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Air quality assessment 
and pollution forecasting 
using artificial neural networks 
in Metropolitan Lima‑Peru
Chardin Hoyos Cordova1, Manuel Niño Lopez Portocarrero1, Rodrigo Salas2, Romina Torres3, 
Paulo Canas Rodrigues4 & Javier Linkolk López‑Gonzales1,5*

The prediction of air pollution is of great importance in highly populated areas because it directly 
impacts both the management of the city’s economic activity and the health of its inhabitants. This 
work evaluates and predicts the Spatio-temporal behavior of air quality in Metropolitan Lima, Peru, 
using artificial neural networks. The conventional feedforward backpropagation known as Multilayer 
Perceptron (MLP) and the Recurrent Artificial Neural network known as Long Short-Term Memory 
networks (LSTM) were implemented for the hourly prediction of PM

10
 based on the past values of 

this pollutant and three meteorological variables obtained from five monitoring stations. The models 
were validated using two schemes: The Hold-Out and the Blocked-Nested Cross-Validation (BNCV). 
The simulation results show that periods of moderate PM

10
 concentration are predicted with high 

precision. Whereas, for periods of high contamination, the performance of both models, the MLP and 
LSTM, were diminished. On the other hand, the prediction performance improved slightly when the 
models were trained and validated with the BNCV scheme. The simulation results showed that the 
models obtained a good performance for the CDM, CRB, and SMP monitoring stations, characterized 
by a moderate to low level of contamination. However, the results show the difficulty of predicting 
this contaminant in those stations that present critical contamination episodes, such as ATE and HCH. 
In conclusion, the LSTM recurrent artificial neural networks with BNCV adapt more precisely to critical 
pollution episodes and have better predictability performance for this type of environmental data.

The World Health Organization (WHO) reported that air pollution causes 4.2 million premature deaths per year 
in cities and rural areas around the world1. The US Environmental Protection Agency2 mentions that one of the 
pollutants with the most significant negative impact on public health is particulate material with a diameter of 
less than ten µm ( PM10 ) because it can easily access the respiratory tract causing severe damage to health. For 
their part, Valdivia and Pacsi3 report that Metropolitan Lima (LIM) is vulnerable to high concentrations of PM10 , 
due to its accelerated industrial and economic growth, in addition to its large population, as it is home to 29% 
of the total Peruvian population4.

To mitigate the damage caused by PM10 to public health, the WHO established concentration thresholds suit-
able to achieve a minimum adverse effect on health5. In various countries, several laws were issued to regulate 
PM10 concentrations and air quality in general6, as established in Peru by the Ministry of the Environment7 and 
in, e.g., the United States by the Environmental Protection Agency (EPA)8.

In recent years, various forecasting methodologies have been adapted and developed to understand how 
pollutants behave in the air at the molecular level, simulating diffusion and dispersion patterns based on the size 
and type of the molecule. However, the results of the prediction tend to achieve a somehow low precision9,10. 
Examples of such models are the Community Multiscale Air Quality model and the Weather Research and Fore-
casting model coupled with Chemistry developed in Chen et al.11 and Saide et al.12, respectively, which are used 
to forecast air quality in urban areas. On the other hand, some methods tend to be more appropriate to model 
and forecast air quality because they use statistical modeling techniques, such as Artificial Neural Networks 
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(ANNs). These models have been widely used to forecast time series and applied to environmental data such as 
particulate matter in different countries13,14.

Several studies have been focusing on applying recurrent neural networks to forecast air quality in large cit-
ies. For instance, Guarnaccia et al.15 reported that predicting air quality with high accuracy can be problematic. 
This issue is becoming increasingly important because it is a tool capable of providing complete information for 
helping to prevent critical pollution episodes and reduce human exposure to these contaminants13,16,17. However, 
there is a limited number of studies in the context of Lima, Peru, which is one of the cities with the highest pol-
lution levels in South America18–20. For instance, Herrera and Trinidad21 used neural networks to predict PM10 
in the Carabayllo district - Lima, with a good forecasting performance. Salas et al.22 developed a NARX model 
using artificial neural networks to predict the PM10 pollutant in Santiago, Chile. Athira et al.23 aimed at forecast-
ing PM10 three days ahead and at comparing the performance of the standard LSTM, GRU, and RNN models, 
concluding that all three models showed good performance for out-of-sample forecasting.

Lima is considered to be one of the most polluted cities in Latin America in terms of PM10 . In this sense, the 
need for sophisticated environmental management instruments arises, aiming at making predictions with greater 
precision using cutting-edge methodologies, such as deep learning algorithms, which support decision-making 
to establish mitigation and prevention policies. In addition, it allows the population to avoid being exposed to 
high concentrations of PM10 . For this reason, this study aims to assess the air quality of Lima, to understand its 
behavior, and the possible causes and factors that favor pollution. Subsequently, we applied the Multilayer Per-
ceptron (MLP) and the Long Short-Term Memory (LSTM) models to forecast PM10 concentrations, where the 
models were evaluated under two validation schemes: the Hold-out (HO) and the Block Nested Cross-Validation 
(BNCV). Our contributions are summarized below:

•	 In this study, we have implemented artificial neural networks to model time series data collected from five 
meteorological and air quality monitoring stations from Lima, Peru. The monitoring stations are ATE, Campo 
de Marte (CDM), Carabayllo (CRB), Huachipa (HCH) and San Martin de Porres (SMP). We have investigated 
the geographical and meteorological divergence of the forecast results from the five air quality monitoring 
areas in LIM using data collected from two years.

•	 The proposed time series forecasting model based on the MLP and LSTM neural networks efficiently pre-
dicted one-hour-ahead PM10 concentrations. The prediction performances between the five stations were 
compared. According to the literature review, this study is the first to use deep learning algorithms to predict 
air quality ( PM10 ) in LIM.

•	 We have focused the study in LIM because its air pollution has worsened in recent years. The main reason for 
this change is that population growth has been unsustainable, and high industrial activity and the accelerated 
growth of the automobile fleet have increased. These factors make it challenging to predict PM10 pollution 
concentrations.

The remainder of the paper is structured as follows: Section “Materials and methods” presents the developed 
methodology based on an exploratory study described in two phases. In Section 3, we present the main results 
and their discussion. Finally, in Section 4, we provide the main conclusions and give some future works.

Materials and methods
In this work, we follow the Knowledge Discovery from Databases (KDD) methodology to obtain relevant infor-
mation for air quality management decision-making. The main goal of the KDD is to extract implicit, previously 
unknown, and potentially helpful information24 from raw data stored in databases. Therefore, the resulting 
models can predict, e.g., one-hour ahead, the air quality and support the city’s management decision-making 
(see Fig. 1).

The KDD methodology has the following stages: (a) Phenomena Understanding; (b) Data Understanding; (c) 
Data Preparation; (d) Modeling; (e) Evaluation; and, (d) Selection/Interpretation. In the following subsections, 
we explain each stage of the process.

Phenomena Understanding.  In this first stage, we contextualize the contamination phenomenon con-
cerning the PM10 concentrations in the five Lima monitoring stations. The main focus is to predict air pollution 
to support decision-making related to establishing pollution mitigation policies. For this, we use both MLP and 
LSTM as computational statistical methods for PM10 prediction.

Lima is the capital of the Republic of Peru. It is located in the center of the western side of the South American 
continent in the 77◦ W and 12◦ S and, together with its neighbor, the constitutional province of Callao, form a 
populated and extensive metropolis with 10,628,470 inhabitants and an area of 2819.3 km225,26.

The average relative humidity (temperature) in the summer (December–March) ranges from 65–68% 
(24 °C–26 °C) in the mornings, while at night the values fluctuate between 87–90% (18 °C–20 °C). In the winter 
(June–September), the average daytime relative humidity (temperature) ranges between 85–87% (18 °C–19 °C) 
and at night it fluctuates between 90–92% (18 °C–19 °C). The average annual precipitation is 10 mm. On the 
other hand, the average altitudes reached by the thermal inversion in summer and winter are approximately 500 
and 1500 m above sea level, respectively27,28.

Data understanding.  Lima has ten air quality monitoring stations located in the constitutional province 
of Callao and the north, south, east, and center of Lima. The data used comprise hourly observations from Janu-
ary 1st, 2017, to December 31st, 2018, and includes three meteorological variables and the concentration of 
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particulate matter PM10 . Where the latter is considered to be an agent that, when released into the environment, 
causes damage to ecosystems and living beings29,30. For this study, the hourly data, recorded at five air quality 
monitoring stations (see Fig. 2), which are managed by the National Service of Meteorology and Hydrology of 
Peru (SENAMHI), was considered. Table 1 shows the considered variables and their units of measurement.

When considering environmental data, such as PM10 concentrations, from different locations, preliminary 
spatio-temporal visualization studies are of great use to better understand the behavior of the meteorological 
variables, the topography of the area, and the pollutants31.

KDD process
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Data
Understanding

Data
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Figure 1.   Knowledge Discovery from Databases (KDD) methodology used for Air Quality Assessment and 
Pollution Forecasting.

Figure 2.   Map with the study area and the locations of the Lima air quality monitoring stations: ATE, Campo 
de Marte (CDM), Carabayllo (CRB), Huachipa (HCH) and San Martin de Porres (SMP).
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Data preparation.  This stage is very relevant because it precedes the modeling stage. The preparation of 
the data had various stages. First, we address the problem of missing data. The treatment was performed with 
the MICE library. This library performs multiple imputations using the Fully Conditional Specification32 and 
requires a specification of a separate univariate imputation method for each incomplete variable. In this context, 
predictive mean matching, a versatile semiparametric method focusing on continuous data, was used, which 
allows the imputed values to match one of the observed values for each variable. The data imputation was per-
formed for each of the five stations with a percentage of missing data below 25%.

The data from the monitoring stations consist of a sequence of observed values {xt} recorded at specific times 
t. In this case, the time series is collected at hourly intervals. After the data imputation, we proceed to normalize 
all the observations in the range [0,1] as follows:

Moreover, the time series is decomposed into the trend, seasonality, and the irregular components following an 
additive model (the cyclic component is omitted in this work):

The trend component Trendt at time t reflects the long-term progression of the series that could be linear or 
non-linear. The seasonal component Seasonalt at time t, reflects the seasonal variation. The irregular component 
Irregulart (or “noise”) at time t describes the random and irregular influences. In some cases, the time series has 
a cyclic component Cyclict that reflects the repeated but non-periodic fluctuations. The main idea of applying 
this decomposition is to obtain the deterministic and the random components, where a forecasting model is 
obtained using the deterministic part33,34. In this article, we have used the method implemented in Statmodels 
for Python35, where a centered moving average filter is applied to the time series.

Modeling using artificial neural networks.  Artificial Neural Networks have received a great deal of 
attention in engineering and science. Inspired by the study of brain architecture, ANNs represent a class of non-
linear models capable of learning from data36. The essential features of an ANN are the basic processing elements 
referred to as neurons or nodes, the network architecture describing the connections between nodes, and the 
training algorithm used to estimate values of the network parameters.

Researchers see ANNs as either highly parameterized models, or semiparametric structures36. ANNs can 
be considered as hypotheses of the parametric form h(·;w) , where the hypothesis h is indexed by the vector of 
parameters w . The learning process consists of estimating the value of the vector of parameters w to adapt the 
learner h to perform a particular task.

Machine Learning and Deep learning methods have been successfully applied for time series forecasting37–42. 
For instance, recurrent artificial neural networks (RNNs) are dynamic models frequently used for processing 
sequences of real data step by step, predicting what comes next. They are applied in many domains, such as the 
prediction of pollutants43. It is known that when there are long-term dependencies in the data, RNNs are chal-
lenging to train, which leads to the development of models such as the LSTM that have been successfully applied 
in time series forecasting44.

The Multilayer Perceptron model consists of a set of elementary processing elements called neurons36,45–48. 
These units are organized in architecture with three layers: input, hidden, and output. The neurons corresponding 
to one layer are linked to the neurons of the subsequent layer. Figure 3 illustrates the architecture of this artificial 
neural network with one hidden layer. The non-linear function g(x,w) represents the output of the model, where 
x is the input signal and w being its parameter vector. For a three-layer FANN (one hidden layer), the k-th output 
computation is given by the following equation

where � is the number of hidden neurons. An important factor in the specification of neural models is the activa-
tion function’s choice. These can be any non-linear functions as long as they are continuous, bounded, and differ-
entiable. The transfer function of the hidden neurons f1(·) should be nonlinear while for the output neurons the 
function f2(·) could be a linear function or nonlinear functions. One of the most used functions is the sigmoid:

(1)Xt =
xt −min{xt}

max{xt} −min{xt}

(2)Xt = Trendt + Cyclict + Seasonalt + Irregulart

(3)gk(x,w) = f2


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[2]
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Table 1.   Pollutant and weather variables used in this study, and their units of measurement.

Variable Unit of measurement

PM10 µg/m3

Temperature ◦C

Relative humidity %

Wind speed m/s

Wind direction Degrees ( ◦)
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The MLP operates as follows. The input layer neurons receive the input signal; these neurons propagate the 
signal to the first hidden layer and do not make any processing. The first hidden layer processes the signal and 
transfers it to the subsequent layer; the second hidden layer propagates the signal to the third, and so on. When 
the signal is received and processed by the output layer, it generates the response.

The Long Short-Term Memory networks model is a type of RNN, having as its primary strength the ability to 
learn long-term dependencies and being a solution for long time series intervals20,49. In such a model, memory 
blocks replace the neurons in the hidden layer of the standard RNN50. The memory block consists of three gates 
that control the system’s state: Input, forget, and output gates. First, the input gate determines how much informa-
tion will be added to the cell. Second, the forget gate controls the information lost in the cells. Lastly, the output 
gate performs the function of determining the final output value based on the input and memory of the cell51,52.

Figure 4 shows the LSTM model block, with the output and input blocks, which consists of three gates. 
At each step, an LSTM maintains a hidden vector h and a memory vector o responsible for controlling status 
updates and outputs.

The first step is to decide what information will not be considered in the status cell. This decision is made by 
the forget gate, which uses a hyperbolic tangent activation function (IAF). ft represents the output of the forget 
gate, which can be calculated using equation (5). This gate considers the concatenation of the vectors ht−1 and 
xt . It generates a number between 0 and 1 for each number in the state cell Ct−1 , where Wf  and bf  are the weight 
matrices and the bias vector parameters, respectively. Both must be learned during training and are stored in 
the vector ft . If one of the values of this vector is equal to or close to zero, then the LSTM will eliminate that 
information. On the other hand, if it reaches values equal to or close to 1, this information will be maintained 
and reach the status cell.

The next step is to decide what new information to store in the status cell. This is done by the input gate, linked 
to a sigmoid activation function (GAF), and with an output for that gate ( it ), all this is calculated by the equation 
(6, 7). In addition, for the input block, the hyperbolic tangent activation function (IAF) is used. First, the vectors 
ht−1 and xt are concatenated. Being Wi and bi , the weight matrices and the bias vector parameters, respectively, 

(4)f (z) =
1

1+ exp(−z)

(5)ft =σ
(
Wf · [ht−1, xt]+ bf

)

(6)it =σ(Wi · [ht−1, xt]+ bi)

(7)C̃t = tanh
(
WC̃ · [ht−1, xt]+ bC̃

)

(8)Ct =
(
ft · Ct−1

)
+

(
it · C̃t

)

(9)ot =σ(Wo[ht−1, xt]+ bo)

(10)ht =ot · tanh(Ct)

Figure 3.   Schematic of the architecture of the Multilayer Perceptron. The figure shows three layers of neurons: 
input, hidden and output layers.
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must be learned during training; all this is stored in the vector it called the input gate, which decides which values 
to update. Then a hyperbolic tangent function creates a vector of new candidate values, C̃t , involving the vectors 
ht−1 and xt . In the next step, these values are filtered by multiplying point by point both vectors to create a status 
cell update. The previous cell, Ct−1 is updated to the new state of cell Ct (equation 8).

In addition, the output gate, also linked with the GAF activation function and with an output of the output 
gate ( ot ), for its calculation uses the equation (equation 9). Finally, ht , expresses the new output of the model 
(equation 10). The current cell state is represented by Ct , while W is the weight vector o parameters of the model, 
and b is the bias of the model.

Model evaluation.  To evaluate the forecast ability of the models, the performance metrics given below were 
used (see53,54). In what follows, we will consider: yi , i = 1, . . . , n , are the target values; ŷi , i = 1, . . . , n , are the 
model’s predictions; ȳi is the mean of the target values; and n is the number of samples. 

1.	 Mean Absolute Error: The average absolute difference between the target and the predicted values. 

2.	 Root Mean Squared Error: The squared root of the average of the squared errors. 

3.	 Symmetric Mean Absolute Percentage Error: A measure of accuracy based on a percentage of relative errors. 

4.	 Spearman’s rank correlation coefficient: A nonparametric correlation measure between the target and the 
prediction. Spearman’s correlation assesses monotonic relationships by using the rank of the variables. 

(11)MAE =

∑n
i=1

∣∣yi − ŷi
∣∣

n

(12)RMSE =

√∑n
i=1

(
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n
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100%

n
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Figure 4.   Model of one block of the LSTM. The block is composed of the input gate, forget gate and output gate.
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where di = rg(yi)− rg(ŷi) is the difference between the ranks of the targets rg(yi) and the predictions rg(ŷi).

Model selection and interpretation.  The model selection and interpretation is the final step in the KDD 
process and requires that the knowledge extracted from the previous step be applied to the specific domain of 
the PM10 prediction in a visualized format. At this stage, in addition to selecting the model with the best preci-
sion in the prediction, it also drives the decision-making process based on the air quality assessment in Lima.

We have used two schemes for the validation: Hold-Out (HO) and Blocked Nested Cross-Validation (BNCV). 
On the one hand, HO has the conventional separation of the dataset in training, validation, and testing subsets 
(see Fig. 5). On the other hand, the BNCV is a fixed-size window that slides, and the model is retrained with all 
the data up to the current day (see Fig. 6).

Results and discussion
Air quality assessment in Metropolitan Lima‑Peru.  In this section, we report the results of the statis-
tical analysis of air pollution in LIM.

Statistical analysis of the concentration of PM10.  Table 2 shows the descriptive analysis of the data from the 
five monitoring stations focused in the PM10 , between 01-01-2017 and 31-12- 2018. Additionally, the histogram 
(see Fig. 7) is reported to show the behavior of the pollutant in every season. In the probability distribution, it 
is observed that they are skewed to the right, which indicates the existence of critical episodes of contamina-
tion, being the HCH station the one with the highest incidence, with an average of 130.03± 91.68 µg/m3 . This 

(14)S = 1−
6
∑n

i=1 d
2
i

n
(
n2 − 1

)

valida�on holdout 
sample

Tes�ng

tes�ng holdout sample

Training Valida�on

Hold-Out Scheme

Figure 5.   Hold-Out Scheme used for the validation of the models. The dataset is split into three sets: training, 
validation, and testing. The train set is the basis for training the model, and the test set is used to see how well 
the model performs in untrained PM10 concentrations.

Train Test

Training Subset Valida�on

Blocked Nested Cross-Valida�on

1. Train each split with op�mal 
parameters

2. Average each split’s test error

Tune hyperparameters

Train Test

Train Test

Train Test

Train Test

Figure 6.   Blocked Nested Cross-Validation Scheme used for the validation of the models. The dataset is 
separated into three sets using a time-window of fixed size: training, validation, and testing. The last day is used 
for testing.

Table 2.   Descriptive statistics for the five PM10 monitoring stations.

SM Minimun Maximun 1st Qu. 3rd Qu. Median Mean ± DS Variance Skewness Kurtosis

CRB 5.44 488.02 31.49 58.45 198.31 48.69± 28.39 806.03 3.24 22.27

SMP 7.77 426.80 61.95 105.10 142.50 86.05± 35.73 1276.41 1.00 2.86

CDM 6.08 463.60 35.84 63.45 145.50 52.30± 24.61 605.54 2.30 18.25

ATE 6.41 931.00 82.90 148.00 421.90 121.56± 60.30 3635.75 2.08 11.07

HCH 5.21 974.00 62.10 176.50 138.40 130.03± 91.68 8404.34 1.53 4.89
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value exceeds that standardized by the Peruvian norm7, and shows relevant fluctuations and high dispersion of 
pollutants (8404.34 µg/m3 ) that cause a high standard deviation. The stations HCH and ATE register higher 
concentration levels. The order of the stations from the lowest to the highest levels of the mean of PM10 is as fol-
lows: CRB; CDM; SMP; ATE; HCH. Similar behaviour was found in other studies31,55. Encalada et al.31 carried 
out a study of visualization of PM10 concentrations in Lima using the same data, where similar behavior pat-
terns of PM10 concentrations are shown in the five stations. In addition, all the stations surpass the PM10 limits 
established by the WHO. Moreover, four of the five stations (except CRB) exceed the utmost limits of the annual 
arithmetic mean of PM10 proposed in the Quality Standards Environmental (ECA) in Peru.

Analysis of the correlations with the meteorological variables.  A significant correlation between PM10 and the 
meteorological variables was observed in the station HCH, which is the area with the highest PM10 concentra-
tion. Factors such as dust, population / area ratio and weather conditions have a predominant effect on PM10 
concentration56. Figure 8 shows that there is a moderate positive correlation (0.39) between temperature and 
PM10 and a moderate negative correlation (-0.38) between relative humidity and PM10 . This is due to the mete-
orological patterns that occur in the study area. According to Silva et al.57 between the years 1992 and 2014, the 
base of thermal inversions in Lima ranged between 0.6 and 0.9 kilometers from June to November and between 
0.1 and 0.6 kilometers from December to May, having a minimum average of 0.13 kilometers in March, which 
coincides with the season that presents critical episodes of PM10 concentrations.

The thermal inversion in the summer months reduces the dispersion of atmospheric pollutants because the 
density of the stratiform clouds decreases. Consequently, solar radiation leads to an increase in temperature 
and to a reduction in relative humidity. The latter results in a turbulent process causing the resuspension of 
coarse particles as PM10

25. High temperatures increase the photochemical activity that causes the decomposi-
tion of matter and, consequently, the increase of PM10

58–60. On the other hand, stratiform cloudiness increases 
in winter, as does relative humidity, that accompanied by drizzles in that season, help to significantly decrease 
the temperature and PM10 concentrations due to wet deposition typical of the season28. The above explains the 
high negative correlation observed between temperature and relative humidity in the five monitoring stations 
(see Fig. 8), which is a normal phenomenon because the relative humidity directly depends on temperature 
and pressure to determine the capacity of the air in the intake of water vapor61. For this reason, the higher the 
temperature, the lower the relative humidity, as shown in Fig. 9.

Influence of wind direction and speed on PM10 concentrations.  The stations located in the highest area (eastern 
part) of the city have the highest concentration of PM10 . Contrary to the above, the stations located in the lowest 
area have a lower concentration of PM10 . This trend is due to the entry direction of persistent local winds from 
the coast to the south-southwest, which causes that pollutants such as PM10 be transferred to the northeast and 
east areas of the city, making them in critical places of contamination by particulate matter28,31.

Although there is no significant correlation between wind speed and PM10 , this parameter has meteorologi-
cal influence on the dispersion, resuspension, and horizontal transport of pollutants, provided that there are 
strong air currents (winds)61–63, which is not the case of the present study because the highest frequencies of 
wind speeds are between 0 – 3.10 m/s31.

The wind speed has a meteorological influence on the dispersion, suspension, and horizontal transport of 
pollutants provided that there are strong air currents (winds)61–63. However, this is not the case of the present 
study because the highest frequencies of wind speeds are between 0 and 3.10 m/s31, meaning that there is no 
significant correlation between wind speed and PM10.
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Figure 7.   PM10 Histograms for each of the five monitoring stations, respectively CRB, SMP, CDM, ATE, and 
HCH.
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Critical episodes of PM10 contamination at the HCH station.  The station with the highest average PM10 con-
centration between 2017 and 2018 is HCH (see Table 2). This area has the characteristic of high vehicular traffic 
compared to the rest of the stations considered. The Ramiro Prialé highway that crosses HCH and is the most 
used to access the central road connects the center and the east of the Peruvian territory, turning it into high 
traffic congestion. Moreover, 2,462,321 vehicles were circulating in Lima64 in 2017, and according to the National 
Institute of Statistics and Informatics (INEI), the vehicle fleet in Peru grew by 4.4% between 2017 and 201865. 
The aforementioned explains the influence of high traffic vehicles in critical pollution episodes in HCH, which 
according to what is referred by Srishti et al.66, the traffic caused from vehicles contributes to about 21% of PM10 
of the pollution. In addition, it is associated with the wear of tires and brakes64.

Another particular feature of HCH compared to the other stations is the dilapidated, unpaved roads and 
the frequent inadequate disposal of land clearing on public roads by the population. These conditions generate 
a significant increase in dust, the main component of particulate matter, contributing to 54% of air pollution. 

PM
10

Te
m
p.

HR
W
S

PM10 Temp. HR WS

1.00

0.75

0.50

0.25

0.00

-0.25

-0.50

-0.75

0.043

0.043

-0.091

0.035

0.035 0.38

0.38-0.88

-0.88 -0.48

-0.48

1

1

1

1

-0.091

(a) ATE

PM
10

Te
m
p.

HR
W
S

PM10 Temp. HR WS

1.00

0.75

0.50

0.25

0.00

-0.25

-0.50

-0.75

0.044

0.38

0.38-0.86

-0.86 -0.52

1

1

1

1

-0.380.39

0.39

-0.38

-0.520.044

(b) HCH

PM
10

Te
m
p.

HR
W
S

PM10 Temp. HR WS

1.00

0.75

0.50

0.25

0.00

-0.25

-0.50

-0.75

0.074

0.36

0.36-0.84

-0.84 -0.48

1

1

1

1

-0.091

-0.091

-0.480.074

-0.0054

-0.0054

(c) CRB

PM
10

Te
m
p.

HR
W
S

PM10 Temp. HR WS

1.00

0.80

0.60

0.40

0.20

0.00

-0.40

-0.60

-0.20

0.06

0.13

0.13-0.65

-0.65 -0.43

1

1

1

1

-0.032

-0.032

-0.430.06

0.012

0.012

(d) CDM

PM
10

Te
m
p.

HR
W
S

PM10 Temp. HR WS

1.00

0.80

0.60

0.40

0.20

0.00

-0.40

-0.60

-0.20

0.083

0.31

0.31-0.63

-0.63 -0.49

1

1

1

1

-0.063

-0.063

-0.490.083

0.11

0.11

(e) SMP

Figure 8.   Correlation matrices between the meteorological variables and the PM10 for each monitoring station.
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The soil dust has a more significant impact in seasons or areas with little rainfall66–68. Furthermore, Lima is con-
sidered a city where it seldom rains and that only slight drizzles or wet haze breakouts from cloud-type clouds 
nimbostratus69.

In the surrounding area of HCH, there is also high industrial activity. Industrialization is directly associated 
with the increased generation of PM10

69. Concepción and Rodríguez70 note that both the industrial activity 
and the vehicle fleet are the leading causes of the generation of high concentrations of PM10 in Lima, where the 
primary industries are brick kilns and non-metallic ore extraction. Moreover, it was evidenced that the HCH 
brick industries do not have the appropriate technology to mitigate air pollution and that in all their processes, 
high emission of particulate matter, from the movement of land to the burning of tires, plastics, or firewood in 
the ovens71. Added to all this, it is the lack of green areas in HCH, which facilitates the resuspension of PM10.

Exploratory analysis on a daily and monthly scale.  The predominant time scale in the concentration of PM10 
was evaluated in two episodes (see Fig. 10). That between 07:00 and 11:00 in the morning, followed by the one 

ATE CDM

CRB

HCH SMP

Figure 9.   Time series of all variables, PM10 , temperature, relative humidity and wind speed, in each monitoring 
station, ATE, CDM, CRB, HCH and ATE, respectively.
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between 17:00 and 22:00 at night. Similar results were found by Sánchez et al.27, where the air quality of Lima 
was evaluated in 2015. From the above, it can be inferred that the levels of environmental pollution referring to 
PM10 , find the highest peaks in the evening (153.9991 and 151.9256µg/m3 ), while the lowest peaks are between 
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Figure 10.   Bar plot per day and month for each monitoring station, ATE, CDM, CRB, HCH, and ATE, 
respectively. The average hourly pollution per day of the week and month of the year is reported for all 
monitoring stations.
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03:00 and 04:00 a.m. each day, which coincides with the results reported for the station HCH. As mentioned by 
Valdivia et al.3, this is related to the reduction in emissions from mobile sources that are own of the dawn.

The behavior of concentration levels of contamination varies depending on the month. In each monitoring 
station, we can see two main peaks (see Fig. 10). The first corresponds to February, March, and April, which 
report the highest contamination in the first semester of the year. In this period, it is the beginning of classes for 
schoolchildren that intensifies vehicle activity. The end of the summer and the beginning of the autumn are the 
period associated with the time at which the thermal inversion occurs, which favors the generation of high peaks 
of PM10 contamination57. The second peak involves the winter season and the beginning of spring, highlighting 
mainly October as part of the second semester of the year. Similar results were found by Encalada et al.31.

In these time windows, the stations with the highest critical episodes were HCH and ATE, while CRB had 
the lowest PM10 concentrations. In addition, from the emissions of high traffic vehicular and fixed sources of 
pollution, the meteorological and topographic conditions of the study area cause the high emission of PM10 in 
the air, exceeding the proposed standards in all cases by WHO.

Air pollution forecasting results.  In this study, we focus on the one-hour ahead prediction of the PM10 
concentration based on both the past values of the pollutant concentration and the current weather variables. 
For this, the MLP and LSTM were used with a particular architecture. Based on the autocorrelation function 
(ACF) and the partial autocorrelation function (PACF), relevant lags were detected that are used in the model. 
The configuration of the network is associated with the information provided by the ACF and PACF, where the 
lags t − 1 , t − 2 , t − 3 , t − 23 , and t − 24 of the PM10 time series are defined as relevant. In addition, tempera-
ture, relative humidity, and wind speed are used with t − 4 (4 hours ago). In summary, the non-linear autore-
gressive model with exogenous variables identified has the following structure:

where {Xt , t ∈ N} is the PM10 time series. The weather exogenous variables are {Temperaturet , t ∈ N} , 
{Humidityt , t ∈ N} and {Windt , t ∈ N} for temperature, humidity and wind speed respectively. Moreover, εt is 
the random noise. The non-linear function gANN (·) stands for either the MLP or the LSTM neural networks.

The purpose of incorporating exogenous variables in this study is to improve the precision of the forecast. 
The exogenous variables are crucial to improve the efficiency of predictions by identifying the important mete-
orological covariates that affect PM10 , such as temperature, relative humidity, and wind speed72.

In this work, we have implemented a three-layer MLP with 8 input nodes, 16 hidden nodes, and 1 output 
node. The activation function for the hidden and output nodes is the sigmoid function f (z) = (1+ e−z)−1 . On 
the other hand, the LSTM was implemented with 16 parallel blocks, and the output of each block is aggregated 
with a single neuron with a sigmoid activation function. To train both ANN models, we have selected the mean 
absolute error for the loss function as a robust function due to outliers. The nadam optimizer was used for the 
backpropagation algorithm. A 25% dropout strategy with a 10% of validation data was applied to avoid over-
fitting. A maximum of 500 epochs and batch sizes of 1024 was used to fit the models’ weights.

Two alternatives were considered to obtain out-of-sample forecasts (see Fig. 11). On the one hand, the ANN 
models were adjusted with the training set only once for the Hold-Out scheme, and the resulting model was 
used to forecast one-hour ahead for the last 60 days of data. On the other hand, the ANN modes were trained 
several times with a fixed sliding window for the Blocked Nested Cross-Validation, where the model was updated 
for each subsequent day belonging to the test set, and the following days (24 samples) were used for the test set.

Table 3 shows the performance results obtained by the MLP and LSTM models evaluated in the test set using 
the Hold-Out and the Blocked Nested Cross-Validation Schemes. Figure 11 shows the graphs obtained by the 
predictions of the LSTM neural network for the five monitoring stations. Artificial neural networks show good 
prediction performance according to the Spearman score (over 0.60) for all the stations, except for ATE that 
reaches a score near 0.52. ATE and HCH monitoring stations are located in industrial areas with heavy traffic 
stations. The ATE and HCH monitoring stations have the highest levels of contamination and a more significant 
presence of outliers, which is reflected in the error metrics with values greater than twice that of the other sta-
tions. Notice that RMSE shows a higher value due to the presence of extreme values in the PM10 levels, being 
MAE less affected by this type of value. On the other hand, the models evaluated by applying the BNCV scheme 
show slightly better performance than their HO counterparts. However, the BNCV scheme keeps the models 
updated with the latest records through an incremental training process with the new data.

The models’ performances were strongly affected by a period of excessive contamination with critical episodes 
that appeared between December 3rd, 2018, and December 21st, 2018 (just before the Christmas festivities).

The time series of the pollutant was decomposed into trend, seasonality and irregular components using the 
decomposition method described in equation 2. The irregular component was subtracted from the original time 
series, and filtered time series is obtained:

Table 4 shows the performance results obtained by the MLP and LSTM models evaluated in the test set using 
the Hold-Out and the Blocked Nested Cross-Validation Schemes applied to the filtered time series. Under this 
situation, both the MLP and the LSTM performed very well in predicting the regular component of the PM10 
contamination levels at all monitoring stations. A remarkable point is an outstanding performance obtained by 
the artificial neural network models, which shows that the irregular component is hard to predict. Figure 12 
shows the graphs obtained by the predictions of the LSTM neural network for the five monitoring stations.

(15)Xt = gANN (Xt−1,Xt−2,Xt−3,Xt−23,Xt−24,Temperaturet−4,Humidityt−4,Windt−4)+ εt

(16)X̃t = Trendt + Seasonalt
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Figure 11.   Plots for one-hour ahead predictions for the last 15 days of the PM10 concentration level using 
LSTM with the BNCV scheme. Predictions for the following monitoring stations: (a) ATE, (b) CDM, (c) CRB, 
(d) HCH, (e) SMP.
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Comparison of the present study with past studies.  This section shows the comparison of the pre-
sent study with other previous studies on the evaluation and prediction of PM10 in Lima, showing the duration 
of the study and the main findings. It is observed that our results agree with the other studies in that vehicular 
traffic is the main activity that causes critical episodes of PM10 , and this is exacerbated in the summer months.

•	 Silva et al.28 shows that the highest concentrations of PM10 were observed in the eastern part of the city. The 
main sources of particulate material are the large open areas, vehicular traffic, the commercialization of rub-
ble, bricks, and cement. The highest concentrations of PM10 are observed in summer. Pollutant types: PM10 , 
PM2.5 . Duration of study: 6 years (2010-2015).

•	 Reátegui-Romero at al.73 show that, for the monitoring stations in the eastern zone, the highest concentra-
tions of PM10 are observed in the northern area of Lima, the Relative Humidity is inversely proportional to 
the concentrations of PM10 , higher peaks are observed in the summer month. Pollutant types: PM10 , PM2.5 . 
Duration of study: 2 months (February and July 2016).

•	 Sanchez et al.10 show that there is a higher concentration of PM10 in the areas with the greatest impact of 
vehicular traffic, reaching maximum concentrations of 476,8 µg/m3 for Santa Anita station. They used the 
WRF-Chem model to predict PM10 concentrations, obtaining low precision results. Pollutant types: PM10 . 
Duration of study: 33 days (2016).

•	 In our study, we have specified that the major sources of the pollutant PM10 are the vehicle fleet, the industrial 
park, and overcrowding, reaching maximum peaks of 974 µg/m3 at the HCH station. The highest concentra-
tions were observed in the summer months. Artificial neural networks were used, specifically, the LSTM 
model under two validation schemes to predict PM10 concentrations. The results showed good prediction 
performance for both low concentrations and critical episodes. Pollutant types: PM10 . Duration of study: 
2 years (2017-2018).

Table 3.   Performance results for the MLP and LSTM models were evaluated using The Hold-Out and the 
Blocked Nested Cross-Validation schemes. The summary of the results corresponds to one-hour ahead 
predictions of the concentration levels of the pollutant PM10 evaluated in the last 60 days of the data set.

Metrics

ATE CDM CRB HCH SMP

MLP LSTM MLP LSTM MLP LSTM MLP LSTM MLP LSTM

Hold-Out scheme

MAE 27.458 27.637 9.639 9.609 6.577 6.548 42.740 41.514 10.441 10.105

RMSE 45.752 46.509 13.771 13.743 10.573 10.682 64.297 62.903 15.959 15.520

sMAPE 24.059 24.071 19.344 19.328 17.283 17.208 33.846 32.829 14.331 13.935

Spearman r 0.517 0.514 0.658 0.660 0.756 0.755 0.649 0.663 0.815 0.823

Blocked Nested Cross-Validation scheme

MAE 26.845 27.066 9.689 9.562 6.644 6.339 44.586 43.191 10.155 9.696

RMSE 44.718 45.923 13.885 13.808 10.840 10.722 64.785 63.690 16.162 15.752

sMAPE 23.590 23.607 19.499 19.240 17.280 16.639 35.54 34.569 14.012 13.467

Spearman r 0.523 0.520 0.654 0.657 0.756 0.766 0.632 0.648 0.815 0.817

Table 4.   Performance results for the MLP and LSTM models were evaluated using The Hold-Out and the 
Blocked Nested Cross-Validation schemes. The summary of the results corresponds to one-hour ahead 
predictions of the filtered time series of the concentration levels of the pollutant PM10 evaluated in the last 60 
days of the data set.

Metrics

ATE CDM CRB HCH SMP

MLP LSTM MLP LSTM MLP LSTM MLP LSTM MLP LSTM

Hold-Out scheme

MAE 4.203 2.659 1.737 1.336 1.628 1.423 6.370 4.255 2.830 1.941

RMSE 5.724 3.706 2.235 1.732 2.192 1.844 8.324 5.837 3.602 2.299

sMAPE 3.646 2.411 3.581 2.830 4.269 3.927 4.636 3.224 4.063 2.867

Spearman r 0.986 0.991 0.973 0.982 0.967 0.974 0.981 0.988 0.982 0.990

Blocked Nested Cross-Validation scheme

MAE 4.217 2.720 1.829 1.325 1.645 1.333 6.621 4.561 2.749 1.841

RMSE 5.738 3.731 2.350 1.712 2.297 1.835 8.622 6.101 3.558 2.194

sMAPE 3.619 2.468 3.743 2.810 4.330 3.575 4.905 3.454 3.856 2.709

Spearman r 0.984 0.991 0.973 0.982 0.963 0.973 0.977 0.987 0.980 0.991
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Figure 12.   Plots for one-hour ahead predictions for the last 15 days of the regular component of the PM10 
concentration level using LSTM with the BNCV scheme. Predictions for the following monitoring stations: (a) 
ATE, (b) CDM, (c) CRB, (d) HCH, (e) SMP.



16

Vol:.(1234567890)

Scientific Reports |        (2021) 11:24232  | https://doi.org/10.1038/s41598-021-03650-9

www.nature.com/scientificreports/

Limitations
This study has some limitations. First, the number of data points represents a relatively short period (two years). 
A more extended period of hourly data may have allowed a more rigorous statistical analysis and more conclusive 
results. It is worth mentioning that the data related to PM10 in Lima requires greater attention since many sta-
tions do not have the pertinent record of this pollutant, added to the scarce existing research related to this topic. 
Second, the collection of data related to other meteorological variables was also restricted since the monitoring 
stations do not record correctly for the most part. Third, the study does not consider data related to vehicular 
traffic or hospital care; the use of both variables may have enriched the research. However, our findings from the 
PM10 analysis are consistent and complementary to a recent study showing the visual and exploratory aspect of 
the pollutant31. In addition, the MLP and LSTM architectures that allowed the analysis of predictions under two 
validation schemes are the precedent for future work with a predictive approach, being the first study in Lima 
that addresses the prediction of PM10 using neural networks artificial. Likewise, it will be a support in the taking 
of preventive actions to critical environmental episodes.

Conclusions
This study addressed the problem of forecasting PM10 concentration on an hourly scale based on air quality 
indicators from five monitoring stations in Lima, Peru. A comparative study was accomplished between the MLP 
and LSTM neural networks evaluated with the Hold-Out and Blocked Nested Cross-Validation.

The MLP and LSTM can use the data from the previous period to accurately forecast the value of the PM10 
concentration in a short time ahead. They can learn the PM10 concentration trends accurately. However, the 
performance is diminished when a station is subject to unpredictable external sources of pollution or due to 
short-term changes in climate and landforms (ATE and HCH). In this sense, the LSTM with the BNCV could 
better adapt to data from the monitoring stations that present episodes of extreme values. The results show that 
periods of moderate PM10 concentration are predicted with very high precision. While for periods of high con-
tamination, the model’s accuracy is diminished, although in any case, it has a reasonable degree of predictability.

Using a high-performance model in air quality forecasting in large cities, such as Lima, can help develop 
critical health protection and prevention tools. Deep learning neural networks such as the LSTM are crucial in 
helping design public policies that prioritize improving air quality conditions to develop more sustainable cities.

The different configurations of the LSTM respond to the forecast of PM10 events by selecting the relevant 
meteorological variables. Precisely, the essential property of the LSTM is that through its memory units, they can 
remember the patterns over time, which is beneficial when forecasting PM10 . In this sense, LSTM with BNCV 
could better adapt to data from the monitoring stations that present episodes of extreme values.

The results show that the PM10 concentration prediction achieves better results with artificial intelligence 
methods since they are suitable for this type of approach. However, it is proposed to conduct this type of study 
with other cross-validation methods and hybrid and ensemble methods, giving greater precision in the predic-
tion. This study will help in decision-making regarding air pollution mitigation and strategies, not only in Lima 
but also in other cities in the country and abroad. In this sense, this study of PM10 could be extrapolated to other 
pollutants, both at a national and international level. In fact, a recent study74 showed that genetic programming 
had higher prediction accuracy than artificial neural networks and was equally competent for peak predictions. 
Further works are required to explore other methods (hybrid or ensemble) to increase the accuracy of predictions.

As future work, we expect to apply other variants of deep learning models that include incremental learning75, 
as well as to introduce self-identification techniques for the model identification41,76.
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