcement
learning, natural language processing, and generative
AI. This has led to the creation of large language
models (LLMs), which have several surprising capa-
bilities far beyond the interpretation and creation of
language. These models now have the ability to incor-
porate multimodal data including text, video, sound,
and sensor data, with many experts predicting a
future with more timely diagnostics, optimized treat-
ment protocols, reduced administrative load related
to documentation and billing, less clinician burnout,
and overall greater quality of care for patients with
fewer medical mistakes.2
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Yet, in 2024, claims that AI will change medicine
for the better are far from new, and many in the field
of medicine are wondering when they will see tools
that impact the patients walking through the doors of
their respective clinics each day. Indeed, while there
is no shortage of new AI products ready for the
marketplace, with over 650 Food and Drug Adminis-
tration (FDA)-cleared AI algorithms at the time of
writing this article, there is a gap in the integration
and delivery of these technologies into clinical care.3

This may be due in part to the breakneck speed at
which AI technology is exploding forward, leaving
clinicians without a clear understanding of what
products exist and how they can be used right now, as
well as several other challenges related to imple-
menting AI in practice.

In this piece, we will share concrete examples of
how AI can be used now to impact diagnostic and
management decisions in patient care through the
discussion of a real-life case of a patient with
advanced heart failure. We will highlight both the
strengths and challenges of the current state of AI in
medicine by exploring a handful of representative
technologies, before envisioning a future state with
patient care augmented by multimodal LLMs.

Our case is that of a 65-year-old African American
male, a veteran of the armed services, with recurrent
hospitalizations for heart failure. Prior to his heart
failure diagnosis, he had several years of multisystem
symptoms including gastrointestinal distress, neuro-
pathic pain, and fatigue, and he underwent bilateral
carpal tunnel release surgery. Once diagnosed with
heart failure, several years went by before the cause
was found to be hereditary transthyretin amyloidosis.
He had hospitalizations for heart failure triggered by
an accumulation of lower extremity fluid and short-
ness of breath, although he often only recognized
these changes after he was in a severely debilitated
https://doi.org/10.1016/j.jacadv.2024.101029
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state. As his cardiac amyloidosis was not discovered
until late in the disease course, he did not benefit
from amyloid-specific treatment, and he eventually
required cardiac transplantation.

This case provides several examples of the chal-
lenges in managing patients with heart failure, where
there remains substantial residual risk for morbidity
and mortality even for those that tolerate all 4 pillars
of guideline-directed medical therapy. In this specific
case, a delay in identifying the cause of his cardio-
myopathy played a major role in disease progression,
as available therapies for cardiac amyloidosis can
slow disease progression but cannot reverse the
course, so they must be given in a timely fashion.
Additionally, there were many periods of subclinical
hemodynamic congestion, which may have provided
windows of opportunity for intervention prior to
hospitalizations for heart failure. Further, while he
went on to successfully receive a heart transplant,
others in similar circumstances are referred to spe-
cialty centers too late in the disease course of heart
failure to merit consideration for advanced therapies
such as ventricular assist devices and trans-
plantation, thus requiring vigilance on the part of
busy clinicians to identify late-stage disease within
the “golden window” for referral.

Each of these points could have been individually
addressed with distinct AI tools in existence now,
some available on the marketplace with FDA clear-
ance and others created in academia and discussed in
peer-reviewed journals but not yet available
commercially. The patient’s electrocardiogram (ECG)
was the first potential point of contact, as AI-driven
ECG models have demonstrated an area under the
receiver operating characteristic curves above 0.90 in
diagnosing cardiac amyloidosis.4 When echocardio-
grams are added, performance improves further, and
models can distinguish between phenotypically
similar disease states like hypertrophic cardiomyop-
athy, hypertensive heart disease, and left ventricular
hypertrophy from end-stage renal disease.5 Addi-
tionally, both invasive and noninvasive technologies
that allow for reliable at-home monitoring for heart
failure have the ability to clue patients and clinicians
into impending heart failure events before they
happen, allowing space for timely intervention.6

While these technologies are currently only being
used to detect heart failure exacerbations, their po-
tential to identify novel biomarkers remains un-
tapped. Lastly, AI models have been created that,
when applied to the profile of a patient within an
electronic health record, can predict whether or not
they may have advanced heart failure and warrant
consideration for advanced therapies in hopes of
identifying patients at optimal times in their disease
state.7

However, there are several challenges related to
implementing these tools in practice, and all
contribute to the poor uptake of AI-based technolo-
gies on the frontlines of clinical care. As these tools
work in isolation for individual tasks, they require
clinical champions to identify their relevance and
push for adoption into existing workflows. At the
same time, these tools are rarely investigated pro-
spectively and in a randomized fashion, and even
FDA-cleared devices often do not have available data
for review on model performance in populations
distinct from those in which the models were created.
As such, there is warranted concern about model
performance, bias, and drift, leaving clinicians to
question whether their patients will truly benefit in
the real world. Issues of model governance, reim-
bursement schemes, interoperability, privacy and
protection of personal health information, trust in AI,
and alert management for false positive results are
just some of a number of other ongoing challenges.8

Importantly, none of these challenges are insur-
mountable, and with the potential impact AI may
have on clinical medicine, it is imperative that we
continue to work on them, especially when consid-
ering the added potential that multimodal LLMs
bring.

Modern day LLMs are built upon the transformer
model, a model that is particularly skilled at under-
standing sequential data by using the concept of
attention and learning dependencies within the data,
even if separated in time and space.9 While unimodal
data input into these models may allow for the
detection of patterns the human eye may not readily
see, multimodal data input has the potential to un-
earth patterns that were previously unidentified by
applying attention across disparate but connected
data sources.2,9 In the current state of health care, the
most advanced models integrated into clinical care
are mostly unimodal or bimodal at best, using up to 2
data modalities such as the ECG and echocardiogra-
phy. However, recent advances in LLMs allow for
multimodality data input, creating the potential to
combine text from clinical notes or patient-generated
descriptions of their health state, sound from acoustic
physiologic signals or voice recordings, images and
videos captured by patients at home or in the clinic



FIGURE 1 Use Cases for Multimodal Large Language Models for Heart Failure

Depicted are several possible sources of input data, acknowledging that many more exist, and use cases for utilizing large language models capable of incorporating

varied forms of data, each of which could have helped our patient. EHR ¼ electronic health record.
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with medical equipment, and multidimensional
omics data all for input into a given model. This could
have a significant impact on clinical decision-making,
where clinicians have historically relied on much less
complete knowledge representation before choosing
an action.2,10

In the case of our patient, there may be a future in
which data entry into a multimodal LLM improves his
care in concrete ways (Figure 1). At the level of pre-
ventive screening, his demographics, basic blood test
results, and text from clinical notes all within the
electronic health record could have been used as
input to models such as Generative Pre-trained
Transformer 4 or Med-PaLM to predict high-risk fea-
tures and clue clinicians into the fact that a unifying
disease process was underlying his various symp-
toms.2 Once a diagnosis of heart failure was estab-
lished, data streams from digital biomarkers captured
via wearable sensors such as heart rate variability,
gait analysis, weight or congestion indices, and elec-
tromyography could have forecasted disease pro-
gression and periods of acute exacerbation and
allowed for medication titration. He may have even
utilized ECG capture via a smart device, a text or
voice-based description of his symptoms analyzed by
a publicly available LLM, a sensor-derived assess-
ment of his hemodynamics, and a genetic screen
from a direct-to-consumer commercial platform, fed
into a multimodal AI model, to share with his doctor
at his first appointment insights into diagnostic con-
siderations and preferred treatment approaches they
should discuss instead of hoping that a diagnosis
would eventually be discovered for him.

While this future state is ideal and requires a sub-
stantial amount of work, the field is nascent, and
there is real reason to believe the hype. It will be key
to address consistent barriers around system-wide
integration of these types of tools including but not
limited to adequate governance structures, improve-
ments in model explainability, frameworks designed
to guide implementation and track post-
implementation outcomes, and safety checks that
ensure advanced models improve and not worsen
inequity.8 We believe working toward this end is in
keeping with developing learning health systems,
where patient-caregiver-provider relationships are
evolving to share information rather than being one-
dimensional, for the betterment of patient care.

There are great reasons to hope for a future state
where clinical care continues to improve through the
incorporation of machine learning and AI models into
everyday practice. While certain AI-based tools could
have improved the care of our patient when used by a
skilled and informed clinician, the future may
empower patients like him to make their own diag-
nostic and management decisions, guided by highly
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evolved AI systems. Addressing barriers to imple-
mentation is of critical concern, as more powerful AI
models capable of handling multimodal data are
available and markedly increase the capabilities of
machine intelligence.
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