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Rare and common vertebrates span a wide
spectrum of population trends
Gergana N. Daskalova 1✉, Isla H. Myers-Smith 1 & John L. Godlee 1

The Earth’s biota is changing over time in complex ways. A critical challenge is to test

whether specific biomes, taxa or types of species benefit or suffer in a time of accelerating

global change. We analysed nearly 10,000 abundance time series from over 2000 vertebrate

species part of the Living Planet Database. We integrated abundance data with information

on geographic range, habitat preference, taxonomic and phylogenetic relationships, and IUCN

Red List Categories and threats. We find that 15% of populations declined, 18% increased,

and 67% showed no net changes over time. Against a backdrop of no biogeographic and

phylogenetic patterning in population change, we uncover a distinct taxonomic signal.

Amphibians were the only taxa that experienced net declines in the analysed data, while

birds, mammals and reptiles experienced net increases. Population trends were poorly cap-

tured by species’ rarity and global-scale threats. Incorporation of the full spectrum of

population change will improve conservation efforts to protect global biodiversity.
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Ecosystem-level change is currently unfolding all around the
globe and modifying the abundances of the different species
forming Earth’s biota. As global change continues to

accelerate1,2, there is a growing need to assess the factors
explaining the variation in ecological changes observed across
taxa and biomes3. However, existing empirical studies of the
predictors of the abundance of individuals of different species
over time (hereafter, population change) mostly focus on either
specific taxa4 or on population declines alone2,5. A critical
research challenge is to disentangle the sources of heterogeneity
in available data across the full spectrum of population change.
Recent compilations of long-term population time series, exten-
sive occurrence, phylogenetic, habitat preference and IUCN Red
List Category data6–8 provide a unique opportunity to test which
species- and population-level attributes explain variation in
population trends and fluctuations among vertebrate species
monitored around the world. Such population change is the
underlying process leading to community reassembly9 and the
resulting alterations to biodiversity are vitally important for
ecosystem functions and services10.

The distributions of global change drivers such as land-use
change, habitat change, pollution, invasion by non-native species
and climate change show distinct clustering across space11–13.
Spatial clustering has also been documented for biodiversity trends
derived from assemblage time series, with the marine realm
emerging as a hotspot for rapid changes in community compo-
sition14. As assemblages are made up of populations, the bio-
geographic patterns at the assemblage level suggest similar
clustering might occur at the population level as well15. In addi-
tion to geographic patterns in exposure to anthropogenic activ-
ities, species’ vulnerability and traits can moderate population
responses to natural and anthropogenic environmental change16,
both across evolutionary time6–8 and in the modern day17,18.
Building on known variability in species’ vulnerability16,19,20, we
expected taxonomic and phylogenetic signals in population trends
and fluctuations (e.g., greater declines, increases, or fluctuations in
abundance for specific taxa and among specific clades). Under-
standing which biomes, taxa and types of species are experiencing
the most acute changes in abundance over time could provide key
insights for conservation prioritisation.

Conservation efforts often focus on protecting rare species—
those with restricted geographic extents, small population sizes or
high habitat specificity—as they are assumed to be more likely to
decline and ultimately go extinct21–23. Species with a smaller
geographic range might have more concentrated exposure to
environmental change, with fewer opportunities to find refugia or
disperse, thus increasing the likelihood of declines1,9. As per
population dynamics theory24,25 and Taylor’s power law26, spe-
cies with small populations are more likely to undergo stochastic
fluctuations that could lead to pronounced declines, local
extinction and eventually global extinction5. Small populations
are also more likely to decline owing to inbreeding, but there are
also instances of naturally small and stable populations27,28. Allee
effects, the relationship between individual fitness and population
density, further increase the likelihood of declines due to lack of
potential mates and low reproductive output once populations
reach a critically low density29,30. Furthermore, environmental
change might have disproportionately large effects on the popu-
lations of species with high habitat specificity, as for these species
persistence and colonisation of new areas are limited by strict
habitat preferences1,31. The fossil record indicates that on mil-
lennial time scales, rare species are more likely to decline and
ultimately go extinct32, but human actions have pushed Earth
away from traditional geological trajectories33, and the relation-
ships between rarity and population change across the planet
have yet to be tested across the Anthropocene.

On a global scale, species are exposed to a variety of threats,
among which habitat change, resource exploitation and hunting
dominate as key predictors of extinction risk34. Species’ IUCN
Red List Categories are often used in conservation prioritisation
and more threatened species tend to be the focus of conservation
initiatives35. At more local scales, there might be variation in how
populations are changing over time in different locations, in
isolation from their overall conservation status4,36. Testing
population change across species’ IUCN Red List Categories
(Supplementary Fig. 16) allows us to link contemporary changes
in abundance with long-term probability of extinction37. Deter-
mining how local-scale population trends vary across species’
IUCN Red List Categories has practical applications for assessing
species’ recovery, which is useful for the proposed IUCN Green
List of Species38.

Here, we ask how the trends and fluctuations of vertebrate
populations vary with biogeography, taxa, phylogenetic relation-
ships and across species’ rarity metrics and IUCN Red List
Categories and threat types from the species’ IUCN Red List
profiles. We test the following predictions: (1) There will be
biogeographic patterns in population trends and fluctuations
across the planet’s realms and biomes, in line with particular
regions of the world experiencing high rates of environmental
change (e.g., tropical forests39). (2) Populations of rare species
will be more likely to decline and fluctuate than the populations
of common species. (3) Populations of species with a higher
IUCN Red List Category and higher number of threats will be
more likely to decline and fluctuate than the populations of least
concern species and those exposed to a lower number of threats.
We quantify differences in population trends and fluctuations
across latitudes and biomes within the freshwater, marine and
terrestrial realms to test the presence of distinct hotspots of
declines and increases. In addition, we use data from the VertLife
and BirdLife Databases6–8 to assess taxonomic and phylogenetic
signals. We measure rarity using three separate metrics—geo-
graphic range derived from GBIF records, mean population size
(mean number of individuals that were recorded during the
monitoring for each population in the Living Planet Database)
and habitat specificity derived from the species’ IUCN Red List
profiles. In a post hoc analysis, we compile threat types and
number of threats derived from the species’ IUCN Red List
profiles to determine how threats influence local-scale population
change. Using the largest currently available compilation of
population records over time, we conduct a global synthesis of
population trends and fluctuations to provide key empirical evi-
dence for the management, conservation and prediction of eco-
logical changes across the Anthropocene.

We show that vertebrate species from shark, bony fish,
amphibian, bird, mammal and reptile taxa span a wide spectrum
of population change across four decades. Among the hetero-
geneous population change, we highlight amphibians as a taxon
in decline. The diverse range of trends and fluctuations over time
was not influenced by species’ rarity, particularly, their geo-
graphic range, mean population size or habitat specificity.
Overall, we demonstrate that the abundances of monitored ver-
tebrates around the world are being altered in a variety of ways,
testifying to the complexity in species responses to global change
across the biomes of the world.

Results
Overall approach. We analysed 9286 vertebrate population time
series from 2084 species part of the Living Planet Database
(133,092 records) over the period between 1970 and 2014. These
time series represent repeated monitoring surveys of the number
of individuals in a given area (species’ abundance over time),
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hereafter called ‘populations’. We focused on two aspects of
population change—overall changes in abundance over time
(population trend, μ) and abundance variability over time
(population fluctuations, σ2). In the first stage of our analyses, we
quantified trends and fluctuations for each population using
state-space models that account for observation error and ran-
dom fluctuations40 (Supplementary Fig. 1). In the second stage,
we modelled the population trend and fluctuation estimates from
the first stage across latitude, realm, biome, taxa, rarity metrics,
phylogenetic relatedness, species’ IUCN Red List Categories and
threat type using a Bayesian modelling framework (Supplemen-
tary Fig. 2). We included a species random intercept effect to
account for the possible correlation between the trends of
populations from the same species (see table Supplementary
Table 1 for sample sizes). As sensitivity analyses, we additionally
used variance weighting of the population trend estimates (μ) by
the observation/measurement error around them (τ2) and
population trend estimates from linear model fits (slopes instead
of μ) as the input variables in the second-stage models, as well as
several different fluctuations estimates. We also repeated our
analyses on a single-country scale, using only populations within
the United Kingdom, where monitoring efforts are particularly
rigorous and extensive. All different analytical approaches yielded
very similar results and are described in further detail in the
methods and Supplementary Figs. 1–2, 16.

Vertebrate population change. We found a broad spectrum of
trends across vertebrate populations within the Living Planet
Database. Across the time series we analysed, 15% (1381 time
series) of populations were declining, 18% (1656 time series) were
increasing and 67% (6249 time series) showed no net changes in
abundance over time, in contrast to a null distribution derived
from randomised data (Supplementary Fig. 5b). Trends were
considered statistically different from no net change when the
confidence intervals around the population trend estimates did
not overlap zero. Our results were similar when we weighted
population trends by the observation error derived from the state-
space models (Figs. 1–4 and Supplementary Tables 2, 3).

Biogeographic patterns of population change. We found that
globally, population increases, declines and fluctuations over time
occurred across all latitudes and biomes within the freshwater,
marine and terrestrial realms, with no strong biogeographic
patterning and no specific hotspots of population declines (Fig. 1,
Supplementary Table 2). Across realms, monitored vertebrate
populations experienced net population increases (freshwater
slope= 0.005, CI= 0.002–0.01; marine slope= 0.004, CI=
0.002–0.01; terrestrial slope= 0.003, CI= 0.001–0.005, Fig. 1d, e).
In the freshwater and terrestrial realms, there was a bimodal
distribution of population trends, driven largely by terrestrial bird
species showing small increases and decreases over time (Harti-
gans’ dip test, D= 0.04, p < 0.01). Across biomes, populations in
Mediterranean forests, montane grasslands, polar freshwaters,
temperate wetlands, tropical forests, and tropical coral biomes
were more likely to increase, whereas populations from the
remaining studied biomes experienced no net changes (Fig. 1h,
Supplementary Table 2). Population fluctuations were less pro-
nounced in the terrestrial realm (slope= 0.02, CI= 0.018–0.021,
Fig. 1f, g), but those populations were also monitored for the
longest duration across systems (average duration−28 years for
terrestrial, 18 years for marine and 21 years for freshwater
populations, Supplementary Fig. 3, Supplementary Table 2).

Taxonomic and phylogenetic patterns of population change.
We found taxonomic, but not phylogenetic patterns, in

population trends and fluctuations over time among ~10,000
populations from over 2000 vertebrate species, with amphibians
emerging as the taxa experiencing pronounced declines (Fig. 2,
Supplementary Table 2). Amphibians experienced net declines
over time (slope=−0.01, CI=−0.02 to −0.005), whereas birds,
mammals and reptiles experienced net increases (slope= 0.004,
CI= 0.003 to 0.01; slope= 0.01, CI= 0.01–0.01; slope= 0.02,
CI= 0.01–0.02), with birds having a bimodal trend distribution,
indicating greater numbers of increasing and decreasing trends
(Hartigans’ dip test, D= 0.04, p < 0.01, Fig. 1a, see Supplementary
Figs. 5, 6 and 12). Bony fish population trends were centred on
zero (slope=−0.001, CI=−0.004–0.002, Fig. 1a, b) and sharks
and rays showed net declines, but the credible intervals over-
lapped zero (slope=−0.01, CI=−0.02–0.01). Fluctuations were
most common for amphibian populations (slope= 0.04, CI=
0.036–0.049, Fig. 2d), which were monitored for the shortest time
period on average (11 years, Supplementary Fig. 3, Supplemen-
tary Table 2). We did not detect finer scale species-level phylo-
genetic clustering of population change (both trends and
fluctuations) within amphibian, bird and reptile classes (Fig. 2,
Supplementary Fig. 15, Supplementary Table 4). Similarly, species
identity within amphibian, bird and reptile classes did not explain
variation in population trends or fluctuations (Fig. 2, Supple-
mentary Fig. 15, Supplementary Table 4). There were no distinct
clusters of specific clades that were more likely to undergo
increases, decreases or fluctuations in population abundance
(Fig. 2).

Population change across rarity and threats. Species-level
metrics, such as rarity and global IUCN Red List Category, did
not explain the heterogeneity in trends of monitored populations
in the Living Planet Database. Both rare and common species
experienced declines, increases and fluctuations in population
abundance over time (Figs. 3 and 4). Across these time series,
species with smaller ranges, smaller population sizes or narrower
habitat specificity (i.e., rare species) were not more prone to
population declines than common species (Fig. 3, Supplementary
Table 2). Populations that experienced more fluctuations had
smaller mean population sizes on average (slope=−0.001, CI=
−0.001 to −0.001, Fig. 3f). We found increasing, decreasing and
stable populations across all IUCN Red List Categories (Fig. 4a).
For example, a population of the least concern species red deer
(Cervus elaphus) in Canada declined by 68% over seven years
going from 606 to 194 individuals and a population of the criti-
cally endangered Hawksbill sea turtle (Eretmochelys imbricate)
from Barbados increased by 269% over seven years going from 89
to 328 individuals. We found more fluctuations (least concern:
slope= 0.022, CI= 0.021–0.023; critically endangered: slope=
0.035, CI= 0.028–0.041, Supplementary Fig. 18), but not more
population declines, with increasing IUCN Red List Category
(Fig. 4, Supplementary Table 2). Populations from species with a
higher number of threats from the species’ IUCN Red List profiles
did not experience greater declines when compared with those
categorised with a smaller number of threats (Fig. 4f). There were
no distinct signatures of threats from the species’ IUCN Red List
profiles that were associated with predominantly declining local
trends of monitored populations (Fig. 4e) and there were
increasing, decreasing and stable trends across all threat types.

Discussion
Taken together, our analysis of ~10,000 vertebrate population
time series using a state-space modelling approach demonstrated
ubiquitous alterations in vertebrate abundance over time across
all biomes on Earth. We revealed that population change includes
both increasing and decreasing populations and spans a wide
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spectrum of magnitudes. While anthropogenic impacts have
accelerated in recent decades, our results highlight that vertebrate
species are influenced in varying ways by the number and types of
threats to which they might be exposed. Against a backdrop of no
biogeographic patterning of population trends and fluctuations
(Fig. 1), we uncovered distinct taxonomic signals, with amphi-
bians representing the only taxa that exhibited pronounced net
declines, whereas birds, mammals and reptiles on average became
more abundant over time (Fig. 2). Within amphibian, bird and
reptile taxa, there was no distinct phylogenetic clustering of clo-
sely related species experiencing similar population trends or
fluctuations (Fig. 2). We found that both rare and common
species experienced the full spectrum of population change, from

declines to no net changes and increases. Species’ geographic
range, mean population size and habitat specificity did not
explain variation in population trends, but species with smaller
population sizes were more likely to fluctuate, potentially
increasing their extinction risk (Fig. 3). There was no consistent
pattern of greater population declines with increasing IUCN Red
List Category (Fig. 4). On a global scale, the vertebrate species in
the Living Planet Database are exposed to a variety of threats
according to the species’ IUCN Red List profiles, but on more
local scales, none of the threats were characterised by pre-
dominantly declining populations (Fig. 4), testifying to the
diverse ways in which populations are likely responding to global
change across the Anthropocene.
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Contrary to our initial predictions, we did not find a distinct
geographic patterning of population change around the world,
nor a consistent trend of increasing declines in population
abundance with increasing IUCN Red List Category (Figs. 1
and 4). Similar lack of biogeographic signal has been docu-
mented in regional studies of population change from the
Netherlands36 and in temperate North America and Europe41.
Coarsely-represented biogeographic regions and global-scale
species’ IUCN Red List Categories and threat types might not
capture the drivers acting in the locations of the specific
populations we studied34,42–44. Furthermore, the same driver
can have opposing effects on population abundance at different
sites45. A lack of biome-specific directional trends in population
change, despite a spatial clustering of human pressure around
the world12, can also arise owing to differences in species traits
and vulnerability to environmental change within
biomes16,19,20. Accounting for divergent responses of species to
global change is key when translating global policy, such as the
upcoming post-2020 planetary biodiversity strategy46, into
conservation actions implemented on scales much finer than
biogeographic realms.

Our results highlight variation in population change among
taxa, with amphibians emerging as the taxa experiencing the most
pronounced declines in the Living Planet Database. The
remaining taxa showed either stable or increasing net changes in
abundance over time (Fig. 2). Such taxonomic patterns could be
driven by different taxon-specific factors including reproductive
strategy, trophic level, generation time and life history traits47,48.
For amphibians, population declines have been linked to the
spread of a fungal disease (chytrid fungus, Batrachochytrium
dendrobatidis), facilitated by global warming49, as well as habitat
loss and Allee effects in small populations50. Within bird,
amphibian and reptile taxa, phylogenetic relatedness and species-
level taxonomic classification did not explain variation in popu-
lation trends and fluctuations. A similar lack of phylogenetic
dependencies has been detected for the population growth rates
of migratory birds51. Although phylogenetic clustering might be
lacking in contemporary trends, there is evidence that phyloge-
netic relatedness predicts extinction, a process occurring over
much longer time scales6,7. Over shorter time periods, species’
traits and ability to persist, reproduce and disperse in ever
changing landscapes might be influencing local abundance16,
which has created a mix of winners and losers across all taxa15.
We demonstrate ongoing alterations in the abundances of six
vertebrate taxa, which over time, may lead to shifts in community
composition and ultimately alter ecosystem function as some
species become locally extinct whilst others become more
abundant9,10.

Surprisingly, our results indicate that despite decades of con-
servation focus on rare species21–23, both rare and common
species in the Living Planet Database experienced declines and
increases in population abundance over the period of monitoring.
The lack of rarity effects on population trends can be explained by
theory and empirical evidence, demonstrating that small popu-
lations do not necessarily have a higher likelihood of experiencing
declines and some species are able to persist in small, but stable
populations52. The power of rarity metrics to predict population
trends could also be mediated by whether species are naturally
rare, or have become rare owing to external drivers in recent
years53,54. Naturally rare species might be more likely to persist
over time, whereas species that have more recently become rare
might be more likely to decline in response to environmental
disturbance. Furthermore, the timing and magnitude of past and
current disturbance events influence population trends45,55 and
there could be temporal lags in both positive and negative
abundance changes over time45,56. However, disentangling the
processes leading to rarity over time remains challenging, and
across the 2084 species we studied, there are likely cases of both
natural and human-driven vertebrate population change. We
found that species with small populations were, nevertheless,
more likely to fluctuate (Fig. 3f), which may increase their
probability of extinction, a process that could play out over longer
time scales than found for most population monitoring time
series to date24,25,57. Our results highlight that rarity metrics
alone do not capture the heterogeneity in local population change
over time, and common species should not be overlooked in
conservation prioritisation decisions as they could be as likely to
decrease in abundance over time as rare species.

Our finding that declines are not universal, or even pre-
dominant, for vertebrate populations monitored for longer than
five years in the Living Planet Database contrasts with reports of
an overall decline in the Living Planet Index58, a weighted
summary of population change across all abundance time series
in the Living Planet Database. Consistent with our results, the
Living Planet Reports58–60 also document that the numbers of
declining and increasing species are similar across this database,
but the Living Planet Reports document a larger magnitude of
population declines relative to increases. The calculation of the
Living Planet Index involves differential weighting of population
trends derived using logged abundance data, geometric means
and generalised additive models, which could explain the dis-
crepancies between our study findings and those of the Living
Planet Reports61. The Living Planet Index is hierarchically aver-
aged from populations to species, taxa and realm and is also
weighted by the estimated and relative number of species within
biomes, which influences the direction and magnitude of the

Fig. 1 Population declines, increases and fluctuations over time occur across all latitudes and biomes within the freshwater, marine and terrestrial
realms. Results include 9286 populations from 2084 species. The lack of biogeographic patterning in vertebrate population trends was also apparent on a
UK scale (Supplementary Fig. 13 and Supplementary Table 3). The numbers in the legend for d–g and on the x axis in c show the sample sizes for realms
and biomes, respectively. The μ values of population trend a, b, d, e, h and the σ2 values of population fluctuation c, f–g are from state-space models of
changes in abundance over time for each population. d and f show the distribution of population trends across realms including raw values (points) and
boxplots (including the mean, first and third quartiles and boxplot whiskers that cover 1.5 times the interquartile range). e, g and h show the effect sizes
(centre of error bars) and the 95% credible intervals of population trends e, h across realms and biomes, and fluctuations across realms g. For variation in
fluctuations across biomes, see Supplementary Fig. 8. The three estimates in e and h refer to different analytical approaches: population trends calculated
using linear models (circles), state-space models (μ, triangles) and population trends (μ) weighted by τ2, the observation error estimate from the state-
space models (squares). The five estimates in g refer to different analytical approaches, where the response variables in the models were: (1) the standard
error around the slope estimates of the linear models of abundance versus year (circles), (2) half of the 95% confidence interval around the μ value of
population change (triangles), (3) half of the 95% confidence interval around μ weighted by τ2, (full squares), (4) the process noise (σ2) from the state-
space models and (5) the standard deviation of the raw data for each population time series (empty squares). The process noise is the total variance
around the population trend minus the variance attributed to observation error. See Supplementary Table 2 for model outputs. Icon credits: tree by
FayraLovers, wave by Setyo Ari Wibowo, mountain and stream by Nikita Kozin.
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Living Planet Index61,62. In contrast, our analysis explores the
heterogeneity in local trends and fluctuations of monitored spe-
cies from the raw population abundance data, and thus, we did
not use an index with weightings and we did not aggregate
population trends to a species-level. Rather than summarising
trends with an index, our goal was to explain variability in
abundance over time across better monitored vertebrates around
the world. We detected net population declines at local scales over

time only in the amphibian taxa, in contrast with the overall
negative trend of the aggregate weightings of the Living Planet
Index58. We caution that distiling the heterogeneity of local
population change at sites around the world into a simple metric
may hide diverging trends at local scales, where we found both
increases and declines among species.

The magnitude of population trends could be influenced by
how long populations are monitored63, as well as whether
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declines over time. There were no distinct phylogenetic patterns in population trends and fluctuations e–j. For details on phylogenetic models, see
methods and Supplementary Fig. 15. Grey colour in the heatmap in h shows species for which no population trend data were available. The numbers in the
legend for a–d show sample size for each taxon. The μ values of population trend a, b, e–g and the σ2 values of population fluctuation c, d, h–j were derived
from state-space model fits of changes in abundance over time for each population. a and c show the density distribution of population trends across taxa,
the raw values (points) and boxplots (including the mean, first and third quartiles and boxplot whiskers that cover 1.5 times the interquartile range). b and
d show the standardised effect sizes (centre of error bars) and the 95% credible intervals of population trends b and fluctuations d across the five studied
taxa. Error bars in b and d show 95% credible intervals. See Fig. 1 caption for further details on effect sizes and Supplementary Tables 2 and 4 for model
outputs. Icon credits: bird by Hernan D. Schlosman, snake and frog by parkjisun, fish by Julia Söderberg.
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monitoring began during a population peak or a population
trough64. While overall, we did not find a strong effect of dura-
tion on the detected population trends in the Living Planet
Database (Supplementary Figs. 6, 7, Supplementary Table 2), our
findings demonstrate that for reptiles, time series with longer
durations were more likely to capture declines (Supplementary
Table 2). We also found a bimodal pattern of weak population
increases and decreases in time series with longer durations
particularly for terrestrial bird species with the monitoring unit
being an index (Supplementary Fig. 12). Seven key challenges
have been identified when drawing robust inference about
population trends over time: establishment of the historical
baseline, representativeness of site selection, robustness of time
series trend estimation, mitigation of detection bias effects and
ability to account for potential artefacts of density dependence,
phenological shifts and scale-dependence in extrapolation from
sample abundance to population-level inference65. New methods
to rigorously account for different sources of uncertainty in time
series monitoring will allow the analyses of available population
data to better inform global estimates of net trends across taxa.

The strength of documented relationships between-population
dynamics and global change could be influenced by how well-
monitored populations capture the full range of variation in
driver intensity. To attribute population trends and fluctuations
to site-specific anthropogenic drivers, we need to go beyond
previous studies that have focused exclusively on declines and
extinctions5,66. We require attribution analyses that statistically
test the links between observed changes in ecosystems and the
experienced extrinsic pressure3. Through attribution studies that
encompass the full spectrum of population change, including
positive, negative and stable trends45,67, we can better understand
the variety of ways in which climate change, land-use change, and
other drivers are altering global biodiversity. For a subset of the
bird populations in the Living Planet Database, greater warming

of temperatures corresponded with a higher likelihood of popu-
lation declines over time67, which could be caused by worldwide
and cross-biome phenological mismatches between breeding and
resource availability68. Across terrestrial species represented in
the Living Planet Database, peak forest loss was associated with
accelerations in both population increases and decreases in the
period following habitat alteration45. There is evidence from the
marine realm that when species are simultaneously exposed to
multiple drivers, the resulting biodiversity effects are antagonistic
and could produce patterns of no net biodiversity changes69. The
next critical step is to test how multiple global change drivers
together12 influence populations across both terrestrial and
marine realms and determine how these relationships are medi-
ated by species’ traits and vulnerability to extrinsic threats70.

In summary, our global analysis reveals the ubiquitous nature
of population change over time across monitored vertebrate
species. We show that in a time of accelerating global change,
there were as many increases as there are decreases in population
abundance over time. Among this heterogeneity, we uncovered
pronounced declines in amphibian abundance as well as net
abundance increases for birds, mammals and reptiles in the
Living Planet Database. The taxonomic patterning of population
change highlights amphibians as a conservation priority, espe-
cially as their declines can have further cascading effects across
trophic levels within ecosystems. Rarity metrics, specifically
geographic range, mean population size and habitat specificity, as
well as IUCN Red List Categories, threat types and numbers and
evolutionary history, did not explain the heterogeneity in popu-
lation change across the data analysed in this study. Our findings
caution the use of rarity metrics as a proxy for future global
population trends, but suggest that such metrics, in particular
mean population size, are nevertheless indicators of population
fluctuations, which might ultimately be related to increased spe-
cies extinction risk. On a global scale, both rare and common
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vertebrate species face numerous threats owing to resource
exploitation and habitat change. As human activities continue,
the next key step is to determine how intrinsic factors, such as
rarity traits and threats, interact with extrinsic global change
drivers and together influence the persistence of Earth’s biota.
Capturing the complexity of species’ population dynamics will
improve our estimates of shifts in community composition and of
altered ecosystem functions and services around the world.

Methods
Workflow. All data syntheses, visualisation and statistical analyses were conducted
using R version 3.5.171. For conceptual diagrams of our workflow, see Supple-
mentary Figs. 1 and 2. Effect sizes plotted on graphs were standardised by dividing
the effect size by the standard deviation of the corresponding input data.

Population data. To quantify vertebrate population change (trends and fluctua-
tions), we extracted the abundance data for 9286 population time series from
2084 species from the publicly available Living Planet Database72 (http://www.
livingplanetindex.org/data_portal) that covered the period between 1970 and 2014
(Supplementary Table 1). These time series represent repeated monitoring surveys
of the number of individuals in a given area, hereafter, called ‘populations’.
Monitoring duration differed among populations, with a mean duration of 23.9
years and a mean sampling frequency of 23.3 time points (Supplementary Fig. 3,
see Supplementary Figs. 6 and 7 for effects of monitoring duration on detected
trends). In the Living Planet database, 17.9% of populations were sampled annually
or in rare cases multiple times per year. The time series we analysed include
vertebrate species that span a large variation in age, generation times and other
demographic-rate processes. For example, from other work that we have con-
ducted, we have found that when generation time data were available (~50.0% or
484 out of 968 bird species, and 15.6% or 48 out of 306 mammal species), the mean
bird generation time is 5.0 years (min= 3.4 years, max= 14.3 years) and the mean
mammal generation time is 8.3 years (min= 0.3 years, max= 25 years)45. Thus, we

believe that most vertebrate time series within the LPD capture multiple
generations.

In our analysis, we omitted populations which had less than five time points of
monitoring data, as previous studies of similar population time series to the ones
we analysed have found that shorter time series might not capture directional
trends in abundance63. Populations were monitored using different metrics of
abundance (e.g., population indices vs number of individuals). Before analysis, we
scaled the abundance of each population to a common magnitude between zero
and one to analyse within-population relationships to prevent conflating within-
population relationships and between-population relationships73. Scaling the
abundance data allowed us to explore trends among populations relative to the
variation experienced across each time series.

Phylogenetic data. We obtained phylogenies for amphibian species from https://
vertlife.org4, for bird species from https://birdtree.org8, and for reptile species from
https://vertlife.org6. For each of the three classes (Amphibia, Aves and Reptilia), we
downloaded 100 trees and randomly chose 10 for analysis (30 trees in total).
Species-level phylogenies for the classes Actinopterygii and Mammalia have not yet
been resolved with high confidence74,75.

Rarity metrics, IUCN Red List categories and threat types. We defined rarity
following a simplified version of the ‘seven forms of rarity’ model76, and thus
consider rarity to be the state in which species exist when they have a small
geographic range, low population size, or narrow habitat specificity. We combined
publicly available data from three sources: (1) population records for vertebrate
species from the Living Planet Database to calculate mean population size, (2)
occurrence data from the Global Biodiversity Information Facility77 (https://www.
gbif.org) and range data from BirdLife78 (http://datazone.birdlife.org) to estimate
geographic range size and (3) habitat specificity and Red List Category data for
each species from the International Union for Conservation79 (https://www.
iucnredlist.org). The populations in the Living Planet Database72 do not include
species that have gone extinct on a global scale. We extracted the number and types
of threats that each species is exposed to globally from their respective species’
IUCN Red List profiles79.
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Fig. 4 On local scales, there are increasing, decreasing and stable populations across the full spectrum of the globally-determined species’ IUCN Red
List Categories and anthropogenic threat type from the species’ IUCN Red List profiles. Numbers in the legend for a–d and in e–f show sample size for
each metric. a, c show the density distributions of population trends across IUCN Red List Categories, the raw values (points) and boxplots with the mean,
first and third quartiles and boxplot whiskers that indicate the distance that covers 1.5 times the interquartile range. b and d show the standardised effect
sizes (centre of error bars) and the 95% credible intervals of population trends b and fluctuations d across IUCN Red List Categories. The μ values of
population trend a, e, f and the σ2 values of population fluctuation c were derived from state-space model fits of changes in abundance over time for each
population. For the relationships between type and number of threats and population fluctuations, see Supplementary Fig. 18. e shows the distributions of
population trends across different threats that the species face globally, with the central tendencies of all distributions overlapping with zero. Lines in
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locally monitored, are exposed to on a global scale. See Fig. 1 caption for further details on effect sizes, Methods for details on deriving the number and
types of threats and Table S2 for model outputs.
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Quantifying population trends and fluctuations over time. In the first stage of
our analysis, we used state-space models that model abundance (scaled to a
common magnitude between zero and one) over time to calculate the amount of
overall abundance change experienced by each population (μ,40,80). State-space
models account for process noise (σ2) and observation error (τ2) and thus deliver
robust estimates of population change when working with large data sets where
records were collected using different approaches, such as the Living Planet
Database41,81,82. Previous studies have found that not accounting for process noise
and measurement error could lead to over-estimation of population declines83, but
in our analyses, we found that population trends derived from state-space models
were similar to those derived from linear models. Positive μ values indicate
population increase and negative μ values indicate population decline. State-space
models partition the variance in abundance estimates into estimated process noise
(σ2) and observation or measurement error (τ2) and population trends (μ):

Xt ¼ Xt�1 þ μþ εt ; ð1Þ
where Xt and Xt−1 are the scaled (observed) abundance estimates (between 0 and 1)
in the present and past year, with process noise represented by εt ~ gaussian(0, σ2).
We included measurement error following:

Yt ¼ Xt þ Ft ; ð2Þ
where Yt is the estimate of the true (unobserved) population abundance with
measurement error:

Ft � gaussian 0; T2
� � ð3Þ

We substituted the estimate of population abundance (Yt) into Eq. 1:

Yt ¼ Xt�1 þ μþ εt þ Ft : ð4Þ
Given

Xt�1 ¼ Yt�1 � Ft�1 ð5Þ
then:

Yt ¼ Yt�1 þ μþ εt þ Ft � Ft�1 ð6Þ
For comparisons of different approaches to modelling population change, see

‘Comparison of modelling approaches section’.

Quantifying rarity metrics. We tested how population change varied across rarity
metrics—geographic range, mean population size and habitat specificity – on two
different but complementary scales. In the main text, we presented the results of
our global-scale analyses, whereas in the SI, we included the results when using
only populations from the UK—a country with high monitoring intensity, Thus,
we quantified rarity metrics for species monitoring globally and in the UK. The
three rarity metrics used in this study were weakly correlated at both UK and global
scales (Supplementary Fig. 11).

Geographic range. To estimate geographic range for bird species monitored
globally, we extracted the area of occurrence in km2 for all bird species in the
Living Planet Database that had records in the BirdLife Data Zone78. For mammal
species’ geographic range, we used the PanTHERIA database84 (http://esapubs.org/
archive/ecol/E090/184/). To estimate geographic range for bony fish, birds,
amphibians, mammals and reptiles monitored in the UK (see Supplementary
Table 5 for species list), we calculated a km2 occurrence area based on species
occurrence data from GBIF77. Extracting and filtering GBIF data and calculating
range was computationally intensive and occurrence data availability was lower for
certain species. Thus, we did not estimate geographic range from GBIF data for all
species part of the Living Planet Database. Instead, we focused on analysing range
effects for birds and mammals globally, as they are a very well-studied taxon and
for species monitored in the UK, a country with intensive and detailed biodiversity
monitoring of vertebrate species. We did not use IUCN range maps, as they were
not available for all of our study species, and previous studies using GBIF occur-
rences to estimate range have found a positive correlation between GBIF-derived
and IUCN-derived geographic ranges85.

For the geographic ranges of species monitored in the UK, we calculated range
extent using a minimal convex hull approach based on GBIF occurrence data77. We
filtered the GBIF data to remove invalid records and outliers using the
CoordinateCleaner package86. We excluded records with no decimal places in the
decimal latitude or longitude values, with equal latitude or longitude, within a one-
degree radius of the GBIF headquarters in Copenhagen, within 0.0001 degrees of
various biodiversity institutions and within 0.1 degrees of capital cities. For each
species, we excluded the lower 0.02 and upper 0.98 quantile intervals of the latitude
and longitude records to account for outlier points that are records from zoos or
other non-wild populations. We drew a convex hull to most parsimoniously
encompass all remaining occurrence records using the chull function, and we
calculated the area of the resulting polygon using areaPolygon from the geosphere
package87.

Mean size of monitored populations. We calculated mean size of the monitored
population, referred to as population size, across the monitoring duration using the

raw abundance data, and we excluded populations, which were not monitored
using population counts (i.e., we excluded indexes).

Habitat specificity. To create an index of habitat specificity, we extracted the
number of distinct habitats a species occupies based on the IUCN habitat category
for each species’ profile, accessed through the package rredlist88. We also quantified
habitat specificity by surveying the number of breeding and non-breeding habitats
for each species from its online IUCN species profile (the ‘habitat and ecology’
section). The two approaches yielded similar results (Supplementary Fig. 10,
Supplementary Table 2, key for the profiling method is presented in Supplementary
Table 6). We obtained global IUCN Red List Categories and threat types for all
study species through their IUCN Red List profiles79.

Testing the sources of variation in population trends and fluctuations. In the
second stage of our analyses, we modelled the trend and fluctuation estimates from
the first stage analyses across latitude, realm, biome, taxa, rarity metrics, phylo-
genetic relatedness, species’ IUCN Red List Categories and threat type using a
Bayesian modelling framework through the packageMCMCglmm89. We included a
species random intercept effect in the Bayesian models to account for the possible
correlation between the trends of populations from the same species (see Supple-
mentary Table 1 for sample sizes). The models ran for 120,000 iterations with a
thinning factor of ten, a burn-in period of 20,000 iterations and the default one
chain. We assessed model convergence by visually examining trace plots. We used
weakly informative priors for all coefficients (an inverse Wishart prior for the
variances and a normal prior for the fixed effects):

Pr μð Þ � N 0; 108
� � ð7Þ

Prðσ2Þ � InverseWishart V ¼ 0; nu ¼ 0ð Þ ð8Þ

Population trends and fluctuations across latitude, biomes, realms and taxa.
To investigate the geographic and taxonomic patterns of population trends and
fluctuations, we modelled population trends (μ) and population fluctuations (σ2),
derived from the first stage of our analyses (state-space models), as a function of (1)
latitude, (2) realm (freshwater, marine, terrestrial), (3) biome (as defined by the
‘biome’ category in the Living Planet Database, e.g., ‘temperate broadleaf forest’90

and (4) taxa (Actinopterygii, bony fish; Elasmobranchii, sharks and rays; Amphibia,
amphibians; Aves, birds; Mammalia, mammals; Reptilia, reptiles). We used sepa-
rate models for each variable, resulting in four models testing the sources of var-
iation in trends and four additional models focusing on fluctuations. Each
categorical model from this second stage of our analyses was fitted with a zero
intercept to allow us to determine whether net population trends differed from zero
for each of the categories under investigation. The model structures for all models
with a categorical fixed effect were identical with the exception of the identity of the
fixed effect, and below we describe the taxa model:

μi;j;k ¼ β0 þ β0 j þ β1*taxai;j;k; ð9Þ

yi;j;k � gaussian μi;j;k; σ
2

� �
; ð10Þ

where taxai,j,k is the taxa of the ith time series from the jth species; β0 and β1 are the
global intercept (in categorical models, β0= 1) and the slope estimate for the
categorical taxa effect (fixed effect), β0j is the species-level departure from β0
(species-level random effect); yi,j,k is the estimate for change in population abun-
dance for the ith population time series from the jth species from the kth taxa.

Population trends and fluctuations across amphibian, bird and reptile phy-
logenies. To determine whether there is a phylogenetic signal in the patterning of
population change within amphibian, bird and reptile taxa, we modelled population
trends (μ) and fluctuations (σ2) across phylogenetic and species-level taxonomic
relatedness. We conducted one model per taxa per population change variable—
trends or fluctuations using Bayesian linear mixed effects models using the package
MCMCglmm89. We included phylogeny and taxa as random effects. The models did
not include fixed effects. We assessed the magnitude of the random effects (phylogeny
and species) by inspecting their posterior distributions, with a distribution pushed up
against zero indicating lack of effect, as these distributions are always bounded by zero
and have only positive values. We used parameter-expanded priors, with a variance-
covariance structure that allows the slopes of population trend (the μ values from the
first stage analysis using state-space models) to covary for each random effect. The
prior and model structure were as follows:

Pr μð Þ � N 0; 108
� �

; ð11Þ

Pr σ2
� � � InverseWishart V ¼ 1; nu ¼ 1ð Þ; ð12Þ

μi;k;m ¼ β0 þ β0 k þ β0m; ð13Þ

yi;k;m � gaussian μi;k;m; σ
2

� �
; ð14Þ
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where β0 is the global intercept (β0= 1), β0l is the phylogeny-level departure from β0
(phylogeny random effect); yi,k,m is the estimate for change in population abundance
for the ith population time series for the kth species with the mth phylogenetic
distance.

To account for phylogenetic uncertainty for each class, we ran ten models with
identical structures, but based on different randomly selected phylogenetic trees.
We report the mean estimate and its range for each class.

Population trends and fluctuations across rarity metrics. To test the influence
of rarity metrics (geographic range, mean population size and habitat specificity)
on variation in population trends and fluctuations, we modelled population trends
(μ) and fluctuations (σ2) across all rarity metrics. We conducted one Bayesian
linear model per rarity metric per scale (for both global and UK analyses) per
population change variable—trends or fluctuations. The response variable was
population trend (μ values from state-space models) or population fluctuation (σ2

values from state-space models), and the fixed effects were geographic range (log
transformed), mean population size (log transformed) and habitat specificity
(number of distinct habitats occupied). The model structures were identical across
the different rarity metrics and below we outline the equations for population
trends and geographic range:

μi;k;n ¼ β0 þ β0 k þ β1*geographic rangei;k;n; ð15Þ

yi;k;n � gaussian μi;k;n; σ
2

� �
; ð16Þ

where geographic rangei,k,n is the logged geographic range of the kth species in the
ith time series; β0 and β1 are the global intercept and slope estimate for the
geographic range effect (fixed effect), β0j is the species-level departure from β0
(species-level random effect); yi,k,n is the estimate for change in population
abundance for the ith population time series from the jth species with the nth
geographic range.

Population trends across species’ IUCN Red List Categories. To investigate the
relationship between-population change and species’ Red List Categories, we
modelled population trends (μ) and fluctuations (σ2) as a function of IUCN Red
List Categories (categorical variable). We conducted one Bayesian linear model per
population change metric per scale (for both global and UK analyses). To test
variation in population trends and fluctuations across the types and number of
threats to which species are exposed, we conducted a post hoc analysis of trends
and fluctuations across threat type (categorical effect) and number of threats that
each species is exposed to across its range (in separate models). The model
structures were identical to those presented above, except for the fixed effect which
was a categorical IUCN Red List Category variable.

The analytical workflow of our analyses is summarised in conceptual diagrams
(Supplementary Figs. 1 and 2) and all code is available on GitHub (https://github.
com/gndaskalova/PopChangeRarity, DOI 10.5281/zenodo.3817207).

Data limitations: taxonomic and geographic gaps. Our analysis is based on 9286
monitored populations from 2084 species from the largest currently available
public database of population time series, the Living Planet Database72. Never-
theless, the data are characterised by both taxonomic and geographic gaps that can
influence our findings. For example, there are very few population records from the
Amazon and Siberia (Fig. 1b)—two regions currently undergoing rapid environ-
mental changes owing to land-use change and climate change, respectively. In
addition, birds represent 63% of all population time series in the Living Planet
Database, whilst taxa such as amphibians and sharks where we find declines are
included with fewer records (Fig. 2 and Supplementary Fig. 4). On a larger scale,
the Living Planet Database under-represents populations outside of Europe and
North America and over-represents common and well-studied species62. We found
that for the populations and species represented by current monitoring, rarity does
not explain variation in population trends, but we note that the relationship
between population change and rarity metrics could differ for highly endemic
specialist species or species different to the ones included in the Living Planet
Database17. As ongoing and future monitoring begins to fill in the taxonomic and
geographic gaps in existing datasets, we will be able to reassess and test the gen-
erality of the patterns of population change across biomes, taxa, phylogenies,
species traits and threats.

Data limitations: monitoring extent and survey techniques. The Living Planet
Database combines population time series where survey methods were consistent
within time series but varied among time series. Thus, among populations,
abundance was measured using different units and over varying spatial extents.
There are no estimates of error around the raw population abundance values
available and detection probability likely varies among species. Thus, it is chal-
lenging to make informed decisions about baseline uncertainty in abundance
estimates without prior information. We used state-space models to estimate
trends and fluctuations to account for these limitations as this modelling frame-
work is particularly appropriate for analyses of data collected using disparate
methods41,81,82. Another approach to partially account for observer error that has

been applied to the analysis of population trends is the use of occupancy models36.
Because the precise coordinates of the polygons where the individual populations
were monitored are not available, we were not able to test for the potential con-
founding effect of monitoring extent, but our sensitivity analysis indicated that
survey units do not explain variation in the detected trends (Supplementary
Fig. 12).

Data limitations: temporal gaps. The population time series we studied cover the
period between 1970 and 2014, with both duration of monitoring and the fre-
quency of surveys varying across time series. We omitted populations that had less
than five time points of monitoring data, as previous studies of similar population
time series data have found that shorter time series are less likely to capture
directional trends in abundance63. In a separate analysis, we found significant lags
in population change following disturbances (forest loss) and that population
monitoring often begins decades to centuries after peak forest loss has occurred at a
given site45. The findings of this related study suggest that the temporal span of the
population monitoring does not always capture the period of intense environ-
mental change and lags suggest that there might be abundance changes that have
not yet manifested themselves. Thus, the detected trends and the baseline across
which trends are compared might be influenced by when monitoring takes place
and at what temporal frequency. Challenges of analysing time series data are
present across not just the Living Planet Database that we analysed, but more
broadly across population data in general, including invertebrate datasets65.
Nevertheless, the Living Planet Database represents the most comprehensive
compilation of vertebrate temporal population records to date, allowing for ana-
lyses of the patterns of vertebrate trends and fluctuations around the world.

Data limitations: time series with low variation. Eighty populations (<1% of the
9286 time series) had very little variance (see Supplementary Table 7 for full
references for those studies). The majority of those studies are for bird species and
come from the North American breeding bird survey with a measurement unit of
an index91. We have also observed some time series that appear to show logistic
relationships with little natural variance (e.g., time series 468, 10193, 17803, see
Supplementary Table 8 for full references). Inspecting the raw data showed that
some populations have abundances which follow an almost perfect linear or
logarithmic increase over time, as could be the case for modelled, versus raw field
data. We provide the references for these studies and cannot definitely attribute the
low variance to a particular cause across all studies. Some of these studies are
reported in units that are an index which may not capture variation in the same
way as other raw units of population data. Some of these time series may represent
modelled population data based on demographic information rather than only
direct observations of populations (e.g., time series 135592). We chose to not
remove studies that may not be raw observation time series based on visual
inspection of trends to avoid introducing bias against populations with naturally
low variation into our analysis.

Clustering in the values of population trends and fluctuations. We found a
clustering of population trend and fluctuation values in some parts of the popu-
lation change spectrum. For example, we found two peaks—in small increases and
in small decreases over time—which were most prevalent in terrestrial bird studies
and species, monitored using an index (Fig. 2, Supplementary Fig. 12). Overall
11.4% of time series had trend values between 0.02 and 0.03 and 11.6% of time
series had trend values between −0.03 and −0.02. There was also a similar, but
smaller, clustering around trends of 0.25 and −0.25. All reported population trends
are from models that converged successfully, and visual inspection indicated to us
that the μ values are appropriate estimates for the individual time series (Supple-
mentary Fig. 6e). We investigated the population time series where the value of the
population trends over time were estimated to be the same value and found that
they came from a variety of taxa, locations and survey methods (Supplementary
Fig. 6e). We hypothesise that there might be a publication bias against publishing
no net change studies, which could explain the trough in μ values of around zero in
long-term studies. The clustering of values for some time series may sometimes be
associated with the same time series that also have low variance (Supplementary
Fig. 6e, see discussion above). With the information available in the Living Planet
Database metadata, we cannot fully explain the clustering in population trends. We
advocate for more detailed metadata in future versions of the Living Planet
Database to allow researchers to filter the database appropriately for individual
analyses.

Challenges in estimating geographic range. Estimating geographic range across
taxa, and specifically for species that are not birds or mammals, remains challen-
ging owing to data limitations. We used a static measure of geographic range,
which does not account for changes in species distributions over time. Further-
more, species could naturally have a small range or the small range size could be
due to historic habitat loss93. The UK populations included in the Living Planet
Database are predominantly from species with wide geographic ranges (Supple-
mentary Table 5), and our global-scale analysis of the relationship between-
population change and geographic range is based on mammal and bird data. As
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data availability improves, future research will allow us to test the effect of geo-
graphic range on the trends of other taxa, such as amphibians and sharks.

Trends relative to null expectation. We tested whether the number of increasing
and decreasing populations trends differed from a null expectation using a data
randomisation approach (Supplementary Fig. 5b). We used linear models to esti-
mate trends in the data and randomised data with identical structure to the Living
Planet Database. We found that there were over 10 times more population declines
and increases in the real data relative to the randomised data (2.29% of trends were
declining and 2.30% were increasing in the randomised data, versus 28.9% and
32.5% of time series, which had significant negative and positive slopes in the real
data, respectively).

Monitoring duration, sampling methods and site-selection bias. To assess the
influence of monitoring duration on population trends, we used a Bayesian linear
model. We modelled population trend (μ) as a function of monitoring duration
(years) for each population, fitted with a zero intercept, as when duration is zero,
no population change has occurred. Monitoring duration was weakly positively
related to vertebrate population trends, with slightly greater population increases
found for longer duration studies (Supplementary Fig. 6, Supplementary Table 2).
There was a similar weakly positive effect of number of time points within time
series (Supplementary Table 2). In addition, we tested if monitoring duration
influenced the relationships between population trends across systems, and
population trends across taxa. We found that duration did not influence those
relationships, with the exception of reptiles, where declines were more frequent as
monitoring duration increased (Supplementary Table 2). Variation in population
trends was not explained by sampling method across the five most commonly used
abundance metrics (population index, number of individuals, number of pairs,
number of nests and population estimate, Supplementary Fig. 12). Following
Fournier et al.64, we tested the time series that we analysed for site-selection bias.
Removing the first five survey points reduces the bias stemming from starting
population surveys at points when individual density is high, whereas removing the
last five years reduces the bias of starting surveys when species are very rare. The
distribution of population trend values across time series was not sensitive to the
omission of the first five (left-truncation) or the last five years (right-truncation) of
population records (Supplementary Fig. 5a). In addition, we used a data rando-
misation approach to compare the distribution of trends from the real data to a
null distribution and found different patterns (Supplementary Fig. 5b). Overall, our
sensitivity analyses suggest that our findings are robust to the potential con-
founding effects of differences in monitoring duration, sampling method and site-
selection.

Comparison of modelling approaches. We conducted the following supple-
mentary analyses: in the second-stage Bayesian models estimating population
trends across systems, biomes, taxa and rarity metrics, (1) we weighed μ values by
the square of τ2, the observation error estimate derived from the state-space
models40, (2) we used slopes of linear model fits of abundance (scaled at the
population level, centred on zero and with a standard deviation of one)73 instead of
the μ estimates from state-space models, (3) we modelled the standard error
around the slope values of the linear models, the error around μ (half of the 95%
confidence interval) and the standard deviation of the raw population data for each
time series as additional metrics of population variability. To allow comparison, we
scaled the different metrics of population variability to be centred on zero and with
a standard deviation of one before they were used as response variables in models.
All different analytical approaches yielded very similar results (see main text and
Supplementary Figs. 5, 6 and 16, Supplementary Table 2).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Raw data are available from the following websites: for population time series72—http://
www.livingplanetindex.org/data_portal, GBIF occurrences77—https://www.gbif.org, bird
geographic ranges78—http://datazone.birdlife.org, mammal geographic ranges84—http://
esapubs.org/archive/ecol/E090/184/, species’ habitat preferences, threat types and IUCN
Red List Categories79—https://www.iucnredlist.org, and phylogenies6–8—https://vertlife.
org and https://birdtree.org.

Code availability
Code for all data processing and analyses and summary data sets are publicly available on
GitHub and archived on Zenodo (https://doi.org/10.5281/zenodo.3817207)94.
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