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Abstract

Background

Coloration is one of the most recognizable characteristics in chickens, and clarifying the col-

oration mechanisms will help us understand feather color formation. “Yufen I” is a commer-

cial egg-laying chicken breed in China that was developed by a three-line cross using lines

H, N and D. Columbian plumage is a typical feather character of the “Yufen I” H line. To elu-

cidate the molecular mechanism underlying the pigmentation of Columbian plumage, this

study utilizes high-throughput sequencing technology to compare the transcriptome and

proteome differences in the follicular tissue of different feathers, including the dorsal neck

with black and white striped feather follicles (Group A) and the ventral neck with white

feather follicles (Group B) in the “Yufen I” H line.

Results

In this study, we identified a total of 21,306 genes and 5,203 proteins in chicken feather folli-

cles. Among these, 209 genes and 382 proteins were differentially expressed in two loca-

tions, Group A and Group B, respectively. A total of 8 differentially expressed genes (DEGs)

and 9 differentially expressed proteins (DEPs) were found to be involved in the melanogene-

sis pathway. Additionally, a specifically expressed MED23 gene and a differentially

expressed GNAQ protein were involved in melanin synthesis. Kyoto Encyclopedia of Genes

and Genomes (KEGG) analysis mapped 190 DEGs and 322 DEPs to 175 and 242 path-

ways, respectively, and there were 166 pathways correlated with both DEGs and DEPs. 49

DEPs/DEGs overlapped and were enriched for 12 pathways. Transcriptomic and proteomic

analyses revealed that the following pathways were activated: melanogenesis, cardiomyo-

cyte adrenergic, calcium and cGMP-PKG. The expression of DEGs was validated by real-
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time quantitative polymerase chain reaction (qRT-PCR) that produced results similar to

those from RNA-seq. In addition, we found that the expression of the MED23, FZD10,

WNT7B and WNT11 genes peaked at approximately 8 weeks in the “Yufen I” H line, which

is consistent with the molting cycle. As both groups showed significant differences in terms

of the expression of the studied genes, this work opens up avenues for research in the future

to assess their exact function in determining plumage color.

Conclusion

Common DEGs and DEPs were enriched in the melanogenesis pathway. MED23 and

GNAQ were also reported to play a crucial role in melanin synthesis. In addition, this study is

the first to reveal gene and protein variations in in the “Yufen I” H line during Columbian

feather color development and to discover principal genes and proteins that will aid in func-

tional genomics studies in the future. The results of the present study provide a significant

conceptual basis for the future breeding schemes with the “Yufen I” H line and provide a

basis for research on the mechanisms of feather pigmentation.

Introduction

“Yufen I” is an egg-laying chicken breed in China, which was developed by a three-line cross

using line H as the first male parent, line N as the maternal grandparent and line D as the final

male parent. As authorized by the National Commission on Livestock and Poultry Genetic

Resources in 2015, this breed has been bred true for at least six generations. However, a closed

breeding method was used to develop the line H by crossing the barred plumaged-original

Gushi chicken with an egg-laying grandparent line C, the brown-shelled Babcock B-380. Line

H is a fast plumage line and is characterized by early maturity, high egg production and the

Columbian plumage pattern. Columbian plumage is a character of feather color in the “Yufen

I” H line in which the dorsal neck, tail and apex of the wing feathers have black and white

stripes and other feathers are white. This pattern was also regarded as the main pigmentation

character of the “Yufen I” H line.

Complex feather coloration is likely coordinated through multiple genes that regulate

diverse mechanisms, with more than 200 genes involved in pigmentation that have been stud-

ied in mammals [1]. Many studies have identified key genes that determine the types of pig-

ments (melanin) that are expressed by melanocytes [2]. Birds are among the most colorful

vertebrates. Melanins, porphyrins, polyenes, carotenoids and structural colors have been dis-

covered in feathers [3]. Feather color in chickens is a result of the melanin produced by the

melanocytes of the feather follicles. Feathers and feather follicles are ideal tissues to explore the

genetic mechanisms and complexity of color patterns in birds. As a derivative of chicken skin,

the feather follicles give rise to the feathers and are capable of self-renewal, and their prolifera-

tion and differentiation result in feather formation [4–6]. In adult feather follicles, plumage

pigmentation is mainly dependent on the interaction between feather follicle melanocytes and

dermal papilla fibroblasts. Pigmentation activity occurs only during the growth period of

feather follicles, and the transfer of melanin and pigment to keratinocytes depends on the

activity of melanin precursors. The melanin or pigment is transferred to the skin and feather

follicles through the regulation of signal transduction pathways [7,8]. Studies have revealed

that many growth factors and receptors coordinate genes and that the environment and
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signaling pathways play an extremely important role during feather growth. To date, some of

the confirmed pathways involved in pigmentation include cAMP pathway [9], SCF-KIT path-

way [10], PI3K-Akt pathway [11], BMP signaling pathway [12], Notch pathway [13], ERK

pathway [14], CREB/MITF/tyrosinase pathway [15], MCIR/(Gs-AC)/PKA pathway [16–18],

Wnt/β-catenin pathway [19,20] and MAPK pathway [21,22].

Uniformity in the appearance of birds is essential in the poultry industry [23]. Although

plumage color is easily observed, the genetics behind feather pigmentation are governed by

both qualitative and quantitative features [24]. Research reveals that the ratio of pheomela-

nin (yellow-red pigment) and eumelanin (black-brown pigment) pigmentation regulates

feather color in chickens [25,26]. Eumelanin pigmentation requires that the melanoblasts

migrate to the epidermis from the neural crest to ultimately reach the developing feather

follicles. Another requirement is the proportion of the pigment subject to control by genes

[27,28]. Melanosomes are responsible for synthesizing these pigments. These organelles are

granule-like and develop within melanoblasts, which go through several steps of differentia-

tion to form melanocytes. The preliminary steps for melanin production include the

appearance of the neural crest, determination of melanoblasts, migration, proliferation and

differentiation [29–31]. Besides this, melanogenesis regulation after the melanocytes

migrate into feather follicles is another important step. The variation in plumage may be

caused by any mutations in relevant genes and changes in molecules (receptors of transcrip-

tion factors on cells, structural proteins, enzymes and growth factors) involved in the afore-

mentioned process [32,17,33]. Until now, several studies have focused on genes such as

MC1R, ASIP, TYR, SLC24A5, KITLG, MITFCDKN2A/B, PMEL17 and DCT, which play a

role in melanin proportion synthesis [34,25,35–41].

Many genes and pathways have been shown to be associated with pigmentation. However,

research on the genetics of Columbian plumage in chickens is lacking. Feathers have different

forms in terms of color and morphology, not only among different bird species but also

among different body regions of an individual bird [42,43]. Some studies used transcriptomics

to analyze the skin and hair follicles of poultry and found differentially expressed genes

(DEGs) related to feather color and morphology, which provided a theoretical basis for study-

ing the formation, development and regeneration of feathers [44,45]. In this experiment, we

collected the feather follicles in two parts: the dorsal feather follicles of the neck with black and

white-striped feathers (Group A) and the ventral feather follicles of the neck with white feath-

ers (Group B). This study aimed to discover the differentially expressed genes (DEGs), differ-

entially expressed proteins (DEPs) and Kyoto Encyclopaedia of Genes and Genomes (KEGG)

pathways by transcriptomic (RNA-seq) and proteomic (iTRAQ) analyses and to forecast

potential candidate genes of Columbian plumage in order to determine which genes and path-

ways affect feather coloration.

Materials and methods

Disclosure of ethics

Experimental animals were maintained per the rules in National standards for the environ-

ment and facilities of experimental animals of China (GB14925-2010). All the chickens were

healthy, with a coop size of 0.12m2 and 0.4m high for each. Adequate and clean drinking water

and feed were provided. All protocols for animal experiments received approval from the Insti-

tutional Animal Care and Use Committee (IACUC) of Henan Agricultural University and

from Henan Agricultural University’s Animal Care Committee, College of Animal Science

and Veterinary Medicine, China (Permit Number: 17–0322).
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Animals for experiments and tissue sources

The Animal Center of Henan Agricultural University provided us with chickens of the “Yufen

I” H line breed for this study. Three 22-week-old female chickens were anaesthetized with “Su-

Mian-Xin” (a type of anesthetic, Shengda Animal Pharmaceutical Co., Ltd, Dunhua, China),

which is diluted with saline at a volume ratio of 1:2. The chickens were anesthetized by i.v.

injection in the wing vein with a concentration of 0.2mL/kg for approximately 20 minutes,

and then the neck feathers were plucked. New feathers emerged in the skin after two weeks.

Next, the three chickens involved in this study were placed in an airtight box and humanely

sacrificed by inhaling carbon dioxide in order to reduce their suffering. Six tissue samples

including feather follicles and the circumjacent skin closely around the rachis of the feathers

were collected from the dorsal and ventral areas, the locations at which black and white-striped

feathers and white feathers occur, respectively (Fig 1). Three replicates were collected for each

group (A1 to A3 for Group A and B1 to B3 for Group B). Approximately 20~30 feather follicles

were placed into 2-mL tubes, and then the tubes were sealed, dipped in liquid nitrogen to

freeze quickly and stored at -80˚C storage isolation and sequencing of RNA and qRT-PCR

analysis [46].

Fig 1. “Yufen I” H line chicken and the feather bulbs used in this study. (A). “Yufen I” H line chicken, (B). black and white striped-feathers in the dorsal neck, (C).

white feathers in the ventral neck.

https://doi.org/10.1371/journal.pone.0210850.g001
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Extraction of total RNA and RNA-seq

Six frozen samples corresponding to the two feather follicle areas (Group A and Group B)

were selected for isolation of total RNA. The feather follicles of the “Yufen I” H line were used

to extract total RNA using TRIzol reagent (Invitrogen, USA) and used in library construction.

The assessment of contamination and degradation of RNA were performed with standard

denaturing agarose gel electrophoresis. The RNA integrity, concentration and purity were

evaluated on an Agilent RNA6000 Nano Chip in Reagent Port 1 of the Bioanalyzer Agilent

2100 (Agilent Technologies, CA, USA). Sequencing of the libraries was performed on the Illu-

mina HiSeq 4000 platform by BGI Co., Ltd. Data were deposeted in the NCBI Sequence Read

Archive under Accession SRR7973871. To process the raw data, the FASTQ format was first

processed through SOAPnuke (v1.5.2), and then reads carrying adapters, poly-N sequences

and those of low quality were deleted from the raw data to obtain clean data. Additionally, we

calculated the Q20 and Q30 at error rates of 1% and 0.1%, respectively, for the clean data. To

ascertain whether resequencing was required, quality control (QC) for alignment was carried

out. These high quality data were used for the analyses performed downstream.

Transcriptomic data processing

After read filtering, we used HISAT (v0.1.6-beta) to perform genome mapping. To map RNA-

seq reads, a spliced alignment program, HISAT, is fast and sensitive with an accuracy that is

equal to or better than that of other methods. The spliced mapping algorithm of HISAT has

been applied for genome mapping of preprocessed reads [47,48]. Reads that passed the QC

test were aligned to a reference genome assembly of chicken (Gallus gallus 5.0, https://www.

ncbi.nlm.nih.gov/assembly/GCF_000002315.4/) from NCBI. Measurement of the abundance of

expression for each assembled transcript was done using the Fragments per Kilobase of exon

model per Million mapped reads (FPKM) values.

FPKM ¼
total exon fragments

mapped reads ðmillionsÞ � exon length ðkbÞ

For the two groups, to analyze differential expression, the levels of gene and transcript

expression were determined using RSEM software (V1.2.12). For each pair of samples, the

DEGs were screened using a model derived from PossionDis software [49]. In this paper,

“false discovery rate (FDR)� 0.001 and the fold change� 2 (absolute value of log2Ratio� 1)”

were set as the significant threshold values to ascertain the differences between the gene

expression. The phyper function of R software was used to identify enriched KEGG (http://

www.kegg.jp/) pathways (p� 0.05) and Gene Ontology (GO: http://www.geneontology.org),

respectively. Additionally, to identify the major metabolic and signal transduction pathways,

KEGG enrichment analysis was performed on the DEGs. Likewise, GO enrichment analysis

was performed to ascertain the main molecular functions, cellular components and biological

processes associated with DEGs.

RNA validation through qRT-PCR

To validate the RNA-seq data, qRT-PCR was used, and seven DEGs were selected for the anal-

ysis. The same samples used for RNA sequencing were used for reverse transcription and syn-

thesis of cDNA with the PrimeScript RT Reagent Kit with gDNA Eraser following the

instructions of the manufacturer (TaKaRa, Dalian, China). To design the primers for

qRT-PCR, the NCBI Primers-BLAST online program was used. Information regarding the

primers of these genes can be found in S1 Table. Each 10 μL qRT-PCR reaction contained
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1.0 μL of cDNA, 0.5 μL of each primer at 10 μM, 5.0 μL of 2×SYBR1 Premix Ex Taq™ II

(TaKaRa, Dalian, China), and 3 μL of deionized water. The reaction was carried out on a

LightCycler1 96 Real-Time PCR system (Roche Applied Science, Indianapolis, USA).The

internal control was the GAPDH gene, and the 2-ΔΔCT method was used to assess expression.

The procedure for qRT-PCR amplification is shown: 95˚C for 3 min; 35 cycles at 95˚C for 30 s,

60˚C for 30 s, and 72˚C for 20 s; and a final extension for 10 min at 72˚C. The data were statis-

tically analyzed using SPSS V 21.0 (SPSS Inc., Chicago, IL, USA). One-way and repeated- anal-

yses of variance followed by Dunnett’s test were carried out. The data are shown in the form of

the mean ± SE with significance set at p� 0.05.

Protein extraction and iTRAQ reagent labeling

In the context of several experiments, an approach called isobaric tags for relative and absolute

quantification (iTRAQ) has been successfully used. Here, the samples were used for RNA-seq

as well as iTRAQ analysis. For protein extraction, the lysis of 2 g of each of the samples was car-

ried out in lysis buffer 3 (TEAB with 1 mM PMSF, 8 M Urea, 10 mM DTT and 2 mM EDTA,

pH 8.5) with 2 magnetic beads of 5 mm diameter. The samples were kept in a tissue lyser for 2

min at 50 Hz so that the proteins were released and then subjected to centrifugation at 25,000

x g for 20 min at 4 C, The the supernatant was transferred into a fresh tube, and 10 mM DTT

(dithiothreitol) was added for reduction at 56˚C for 60 mins, followed by alkylation using 55

mM IAM (iodoacetamide) at room temperature, in the dark for 45 min, and then centrifuged

under the same conditions described above.

The concentration and quality of proteins were assessed with a Bradford assay of the super-

natant and confirmed with 12% SDS-PAGE.Then, 100 mM TEAB was used to dilute 100μg of

protein solution with 8M urea that was subjected to digestion using Trypsin Gold (40:1 pro-

tein: enzyme, Promega, Madison, WI, USA) at 37˚C overnight. Subsequently, an iTRAQ

Reagent 8-plex Kit was used to label samples, followed by combining the differently labeled

peptides, desalting using a Strata X C18 column (Phenomenex), and finally vacuum drying in

accordance with the instructions in the manufacturer’s protocol. After this step, fractionation

of these pooled mixtures was performed on a Shimadzu LC-20AB high pressure liquid chro-

matography (HPLC) pump system with a high pH RP column, followed by nanoelectrospray

ionization and subsequent tandem mass spectrometry (MS/MS) on a Triple TOF 5600 system

(SCIEX, Framingham, MA, USA). Triplicate experiments were carried out.

Proteomics database processing

The ProteoWizard tool was utilized to convert raw MS/MS data into “.mgf” format followed

by searching these exported files with Mascot (v 2.3.02) in this project against a database (Gal-
lus gallus 5.0, https://www.ncbi.nlm.nih.gov/assembly/GCF_000002315.4/). Identification

required the presence of a minimum of one unique peptide. Parameters set included: MS/MS

ion search; Trypsin enzyme; 0.1 Da was the mass tolerance of fragment; Monoisotopic mass

values; Variable modifications oxidation (M) and iTRAQ8plex (Y); 0.05 Da was the tolerance

for Peptide mass; Fixed modifications Carbamidomethyl (C), iTRAQ8plex (N-term), iTRAQ8-

plex (K); Database I-ZAwBa007 (50596 sequences); Database_info transcriptome. Identifica-

tion was performed using peptides that reached a confidence level of 95%.

The iTRAQ peptides were analyzed in a quantitative format with IQuant automated soft-

ware [50]. This software incorporates a method based on machine learning called Mascot Per-

colator [51], which can rescore results from databases to yield a significant scale of standards.

A 1% FDR was used to pre-filter PSMs that were used to measure the confidence level. A set of

confident proteins was assembled using the parsimony principle also termed as the “simple
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principle”. Using the picked protein FDR strategy as a basis [52], followed by protein inference

with an FDR at a protein level lesser than or equal to 0.01, an FDR of 1% was measured in

order to limit the number of false positives. The quantification of proteins involved identifica-

tion of proteins, correction of tag impurities, normalization of data, imputation of missing val-

ues, calculation of protein ratio, and statistical approaches followed by presentation of the

results.

The proteins that had a p-value lower than 0.05 and a fold change of 1.2 were classified as

DEPs. Analysis of metabolic pathways was in accordance with KEGG, while analysis of other

databases, COG and GO, was in lieu of earlier research [53]. The hypergeometric test was

applied to analyze DEP enrichment analysis in KEGG and GO. The equation was as follows:

p ¼ 1 �
Xm� 1

i¼0

M
i

� �
N� M
n� i

� �

N
n

� �

Where N represents the quantity of identified proteins that were linked to data from GO

and KEGG analyses, n represents the measure of DEPs within N, M represents the quantity of

proteins linked to a pathway or term of GO or KEGG, and m represents the quantity of DEPs

linked to a pathway or term of GO or KEGG. An enrichment of differential proteins was con-

sidered when the p-value� 0.05. The DEG analysis was the same as the DEP analysis.

Transcriptomics and proteomics: Association analysis

Genes are regulated at multiple levels during the expression process. At present, most studies

have reported that the expression consistency between mRNAs and their corresponding pro-

teins is not very high, so a combined analysis of the proteome and transcriptome is helpful for

discovering the regulation of gene expression [54]. Cluster 3.0 software was utilized to analyze

clusters for DEP expression with that of transcripts in order to recognize transcripts and DEPs

with similarity across various tissues with a graphical output from Java Treeview software. All

expression data related to proteomics and transcriptomics were analyzed, and the Spearman

correlation coefficient was calculated using R software [55]. Associations between the expres-

sion of mRNA and proteins from these respective “omics” were quantified followed by analysis

for GO as well as KEGG enrichmentin order to study the potential role of DEGs/DEPs in

metabolism or signal transduction. The combined transcriptomic and proteomic analysis

parameters are given in S2 Table.

Results

Analysis of data from RNA sequencing

The Illumina HiSeq 4000 platform was employed to sequence 6 preparations of cDNA library.

The RNA-seq data showed high consistency among the libraries (Table 1). A total of 44.06 MB

Table 1. Gene expression and clean reads analyses in “Yufen I” H line feather follicles.

Sample name Raw reads/Mb Clean reads/Mb Clean reads

Q30/%

Mapping

rate/%

Uniquely mapped rate/% Total gene number Total transcript number

A1 66.38 44.06 94.88 74.23 67.56 19054 36729

A2 69.62 45.05 94.74 71.66 62.18 18640 33464

A3 72.86 44.23 95.00 70.56 63.28 18669 33808

B1 66.38 44.90 94.74 71.65 65.75 18567 33874

B2 69.62 44.18 94.84 67.83 62.22 18565 34097

B3 66.38 44.62 94.80 71.97 64.73 18793 33858

https://doi.org/10.1371/journal.pone.0210850.t001
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of clean reads and 45.05 MB of clean reads were obtained from the 6 cDNA libraries. The Q30

for each sample was more than 94%, and approximately 71% of the clean reads were mapped

to the chicken genome (Gallus gallus 5.0).The data are indicative of data of high quality

sequencing which can ensure the reliability of results for further investigation.

Identification of DEGs

To identify genes involved in feather coloration, DEGs were detected in the “Yufen I” H line

using PossionDis software [56]. Of a total of 21,306 identified genes, 597 novel genes and

12,687 novel isoforms were identified in chicken feather follicle libraries in this work. A total

of 209 (83 upregulated and 126 downregulated) DEGs were detected at the two locations (the

dorsal and ventral areas, where black and white-striped feathers and white feathers occur). All

of the DEGs are illustrated in S3 Table. Earlier research showed several genes involved in pig-

mentation (e.g., ASIP, KITLG) [57,58].

In order to corroborate whether the RNA-seq gene expression data were accurate and

reproducible, 7 genes were subjected to selection for qRT-PCR in the two groups. The expres-

sion of KITLG, FZD10, WNT7B, WNT9A, WNT11, PVALB and MED23 was validated by

qRT-PCR (Fig 2). As the results from both analyses were consistent with each other, the reli-

ability of the sequencing was indicated.

The downy feathers of chickens are reportedly replaced by the second generation at the age

of 6 weeks. At the age of 8 weeks, the second generation of feathers begins to molt and a large

number of third-generation feathers begin to appear. At this time, the feather color tends to be

stable. We collected feather follicles at 0, 2, 4, 6, 8, 10 and 12 weeks from the dorsal neck of the

“Yufen I” H line chicken. Using qRT-PCR, we found that MED23, FZD10, WNT7B and

WNT11 gene expression peaked at approximately 8 weeks, which is consistent with the

Fig 2. Verification of DEGs via qRT-PCR. The 2-ΔΔCT method was used for data analysis, and the housekeeping gene

was GAPDH. Data shown on the vertical-axis represents the relative expression. Significant differences between two

groups were determined by applying the unpaired Student’s t-test. � 0.01< p< 0.05, �� p< 0.01. All dataare presented

as means ± standard error (SE).

https://doi.org/10.1371/journal.pone.0210850.g002
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molting cycle (Fig 3). Furthermore, FZD10, WNT7B andWNT11 are located in the melano-

genesis pathway, and MED23 is specifically expressed in the dorsal feather follicles of the neck

with black and white-striped feathers.

Metabolic pathways and GO analysis of DEGs

KEGG pathway and GO analyses were performed in order to interpret the exact roles played

by the DEGs that regulate feather pigmentation. Using Blast2GO, we classified the DEGs with

GO terms and KEGG pathways according to their functions. With the KEGG and GO annota-

tion results, official classification of DEGs was performed followed by functional enrichment

study with these databases using phyper, an R software function.

Classification of 209 DEGs with GO terms was performed with the Blast2GO platform to

identify functional roles with an abundance of the following terms: “biological processes,”

“molecular functions” and “cellular components” (FDR� 0.01). Many genes were associated

with cell part, cell, organelle, and cellular process as well as binding. The categories with abun-

dance were the processes associated with cell, single-organism, metabolic process and multi-

cellular organisms, as well as regulation of biological process in the biological processes

category. Cells, cell part and organelles showed maximum abundances in the category called

cellular component. The majority of the unigenes could be classified into binding and catalytic

activity functions in terms of function (Fig 4A).

As a result, 190 DEGs were mapped to 175 pathways in KEGG (FDR� 0.01); therein, 188

DEGs were enriched in environmental information processing, of which 81 DEGs were

enriched at the level of signaling molecules and interaction and 107 DEGs showed enrichment

at the level of signal transduction. The most enriched pathways of the DEGs were focal adhe-

sion, metabolic pathways, PI3K-Akt, cGMP-PKG, calcium and adrenergic signaling pathway

in cardiomyocytes showed significant enrichment in two groups (Fig 4B).

Fig 3. qRT-PCR validation of DEGs involved in the feather cycle. Changes in DEGs in feather follicles from the

dorsal neck of the chicken at 0, 2, 4, 6, 8, 10 and 12 weeks.

https://doi.org/10.1371/journal.pone.0210850.g003
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iTRAQ data analysis

iTRAQ analysis or proteomics was carried out to supplement the transcriptomics data from

the same samples. The range of masses of identified proteins was 10 to 100 kDa, while the aver-

age coverage was challenged for groups with more than 100 kDa. These data are indicative of

reliable proteomic analyses [59]. This technique aided the identification of 293,356 spectra in

the samples which were subjected to data filtering to obtain 51,631 unique spectra that could

be matched with 23,244 unique peptides, for the total identification of 5,203 proteins (Table 2).

Functional classification and annotation of DEPs

The DEPs were identified with a p-value< 0.05 and fold change� 1.2 between the dorsal and

ventral feather follicles of the neck. In brief, 382 DEPs (160 upregulated and 222 downregu-

lated) were detected in the feather follicles (S4 Table), followed by classification into functions

of COG categories. Clearly, changes were observed in the levels of proteins involved in func-

tions such as general function prediction only; posttranslational modification, protein

Fig 4. KEGG and GO analyses of DEGs. (A) GO functional annotation histogram of the DEGs. The vertical axis represents the three GO categories, the horizontal axis

represents the gene number, and the number of genes is considered the difference in the proportion of the total. The GO annotations are classified in three basic

categories, including cellular component, biological processes, and molecular function. (B) The degree of enrichment of the first 20 entries in the pathway. The pathway

names are represented on the vertical axis, and the horizontal axis represents the pathways corresponding to the rich factor. The ratio of the number of DEGs and all

annotated genes in the pathway is defined as the rich factor.

https://doi.org/10.1371/journal.pone.0210850.g004

Table 2. Information on identified proteins in chicken feather follicles.

Sample name Total spectra spectra Unique Spectra Peptide Unique Peptide Protein

Yufen I 293,356 60,886 51,631 25,545 23,244 5,203

https://doi.org/10.1371/journal.pone.0210850.t002
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turnover; signal transduction mechanisms; translation, ribosomal structure and biogenesis;

transcription and cytoskeleton (Fig 5A). DEPs were subjected to enrichment and clustering

using functional analyses of GO and KEGG. In the GO function analysis, cell part, intracellular

part, and cytoplasm of cellular component; binding, catalytic activity and ion binding of

molecular function; and biological regulation, response to stimulus and metabolic process of

biological processes, were found to be different between the samples (Fig 5B). Regarding

KEGG pathway functions associated with the feather follicles, significant differences were

found in the following signaling pathways: calcium, PI3K-Akt, mTOR, cAMP, MAPK, Wnt,

cGMP-PKG, Jak-STAT and adrenergic signaling in cardiomyocytes, melanogenesis, tyrosine

metabolism, and melanoma. We displayed the top 20 enriched pathways in Fig 5C. At present,

under feather regeneration treatment, segment polarity protein disheveled homolog DVL-3

isoform X6 protein (DVL3), 1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase beta-

1-like protein (LOC107052863), 1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase

beta-1 protein (PLCB1), GTPase KRas isoform X2 protein (KRAS), matrix-remodeling-

Fig 5. DEP analysis in terms of GOG, GO and KEGG. (A) The horizontal axis represents the COG term, and the vertical axis represents the corresponding protein

count illustrating the protein number of different function. (B) GO functional annotation histogram of the DEPs. The three GO categories are presented on the vertical

axis under the GO term, the horizontal axis represents the gene number, and the number of genes is accounted for by differences in the proportion of the total. The GO

annotations are classified in three basic categories including cellular component, biological processes, and molecular function. (C) The name of the pathway is

mentioned on the vertical axis, and the pathway matching the rich factor are mentioned on the horizontal axis. The rich factor is the ratio of the number of DEPs in the

pathway to the number of all annotated proteins in the pathway. After testing multiple hypotheses, Q values were completed with corrected P value in the range of

0–0.05. The enrichment was considered significant if the P-value was closer to zero.

https://doi.org/10.1371/journal.pone.0210850.g005
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associated protein 8 precursor protein (MXRA8), guanine nucleotide-binding protein G(q)

subunit alpha protein (GNAQ), parvalbumin muscle isoform X1 protein (PVALB), calcium/

calmodulin-dependent protein kinase type II subunit beta protein (CAMK2B) and calcium/

calmodulin-dependent protein kinase type II subunit alpha isoform X3 protein (CAMK2A)

were differentially expressed in the dorsal follicles of the neck compared with the ventral folli-

cles of the neck and were mainly enriched for the melanogenesis pathway. The results indi-

cated that upon plucking stimulation, the DEPs related to feather pigmentation were mainly

concentrated in the melanogenesis pathway.

Integrating transcriptomic and proteomic results

A majority of earlier reports are suggestive of a weak correlation between the expression of

mRNA with protein attributed to posttranscriptional regulation or posttranslational modifica-

tion or experimental errors [60–62]. Nevertheless, the flow of information from RNA to pro-

teins is the crux of the central dogma [63,64]. To allow for genes that are expressed

differentially in terms of the transcriptome and proteome as well as singling out vital genes, we

performed an integration of DEGs and DEPs. For multi-omics data, GO terms and KEGG

pathways were enriched at the levels of transcriptome and proteome, respectively. Then, the

data from the two groups were integrated and analyzed, which was conducive to the study of

gene expression regulation at the level of gene set coexpression [65–68].

To compare the proteomic and transcriptomic analyses, we compared the 382 DEPs with

the 209 DEGs. According to the results, only 49 genes meeting the criteria overlapped (S5

Table). The changes at the transcript and protein levels showed a weak correlation for the pro-

teins that were quantified. Biological pathways were elucidated with a change in the statistical

reports at the protein level when the changes in mRNA were zero. To investigate the overall

correlation between these transcripts and DEPs, all identified mRNAs with DEPs were

matched, followed by transformation of DEP and transcript volume ratios into log2 forms. An

investigation of changes at both the transcript and protein levels revealed a weak correlation

(Spearman correlation coefficient, R = 0.0840) for all genes and proteins assessed. We then cal-

culated the correlation between the 382 DEPs and the 209 DEGs, and a positive correlation of

R = 0.3006 was obtained when all significantly changed proteins with a cognate mRNA were

considered (Fig 6). This result showed a modest correlation between the mRNA and protein

levels (between the proteome and transcriptome), which was consistent with previously

reported results [69], and accounted for the complexity of the gene expression regulation

mechanism [54,70–72].

Forty-nine DEGs/DEPs were assigned GO terms to assess their functions that encompassed

a vast range of cellular components, molecular functions and biological processes (S1 Fig). The

GO analysis indicated that the DEGs/DEPs relevant to cellular, metabolic and biological regu-

lation processes are possibly related to our study and showed that the DEGs/DEPs were rele-

vant to molecular functions including catalysis, binding or structure.

Assignment to COG functional categories indicated that excluding carbohydrate transport

and metabolism and the cytoskeleton, the DEGs/DEPs were classified into the categories of

inorganic ion transport and metabolism and general function prediction.

Additionally, among the components of a single pathway the extent of comity between pro-

teins and mRNA was studied. In total, 382 DEPs and 209 DEGs were mapped to 166 biological

pathways, of which 12 pathways showed significant enrichment in both groups. This study

involved the determination of vital DEPs and DEGs, involved in melanogenesis and the cal-

cium, cGMP-PKG and adrenergic signaling in cardiomyocytes signaling pathway using path-

way enrichment analysis (Fig 7).
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Fig 7. Correlation of KEGG enrichment between transcriptome and proteome. (A) Number of KEGG enrichment correlations between transcriptome and

proteome. (B) The overview scatter diagram of KEGG enrichment correlations between the transcript levels and protein levels of genes.

https://doi.org/10.1371/journal.pone.0210850.g007

Fig 6. Correlations between the expression of proteins and genes. The vertical-axis represents the protein expression level, and the horizontal-axis represents the

genes expression level. (A) Scatter plots of the correlation between data sets of genes evaluated in both the proteomic and gene transcript analyses. (B) Scatter plots and

coefficients of DEPs and DEGs correlation.

https://doi.org/10.1371/journal.pone.0210850.g006
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Discussion

Feathers have evolved to have diverse coloration that exhibits a wide spectrum of colors

arranged in noticeable patterns. Either physical or chemical factors or a combination can form

these colors. Melanin is the major factor responsible for the different types of colors described

in the existing literature.

DEGs and DEPs related to melanin synthesis

Pigmentation based on melanin is linked to a sequence of genes involved in the initiation and

regulation of pigment production involving many signaling pathways as well as transcription

factors such as the tyrosine kinase receptor KIT with SCF ligand, and MITF [73]. Many genes

in the melanogenesis pathway are related to MITF, which is a sole transcription factor of the

microphthalmia family that is involved in the regulation of melanocytes. MITF target genes

regulate melanocyte pigmentation [74]. Previous studies revealed that MITF was involved in

the development of melanocytes, along with reports of plumage color of Japanese quail and

chicken and mutations in this gene [75].

In this study, a total of 8 DEGs (ASIP, KITLG, FZD10, WNT7B, WNT9A, WNT9B, WNT11,

PVALB) and 9 DEPs (DVL3, KRAS, MXRA8, GNAQ, PVALB, CAMK2B, CAMK2A, PLCB1,

LOC107052863) were found to be involved in the melanogenesis pathway (Fig 8). MED23 was

specially expressed and significantly upregulated in dorsal follicles of the neck. A new study

revealed that zebrafish pigmentation is regulated by MED23 via a modulation of the function

of MITF as an enhancer [76]. GNAQ was significantly upregulated in the dorsal follicles of the

neck in this pathway. Research showed that the GNAQ activates MITF via the MAPK pathway,

and then affects melanin synthesis [77]. As a consequence, melanin synthesis can be regulated

by influencing the expression of the MITF gene, which then regulates the development of

feather coloration. In addition, we found that expression of the MED23, FZD10, WNT7B and

WNT11 genes peaked at approximately 8 weeks in the “Yufen I” H line, which is consistent

with the molting cycle. The results are indicative of an extensive and vital role of these genes in

melanin synthesis, which is consistent with previous research results. Therefore, we speculated

that the above genes were related to the formation of Columbian plumage in the “Yufen I” H

line.

Pathways related to melanin synthesis

To further understand the DEGs and DEPs in the pathways that regulate chicken feather color

development, we performed KEGG pathway analysis of DEGs and DEPs (p< 0.05). Correla-

tion analysis and integration were performed on DEPs and DEGs annotated in the same path-

way. Combining these results with those of the transcriptome and proteome analyses showed

thatthe melanogenesis, adrenergic signaling in cardiomyocytes, calcium and cGMP-PKG sig-

naling pathways were highly prevalent at the locations where different feather colors occurred

in “Yufen I” H line feather follicles. Therefore, we speculate that these four pathways may be

related to the Columbian plumage of the “Yufen I” H line, although we primarily focused on

the melanogenesis pathway in this study. We found that the DEGs were mainly concentrated

upstream of this pathway, while the DEPs were concentrated downstream of the pathway (Fig

8).

Interestingly, 5 proteins (PLCB1, LOC107052863, PVALB, CAMK2A, CAMK2B) and the

PAVLB gene regulated melamine synthesis in the melanogenesis pathway. Few studies have

previously reported on the correlation between melamine and pigmentation. The effect of mel-

amine on the skin color of darkbarbel catfish showed that the factors necessary for melanin

formation may be suppressed by intake of melamine, resulting in a significant reduction in
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melanin in the skin of the dorsal surface [78]. Therefore, we speculate that the 5 genes that reg-

ulate melamine synthesis may also be related to feather color deposition by affecting melanin

synthesis.

Conclusion

In summary, an incorporated and strong approach for analyzing the transcriptome and prote-

ome was utilized to study the mechanism of melanin synthesis in feathers. Strikingly, this orig-

inal report of a transcriptomics and proteomics analysis of the feather color in chicken follicles

describes and reveals a set of DEGs that are putatively involved in determining feather color

along with other physiological functions. MED23, FZD10, WNT7B, WNT11 and GNAQ

expression were significantly different in feather follicles with black and white stripes versus

those with white feather color, and elucidating the functional roles of these genes in the regula-

tion of feather color will be of particular interest in future studies. These results provide a

potential understanding of the mechanism underlying Columbian plumage in the “Yufen I” H

line and solid genetic resources that allow for the selection of birds with uniform plumage for

breeding.

Fig 8. Differentially expressed feather color genes and proteins identified in the analyzed chicken feather follicles and their

involvement in the melanogenesis pathway. DEGs have a blue frame, and the DEPs have a red frame.

https://doi.org/10.1371/journal.pone.0210850.g008
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