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Optimizing process‑based models 
to predict current and future 
soil organic carbon stocks 
at high‑resolution
Derek Pierson1*, Kathleen A. Lohse1,2, William R. Wieder3,4, Nicholas R. Patton2,5, 
Jeremy Facer1, Marie‑Anne de Graaff6, Katerina Georgiou7, Mark S. Seyfried8, 
Gerald Flerchinger8 & Ryan Will9

From hillslope to small catchment scales (< 50 km2), soil carbon management and mitigation policies 
rely on estimates and projections of soil organic carbon (SOC) stocks. Here we apply a process-
based modeling approach that parameterizes the MIcrobial-MIneral Carbon Stabilization (MIMICS) 
model with SOC measurements and remotely sensed environmental data from the Reynolds Creek 
Experimental Watershed in SW Idaho, USA. Calibrating model parameters reduced error between 
simulated and observed SOC stocks by 25%, relative to the initial parameter estimates and better 
captured local gradients in climate and productivity. The calibrated parameter ensemble was used to 
produce spatially continuous, high-resolution (10 m2) estimates of stocks and associated uncertainties 
of litter, microbial biomass, particulate, and protected SOC pools across the complex landscape. 
Subsequent projections of SOC response to idealized environmental disturbances illustrate the spatial 
complexity of potential SOC vulnerabilities across the watershed. Parametric uncertainty generated 
physicochemically protected soil C stocks that varied by a mean factor of 4.4 × across individual 
locations in the watershed and a − 14.9 to + 20.4% range in potential SOC stock response to idealized 
disturbances, illustrating the need for additional measurements of soil carbon fractions and their 
turnover time to improve confidence in the MIMICS simulations of SOC dynamics.

A large portion of the world’s actively cycled carbon (C) is stored in surface soils1,2. With changes in global 
climate and land use accelerating at unprecedented rates3–5, there is an emergent need to project soil organic 
carbon (SOC) dynamics under changing environmental conditions. A growing body of work focuses on poten-
tial global-scale SOC responses to climate change6–8, but simulating soil carbon dynamics at more localized 
scales (hillslope and small watershed catchment, < 50 km2) offers opportunities to parameterize process-based 
models at resolutions that have a greater relevance to policy and management9,10. This more local approach also 
better connects models and field observations, allowing stronger inference of the proximal controls over SOC 
persistence and turnover that ultimately builds confidence in model projections11,12. Such advances, however, 
require quantitative tools that can be used to link observations and models to calibrate model parameters, assess 
parametric uncertainty, and generate high resolution estimates of soil carbon stocks and potential vulnerabilities.

Current methodologies for estimating soil carbon fall into two main categories, digital soil mapping and 
process-based modeling. Digital soil mapping uses statistical correlations between climate, vegetation, topog-
raphy, soil properties, and soil C stocks to generate high resolution estimates of SOC stocks13–16. While often 
accurate for predicting SOC stocks at fine scales17, digital mapping methods generally have limited ability to 
project future SOC dynamics and responses since the statistical estimation of SOC does not adequately derive 
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how biogeochemical interactions and environmental conditions combine to govern SOC stocks18. In contrast, 
process-based models have been extensively relied upon for projecting regional to global scale SOC stocks and 
their vulnerabilities to changing conditions19–22. Process-based models mathematically approximate the processes 
through which soil C enters the soil, decomposes, and then is either stored in soil or cycled back to the atmos-
phere. The use of process-based models for projecting SOC dynamics at high spatial resolution (e.g., < 250 m2) 
is predicated by the availability of accurate, high-resolution forcing data for model calibration and the extrapo-
lation of projections across complex landscapes. Rapid advances in monitoring technology, remote sensing, 
and machine learning present novel opportunities to generate such environmental data23. In addition to these 
technical challenges, major uncertainties also exist regarding the viability of using model parameters that were 
calibrated for regional- to global-scale simulations for projections at much smaller, hillslope- to watershed-scales.

Controls on SOC stocks are currently thought to change with the scale of observation and inference24,25. 
Global-scale simulations typically operate at a coarse spatial resolution (e.g. > 50 km2). At these scales, process-
based models of SOC have produced accurate estimates of SOC stocks based predominantly on the influences 
of soil temperature and moisture, net primary productivity and soil texture26–29. At smaller scales, additional 
environmental controls are often inferred to have more pronounced effects on SOC stocks across complex land-
scapes, including controls imposed by detrital input quality30, microbial community composition31 and physical 
factors such as landscape position16 and erosion32,33. These additional influences on SOC dynamics often drive 
local heterogeneity in SOC stocks. Indeed, the importance of including such local biogeochemical controls in 
process model representations continues to be demonstrated and theorized22,34, leading many modern process-
based models to incorporate components relating to litter chemistry and microbial processing26,27,35. These 
advances in the process-based SOC model constructs are likely to improve the potential for fine scale process 
model applications.

Here we develop a method for model parameter optimization and high-resolution mapping of simulated 
SOC stocks across complex landscapes at spatial scales consistent with field observations and land management 
practices. This work combines the MIcrobial-MIneral Carbon Stabilization model (MIMICS; Fig. 1)22,26 with 
high-resolution input data, soil carbon measurements, and a Monte Carlo approach for parameter optimization 
and associated uncertainty analysis. We specifically explore the impact of parametric uncertainty on model 
projections of SOC stocks and their potential sensitivities across a complex landscape with strong climate gra-
dients and diverse soil properties at the Reynolds Creek Experimental Watershed and Critical Zone Observa-
tory (RCEW-CZO)36. This work demonstrates how a variety of measurements collected across environmental 
gradients at the pedon and watershed scale improves our understanding and prediction of soil carbon storage 
and processes at management relevant scales. Ultimately, results from this study advance the general ability to 
model, map and project the sensitivity of SOC stocks at fine spatial scales, thus providing an important pathway 
for scientists, land managers and policymakers to gain more detailed spatial information about the existing size 
and future stability of SOC stocks across complex landscapes.

Results
Parameter estimation and uncertainty quantification.  Initial simulations of the MIMICS model 
using high-resolution forcing data (Fig. SI1) and the parameters provided by Wieder et al.26 (i.e., priors) resulted 
in simulated SOC stocks that showed biases relative to field observations across the Reynolds Creek Critical 

Figure 1.   Diagram of the MIcrobial-MIneral Carbon Stabilization (MIMICS) model, which explicitly 
considers microbial functional diversity by simulating two functional groups (MICr, inefficient, fast-growers; 
MICK, conservative, slow-growers) and their potential effects on litter decomposition and soil organic matter 
persistence (available SOMa; chemically protected SOMc; physically protected SOMp). Litter C inputs are 
initially partitioned (fmet) between litter pools (structural LITs; metabolic LITm), while a lesser fraction (fi) 
transfers directly to the SOM pools. Parameters used for model calibration and validation related to microbial 
catabolic capacity (Vmax and Kes, blue lines), microbial anabolism (MGE and τ, green lines), and physicochemical 
protection of SOM (fp and D, orange lines). See also Table 1.
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Zone Observatory (Fig. 2). The initial default parameters underpredicted higher SOC stocks and overpredicted 
lower SOC stocks (Fig.  2; r = 0.77, RMSE = 2.30 kgC m-2). Optimizing the model parameters with a Markov 
Chain Monte Carlo (MCMC) based method revealed that many different parameter combinations were capable 
of producing similarly accurate estimates of SOC stocks across the Reynolds Creek Critical Zone Observatory 
(r = 0.77–0.82; root mean square error (RMSE) = 1.7–2.0 kgC m-2; Examples of differing MCMC solutions are 
shown in Fig. SI2). Thus, we generated an ensemble of unique parameter combinations where each parameteri-
zation yielded a RMSE < 2 kgC m-2 between the model estimates and field observations of SOC stocks across 
the Reynolds Creek Critical Zone Observatory (Fig.  2; n = 30 unique parameter combinations). Overall, the 
ensemble of optimized parameter combinations for MIMICS improved soil carbon predictions by eliminating 
bias observed when using the priors (Fig. 2) and reducing the estimate RMSE by as much as 0.58 kgC m-2 (25%).

The parameter space covered by our ensemble produced near equivalent estimates for total SOC stocks across 
the RCEW-CZO (see histograms in Fig. 3). The calibrated model consistently found parameterizations that show 
higher temperature sensitivity of microbial catabolic capacity (Vslope, Vint, Kslope, Kint), relative to the initial model 
parameterizations used by Wieder et al.26. Similarly, parameters related to physicochemical protection of soil C (fp 
and D) are lower than the initial model parameterizations, reflecting the longer turnover time of physicochemi-
cally protected organic matter (SOMp) with our optimized parameter values. Finally, the parameter ensemble 
generated a normal distribution for parameter estimates of MGE and log-normal distributions for microbial 
turnover rates, however the ‘best’ parameter estimates for microbial anabolism were not dramatically different 
from initial parameter values.

Our parameter ensemble also revealed strong autocorrelations for particular parameter combinations in 
MIMICS. For example, the decomposition rate intercept terms in the model (Vint and Kint) were positively cor-
related (r = 0.94, see scatter plots on Fig. 3). We also observed correlations between the parameters controlling 
the fate of carbon through microbial anabolism with each other and terms associated with the persistence of soil 
C in the physicochemical protected pool (SOMp, Fig. 1). Specifically, we observed that parameter estimates for 
microbial growth efficiency (MGE) were positively correlated with microbial turnover rates (τ, r = 0.74; Fig. 3) 
and negatively correlated with the fraction of SOM partitioned to the protected SOM pool (fp, r = -0.59). Further, 
fp was positively correlated with desorption (D) of SOMp to the available SOM pool (r = 0.58). No correlations 
(r > 0.4) were observed between the decomposition rate parameters associated with microbial catabolic capacity 
and those related to microbial anabolism or persistence of soil C in physicochemical protected pools.

While all parameterizations in the parameter ensemble resulted in similarly robust estimates of total SOC 
stocks (RMSE < 2.0 kg C m−2; Fig. 4A), the parametric uncertainty across the ensemble (i.e. the range of parameter 
combinations) led to greater variability in the model estimates of underlying litter, microbial biomass, and soil C 
pools than for estimates of total SOC stocks (Fig. 4). Across the parameter ensemble, the protected soil carbon 
stocks (SOMp) simulated by MIMICS varied by a factor of 4.4 ± 2.0 at individual locations (mean ± 1σ; Fig. 4B). 
This variability in SOMp pool sizes can in part be explained by uncertainty in the parameterization of the pool’s 
turnover time, which ranged from 75 to over 400 years (Fig. 4D). Similarly, across individual locations, litter 
C pool estimates varied by a factor of 6.9 ± 3.3 and the proportion of total SOC made up of microbial biomass 

Figure 2.   Comparison of the MIMICS model estimates with observed soil organic carbon stocks (kg C 
m2, 0–30 cm soil depth) at locations across the Reynolds Creek Experimental Watershed and Critical Zone 
Observatory (n = 89). Black dots and associated error bars denote the mean ± standard deviation of the model 
estimates produced using each member of the optimized parameter ensemble. Grey triangles represent MIMICS 
estimates using the default MIMICS model parameterization. (Generated by free software R, https://​www.R-​
proje​ct.​org/).

https://www.R-project.org/
https://www.R-project.org/
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varied by a factor of 7.7 ± 1.7 (Fig. 4C,E, respectively). Finally, the parametric uncertainty led to a large range in 
the relative abundance of copiotrophs (MICr) and oligotrophs (MICK) that were simulated across the RCEW-
CZO, with a mean MICr:MICK ratio of 0.80 ± 0.48 across individual locations (Fig. 4F).

High‑resolution mapping and sensitivities of SOC stocks.  A spatially continuous map of estimated 
SOC stocks from 0 to 30 cm soil depth was generated for the RCEW-CZO by combining results from the param-
eter ensemble with gridded spatial data (i.e., rasters; Fig. SI1) of the required model inputs (Fig. 5). We note that 
these rasters were also used to generate the forcing data used for model parameter optimization (above) based 
on field observations of SOC stocks. To generate a high-resolution map of 0–30 cm SOC stocks for the entire 
natural area of the RCEW-CZO, we calculated the steady-state carbon pools simulated by MIMICS at 2.4 million 
points evenly distributed across the watershed (10 m resolution). We repeated this with each of the 30 mem-
bers of the parameter ensemble to calculate uncertainty estimates in the spatial distribution of belowground C 
stocks. Figure 5 shows the ensemble mean and associated parametric uncertainty (± 1σ) of soil C stocks across 
the watershed.

The high-resolution mapping with MIMICS shows that soil C stocks follow elevational trends at RCEW-CZO, 
while also reflecting more localized topographical differences in precipitation and mean annual temperature that 
drive shifts in vegetation communities, productivity, and soil development. Total SOC stocks are largest in the 
southern and western portion of the watershed, where higher elevations bring cooler temperatures and higher 
water availability, which supports more productive vegetation communities. Within elevational bands we also 
see strong influences of aspect on SOC stocks. On average across the watershed, soils on north-facing slopes 
hold 28% more SOC relative to south-facing slopes. For areas above 1600 m elevation, the aspect effects on SOC 

Figure 3.   MIMICS model parameter space and relationships among parameters in the parameter ensemble that 
produced similarly accurate (RMSE 1.8–2.0) estimates of total soil organic C stocks across the Reynolds Creek 
Experimental Watershed and Critical Zone Observatory (n = 30 member parameter ensemble). Normalized 
parameter range coincides with the scaling factor proposal range for each parameter (see Table 1). Histograms 
on the diagonal represent the uncertainty in parameter estimates from the parameter ensemble. Triangles below 
histograms represent default (closed) and best-fit (open) parameter values. Off-diagonal panels display pairwise 
correlations and correlation coefficients between individual parameters, with statistically significant correlations 
circled (p < 0.05). *Default parameter line for D is beyond plot scale (Ddefault = 3.1). (Generated by free software R, 
https://​www.R-​proje​ct.​org/).

https://www.R-project.org/
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storage increase, with 41% more SOC stored on north-facing slopes relative to south-facing slopes. The larg-
est uncertainties in soil C stocks correspond to areas with higher productivity and larger SOC stock estimates. 
Finally, areas where the dominant litter source shifts from grass and shrub species to tree species with relatively 
poor litter quality (higher lignin:N) also show greater total SOC uncertainty.

Our simulations also generate spatially explicit estimates of individual soil C pools including mean litter C, 
microbial C and protected SOC stocks and their associated uncertainty from the parameter ensemble (Fig. 6). 
Litter C pools strongly reflect the aspect effects across Reynolds Creek, with 59% more C stored in litter pools on 
northern facing slopes relative to south-facing slopes, reflecting greater control by soil temperature on litter C 
pools. We estimate that litter C pools comprise 14 ± 7% of the total SOC stock from 0 to 30 cm across the natural 
areas of Reynolds Creek. Microbial C stocks largely reflect spatial patterns in vegetative productivity (Fig. 6A, 
Fig. SI1A). We estimate protected SOM accounts for 67 ± 16% of the total SOC stock at Reynolds Creek, which 
also reflects spatial distributions of NPP estimates and less dependence on soil clay content, temperature or 
litter quality.

Figure 4.   MIMICS estimate variability relative to observed SOC stocks for the best (lowest RMSE) MC 
determined parameterization and a larger ensemble of MIMICS model parameterizations (n = 30) with SOC 
stock estimate RMSE < 2. (Generated by free software R, https://​www.R-​proje​ct.​org/).

https://www.R-project.org/
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To project the sensitivity of existing soil C stocks to idealized environmental perturbations, we used the 
parameter ensemble to estimate soil C stock response to a uniform 10% increase in NPP and a 1 °C  increase in 
mean annual soil temperature (Fig. 7). Gains in soil C from the increase in NPP were far greater in the southern, 
high elevation regions of the watershed where NPP is relatively high. The simulated 10% increase in NPP led 
to a total gain of 3.6 ± 0.6 GgC from 0–30 cm soil depth across Reynolds Creek, an increase of 3.5 ± 0.6% rela-
tive to initial stocks. Across ensemble member simulations, the mean estimated increase in SOC stocks across 
the watershed from the 10% increase in GPP ranged from 1.7—20.4% of existing stocks. In contrast, the 1 °C 
increase in soil temperature led to a more spatially consistent loss of soil C across Reynolds Creek, resulting in 
an estimated loss of 3.9 ± 2.8 GgC from 0–30 cm soil depth, or -3.7 ± 2.8% of initial stocks. Overall, projection 
uncertainty was much greater for the simulated change in soil temperature relative to the applied change in NPP 
(Fig. 7B). However, the range in net effect on SOC stocks was slightly smaller across the parameter ensemble. 
Across all ensemble simulations, the mean estimated change in SOC stocks from the 1 °C increase in soil tem-
perature ranged from -1.1 to -14.9% of existing stocks.

Discussion
Overview.  By coupling fine-resolution forcing data with model parameter optimization, we produced high 
resolution (10 m2) estimates of soil carbon stocks across the natural land area of the RCEW-CZO (239 km2 of 
complex terrain; Fig. 5). The use of high-resolution forcing data proved suitable for model performance when 
combined with parameter optimization, as the correlation between model projections and field observations 
of SOC stocks aligned with previous MIMICS applications (Fig. 2)26 and studies involving digital soil mapping 
methods17. Optimization of the model parameters was critical for reducing estimate systematic bias from the pri-
ors used in the initial simulations and reducing the RMSE between simulated and observed SOC stocks (Fig. 2). 
These results directly demonstrate the viability of combining process-based modelling and remotely sensed data 
products for simulating SOC stocks across complex landscapes.

Similar accurate, high-resolution estimates of SOC stocks across a complex environmental landscape have, 
to our knowledge, not been achieved previously using a process-based model such as MIMICS. In contrast to 
similar scale estimates of SOC stocks produced by statistical methods16,17, our process-based modeling approach 
simulates the controls on the decomposition, accumulation, and loss of SOC, providing predictive capacity to 
project soil C responses to changing environmental conditions. Perhaps the most similar study to date was 
conducted by Lu et al.37, who used spatial forcing data with a process-based model to project SOC stocks at 250 
m2 resolution (r = 0.64) for a 7700 km2 watershed in the Loess Plateau, China. Our ability to project SOC stocks 
for the RCEW-CZO at a 10 m2 resolution with high accuracy (r = 0.79, Fig. 2) is a combined product of recent 
advances in remote sensing, high performance computing, and process-based modeling of SOC dynamics. 
Combined together, these modern tools were essential for reducing error between model estimates and field 
observations. When standardized by the range in size of the SOC stocks projected, our observed RMSE between 
estimates and projections of SOC stocks is consistent with respective measures of error from digital soil mapping 

Figure 5.   Ensemble (A) mean and (B) standard deviation of total soil organic carbon stocks simulated by 
the MIMICS model across the natural area of the Reynolds Creek Experimental Watershed and Critical Zone 
Observatory from 0–30 cm soil depth (n = 30 maps of soil C generated by the parameter ensemble produced 
from model calibration with site observations; Fig. 3a). (Generated by free software R, https://​www.R-​proje​ct.​
org/).

https://www.R-project.org/
https://www.R-project.org/
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methods used at comparable scales17,38–40. Below, we discuss in greater detail the implications of combining 
parameter optimization and uncertainty analysis with high-resolution forcing data for future applications, as well 
as the unique information provided by high resolution modeling of SOC dynamics across complex landscapes.

Parameter estimation and uncertainty.  Our estimates of SOC stocks across the RCEW-CZO suggest 
that the scales over which measurements are taken, and for which models are parameterized, influence the pre-
dicted sensitivity of SOC stocks to different environmental control factors. Differences between our optimized 
parameters and the default parameter estimates reflect the improvements made by calibrating the model to fit 
local observations (Fig. 2). Our findings also underscore important differences in parameter estimates generated 
by when calibrating MIMICS at local- versus continental-scales (Fig. 3, 4). For example, results from our model 
parameterization suggest a higher temperature sensitivity of microbial catabolism in our optimized parameteri-
zation of MIMICS across local gradients than was derived from the default parameterized generated from site 
level means across a continental-scale gradient (Table 1, Fig. 3)26. This parallels findings from Bradford et al.24 
who found strong scale dependence on the strength of causative relationships between environmental drivers 
and decomposition rates, suggesting that accounting for local heterogeneity may be important to consider for 
inferring proximal controls over SOC turnover that are used in model parameterizations41.

Results from our parameter ensemble have higher temperature sensitivity for microbial kinetics and lower 
MGE than the initial parameterization (Fig. 3). These parametric changes related to microbial physiology 

Figure 6.   Ensemble (A) mean and (B) standard deviation of soil carbon pool stocks for 0–30 cm soil depth 
across the natural area of the Reynolds Creek Experimental Watershed and Critical Zone Observatory (n = 30 
maps of soil C generated by the parameter ensemble produced from model calibration with site observations; 
Fig. 3a). (Generated by free software R, https://​www.R-​proje​ct.​org/).

https://www.R-project.org/
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underscore how microbial communities can influence the rate of organic matter turnover through their catabolic 
capacity, as well as the fate of SOM via microbial anabolism42. Interestingly, our parameter ensemble did not 
indicate any statistical correlation between parameter combinations related to microbial catabolism or anabolism 
(Fig. 4), yet MIMICS represents a theoretical expectation that tradeoffs between microbial growth rates and 
growth efficiency should be linked in the parameterization of copiotrophic and oligotrophic communities43,44. 
Ultimately, the parameter estimates from our ensemble result in faster turnover and lower retention of fresh 
organic matter inputs– findings consistent with conclusions of Shi et al.45. The parameter ensemble also pro-
duced much longer turnover times for physicochemically protected soil C pools, correcting known biases in 
MIMICS22,46. Turnover times of SOMp pools, however, still have large uncertainty, leading to large variation in 
the size of this soil C pool (Figs. 3, 4). Moving forward, we expect information about soil C fractions and their 
radiocarbon ages will provide an important additional constraint to reduce these uncertainties.

The parametric uncertainty analysis also identified what additional observations could help constrain model 
representations of microbial physiology and SOC persistence (Figs. 3, 4). Specifically, observations of litter 
decomposition rates, the relative size of SOC pools (e.g., from density fractionation), laboratory measurements 
of microbial carbon use efficiency (or microbial growth efficiency, MGE), and the turnover rate for mineral 
associated organic matter (from radiocarbon measurements on mineral associated organic matter) are directly 
relatable to the model and can be used as constraints during parameter optimization to better calibrate the model 
parameters. Auto-correlations between model parameters suggest that data pertaining to any one property may 
help to constrain other parameters in the model. For example, desorption rates (D) and the fraction of microbial 

Figure 7.   MIMICS projected (A) total change and (B) parametric uncertainty for change in 0–30 cm soil 
carbon stocks from 10% increase in net primary productivity (NPP) or 1 °C increase in mean annual soil 
temperature. (Generated by free software R, https://​www.R-​proje​ct.​org/).

https://www.R-project.org/
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turnover that is physicochemically stabilized (fp) show high correlation with each other (Fig. 3). This suggests 
that radiocarbon measurements that provide a constraint on mineral protected SOM turnover would reduce 
uncertainty ranges for both of these parameters. Similarly, measurements of microbial growth efficiency are 
becoming more common, and may also help constrain the parameterization of microbial turnover in the model. 
We note, however, that laboratory assays of MGE are short-term measurements of (near) instantaneous growth 
efficiency that are dependent on substrate quality and particulars of the chosen methodological approach47,48. 
As such, the absolute values of MGE from any incubation study may not be directly representative of these fixed 
parameters that are currently used in MIMICS, highlighting the importance of improving our understanding 
and representation of this key parametric uncertainty in soil biogeochemical models47,49–51. More relevant, may 
be developing an understanding of how microbial community composition reflects environmental gradients 
and may influence variation in MGE over space and time. Overall, this work illustrates improved capabilities 
and opportunities to exchange information between process-based models, field measurements, and laboratory 
observations. Such exchanges are critical for ensuring that model representations of SOC dynamics align with 
natural systems and produce accurate projections.

High resolution inputs, SOC stocks, and projections.  Our study highlights the data challenges asso-
ciated with trying to generate measurements that are needed for this kind of work. Even at a well-studied site 
like the RCEW-CZO that has a wealth of soils data, co-located measurements of additional driver data that 
are needed to parameterize MIMICS were largely absent (e.g. soil properties, soil temperature and moisture, 
plant productivity, and litter chemistry). Thus, we derived these from remote sensing and statistical modeling. 
Although these methods are still imprecise, they better account for local heterogeneity in biotic and abiotic 
factors known to influence SOM persistence and mark an important step forward in considering how we can 
parameterize and validate soil biogeochemical models.

Process-based models of SOC dynamics employ varied constructs and environmental properties to predict 
SOC52. The MIMICS model has been shown to have a relatively high dependence on plant productivity, as 
opposed to greater dependence on soil texture found in other, similar process-based models of SOC dynamics7. 
In practice, our high-resolution mapping application benefited from MIMICS dependence on NPP, since esti-
mates of productivity are readily derived from high resolution multispectral imagery (< 30 m2)53,54. Methods for 
estimating vegetative properties from multispectral imagery are broadly effective for most environments55–57. In 
contrast, relatively few methods exist for collecting information on soil properties (e.g. clay content) at similar 
resolutions58. The reduced influence of clay content relative to NPP on SOC dynamics in MIMICS has been 
proposed as a potential cause for observed discrepancies between SOC stocks simulated by MIMICS relative 
to field observations and current theory7. However, results from our parameter optimization procedure dem-
onstrate that such discrepancies in MIMICS projections of protected SOC can be rectified through the model 
parameterization (Fig. 4D).

Surprisingly, we found that the inclusion of soil moisture in the MIMICS model, a factor with strong influ-
ence on SOC stocks at global scales59, did not improve estimate accuracy across the RCEW-CZO watershed. 
This result may in part be explained by the fact that soil water availability along the elevational gradient in the 
RCEW-CZO is strongly correlated with productivity estimates from remote sensing at the site60,61. Thus, the 
spatially distributed productivity estimates that we developed likely captured the effects of moisture and was a 
significant factor explaining SOC stocks. Alternatively, accuracy of the spatial soil moisture data available may 
not have been sufficient to appropriately convey soil moisture conditions at the spatial resolution of this study, 
and ongoing work at the watershed is focused on generating high spatial and temporal resolution estimates for 
the site. We see such efforts as critical for estimating temporal variation in heterotrophic respiration fluxes and 
improving projections of soil C responses to climate change. In contrast, we found that spatially continuous 

Table 1.   MIMICS parameters included in the Monte Carlo (MC) optimization  and the subsequent best-fit 
values found for the Reynolds Creek Experimental Watershed and Critical Zone Observatory (RCEW-CZO) 
calibration data. a Further information regarding MIMICS parameters and default initial values provided in26 
b Parameter proposals in the MC algorithm were conveyed as a factor of the initial prior value(s). Presented 
standard deviation is derived from the parameter ensemble (n = 30) with RMSE 1.8–2.0 c Factor proposals 
for each parameter were confined to agree with natural analogs and to reduce computational demands. See 
Methods for further details.

Parameter Description Default priora Best-fit scaling factorb Scaling factor proposal rangec Units

Vslope Decomposition max rate coefficient 0.063 3.85 ± 0.8 0.4–4 ln(mg Cs (mg MIC)−1 h−1) °C−1

Vint Decomposition max rate coefficient 5.47 1.16 ± 0.4 0.3–3 ln(mg Cs (mg MIC)−1 h−1)

Kslope
Decomposition half saturation coef-
ficient 0.017, 0.027, 0.017 0.84 ± 1.0 0.4–4 ln(mg C cm−3) °C−1

Kint
Decomposition half saturation coef-
ficient 3.19 1.55 ± 0.7 0.3–3 ln(mg C cm−3)

τ Microbial biomass turnover rate 0.30 × e1.3(fclay), 0.20 × e0.8(fclay) 0.46 ± 0.5 0.3–3 h−1

MGE Microbial growth efficiency 0.55, 0.25, 0.75, 0.35 0.54 ± 0.3 0.2–2 mg mg−1

D Desorption rate from SOMp to SOMa 1.5 × 10–5 × e-1.5(fclay) 0.08 ± 0.03 0.001–0.3 h−1

fp Fraction of τ partitioned to SOMp 0.015 × e1.3(fclay), 0.01 × e0.8(fclay) 0.34 ± 0.3 0.01–4 –
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mean annual soil temperature (MAST) derived from soil temperature observations, elevation and estimated 
incoming solar radiation was a significant factor explaining SOC stocks. Seyfried et al.62 and more recently 
Seyfried et al.63 documented pronounced aspect effects on local soil temperature at the RCEW-CZO that rival 
larger elevational gradients. For example, differences in soil temperature associated with aspects in small catch-
ments of the RCEW-CZO (< 2 km2) are greater than differences in MAST observed along a 900 m elevation 
gradient (5.5 versus 4.4 °C), exemplifying the importance of using fine scales to model environmental processes 
in complex landscapes.

Our assessment of SOC stocks and sensitivities at high spatial resolution across the RCEW-CZO provides 
a robust example of how fine scale applications of process-based models of SOC dynamics can provide useful 
information to support land practice and policy decisions. High spatial resolution estimates of SOC stocks across 
the entire RCEW-CZO provide insight into landscape variation in SOC stocks that may be expected across the 
semi-arid environments of the Great Basin, USA (Fig. 5). We see this providing opportunity for land managers 
to better plan land use and focus valuable resources towards specific areas where the protection or management 
of SOC is warranted. The model also makes testable predictions about the size of particular soil C pools and 
their change over environmental gradients (Fig. 6), that could be validated with additional measurements taken 
at field relevant scales. Further, our idealized environmental change scenarios demonstrate the ability to assess 
SOC stability across a diverse landscape (Fig. 7).

The idealized scenarios used here illustrate the potential to use a calibrated model like MIMICS to make 
spatially-explicit projections of SOC responses to environmental change. Rangelands exist over ~ 40% of the 
Earth’s ice-free land and account for ~ 30% of terrestrial SOC to a depth of 1 m64. The global potential for range-
land C sequestration has been estimated to range from 0.3 to as much as 1.6 Pg CO2-eq per year65. Moreover, 
experiments like these can provide estimates of the magnitude of soil C change, and their associated uncertainty, 
that can be expected over large areas given incremental changes in local conditions (like temperature, productiv-
ity, and their interactions). High resolution process-based modeling of soil C dynamics provides a critical tool 
for evaluating such potential, as well as for identifying, protecting and harnessing sequestration potential in soil 
across earth’s surface.

Conclusion
In this study, we show that accurate, high resolution (10 m2) projections of 0–30 cm SOC stocks may be gener-
ated by combining remotely sensed environmental data and process-based modeling, with the aid of parameter 
optimization methods and high-performance computing. Leveraging the power of modern parameter optimiza-
tion techniques and machine learning to improve Earth systems models remains a widespread area of emphasis 
across disciplines in environmental science66,67. The Monte Carlo simulation used for parameterizing the MIMICS 
model provided the cornerstone for this study, allowing us to calibrate model parameters, quantify the impacts 
of parametric uncertainty, and generate spatially explicit estimates of soil C stocks with high-resolution envi-
ronmental data. For future studies and applications, we see great promise for similar approaches to assist with 
model parameterization and spatial extrapolations of SOC projections.

Required adjustments to the MIMICS parameters controlling SOC distributions and environmental sensi-
tivity in simulations for the RCEW-CZO support a deepening discussion in ecology and Earth system science 
regarding the potential fallacies of inference when scales between observations and the environmental processes 
being studied are misaligned24. Observed differences in the best-fit parameters between fine and continental 
scale applications of the MIMICS model also support other recent studies in demonstrating the substantial 
variability found in soil processes at fine spatial scales11,68,69. The demonstrated ability to perform fine scale 
simulations of SOC dynamics thus provides a critical tool and resource for linking environmental observations 
with current theory and associated model representations. Such ability is critical for improved assessments and 
understanding of landscape drivers of SOC persistence, and for the projection of SOC response to changes in 
environmental conditions.

Moving forward, the proven approach and developed algorithms from this study provide a strong founda-
tion for continued model improvement and further high-resolution applications. Our analysis of the parametric 
uncertainty in the model projections shows the direct opportunities for additional observational data pertaining 
to microbial properties and SOC persistence to further refine MIMICS parameter estimates. Further potential 
also exists to generate more complex, fine scale estimates and projections of SOC dynamics by adapting the meth-
ods from this study to similarly enhance the spatial application scale and parameterization of the CN-coupled70 
and soil depth resolved71 versions of the MIMICS model.

Methods
Study area.  The Reynolds Creek Experimental Watershed and Critical Zone Observatory (RCEW-CZO) in 
southwestern Idaho, USA covers 239 km2, with 13 km2 of active cropland near the valley bottom. The RCEW-
CZO is situated in a mountainous region and contains a large elevational gradient (~ 1100–2100 m) that gives 
rise to diverse climates, soils and vegetation throughout the watershed36,63. Vegetative productivity is severely 
limited by low water availability in lower elevations (< 1400 m) of the watershed, which receive an average of 
230–300 mm of precipitation each year. Mean annual temperature across the lower elevations of the watershed is 
9.1 °C. In the lowland regions, the vegetation is predominately sagebrush (Artemisia spp.) with a sparse underly-
ing mix of grasses and forbs. At the mid-elevations of the watershed (1400–1700 m), pockets of aspen (Populus 
tremuloides) and willow (Salix spp.) begin to emerge in riparian areas, as well as on some of the northern facing 
slopes, where winter snowpacks supply sufficient water. At higher elevations, Juniper (Juniperus spp.) and Doug-
las fir (Pseudotsuga menziesii) stands are common, though not pervasive, supported by far greater annual precip-
itation and lower mean annual air temperatures, averaging 350–994 mm per year and 5.4–8.5 °C. Soils across the 
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RCEW-CZO watershed are mixed and predominantly originate from either felsic material (i.e., granitic Idaho 
Batholith72) or mafic basaltic flows73. Soils are generally deep across the RCEW-CZO (> 1 m not including collu-
vium)74. Soil development is typically greatest at higher elevation in convergent topography. For the top 30 cm of 
soil, the mafic derived soils are generally loams (average sand, silt, clay: 41%, 39%, and 20%), while the felsic are 
generally sandy loams (average sand, silt, clay: 59%, 25%, and 16%16,75). Across the RCEW-CZO, approximately 
85% of the soils are classified as Mollisols, with another 13% classified as Aridisols76.

Field observations of SOC stocks.  Soil C stocks were previously determined at unique locations across 
the RCEW between 2014–201675,77,78. For model calibration we used previously collected data pertaining to total 
soil C stocks from 0–30 cm at 89 locations across the RCEW-CZO. The median 0–30 cm soil C stock was used 
where soil data overlapped within a 10 m2 area.

The MIMICS model and parameter optimization methods.  The MIcrobial-Mineral Carbon Stabi-
lization (MIMICS) model has been widely used for estimation of soil C across diverse ecosystems and has been 
found to perform well across ecosystem gradients and at global scales22,26,43,46,70,79. Here we use a version of the 
model that calculates equilibrium SOC stocks based on the mean annual values for net primary productivity, 
soil temperature, litter lignin:N ratio and the soil clay content. Soil moisture may also be used as a control on 
soil C dynamics in the MIMICS model22. However, model testing using soil moisture inputs derived from aerial 
imagery and a snow model did not improve model accuracy of SOC stocks estimates at RCEW, and thus soil 
moisture was not included as a model input. We assumed all field observations of SOC included in the study are 
at steady state and ignored the interannual and seasonal dynamics of climate and vegetation. In kind, all model 
simulations were carried out to steady state. These assumptions present uncertainty and limitations regarding 
the insights and projections from the model, but it remains common practice to allow for best use of available 
data43,46,79.

The flow of C through the MIMICS model is controlled by a number of rate parameters (Table 1, Fig. 1)26. 
These parameters control the simulated turnover and persistence of litter, microbial biomass, and soil C pools 
(Fig. 1; Methods). Model parameters broadly fit into three categories related to microbial catabolic capacity 
(decomposition kinetics described by Vmax and Kes), microbial anabolism (microbial growth efficiency and turno-
ver; MGE and τ, respectively), and physicochemical protection of SOC (Fig. 1).

Initially, we used a Hamiltonian Markov Chain Monte Carlo (MCMC) algorithm80 to determine the best fit 
values for eight of the MIMICS model parameters with the strongest control over litter, microbial biomass, and 
soil C pools. Uniform prior distributions for the MCMC were given a mean and standard deviation equal to the 
parameter values provided by Wieder et al.26. In practice, the best-fit parameterizations determined over mul-
tiple MCMC runs were not consistent, suggesting that substantial equifinality exists in the model construct. To 
account for and gain further insight into how equifinality in model parameterization impacts model estimates, 
we proceeded to perform a Monte Carlo (MC) simulation involving 500,000 MIMICS model runs with unique, 
random parameter combinations. To improve performance of the MC simulation, we proceeded to tune the 
minimum and maximum limits on each of the uniform parameter proposal distributions (i.e. the scaling factor 
proposal range, see Table 1) to ensure that the range encompassed all values with the potential to produce viable 
model outcomes (see criteria below). Specifically, using repeated trials of the MC simulation, the scaling factor 
proposal range was extended when viable model outcomes were observed within 10% of the proposal value 
limit Conversely, scaling factor ranges were narrowed when parameter proposals above or below a certain limit 
resulted in implausible model outcomes (i.e., Desorption rates (D) > 0.3 produce protected SOM pool (SOMp) 
turnover rates below the constraint of 50 years (See further model outcome constraint details below)). Ultimately, 
all parameterizations from the MC simulation yielding a RMSE between field and estimated bulk SOC values 
of < 2.0 kgC m-2 were included in the parameter ensemble used throughout the study. Further, a parameter set 
was only deemed viable if it passed a set of binary filters to confirm that the parameterization produced plausible 
values for microbial C (1–3% of the total SOC), the relative abundance of microbial r- vs. K-strategist (0.1–10), 
litter C stocks (10–40% of total SOC), and the turnover time of C in the protected SOM pool (50–400 years). For 
brevity, we refer to these accurate (RMSE < 2.0) and plausible parameterizations throughout the manuscript as 
the parameter ensemble (n = 30). The lowest RMSE observed over all combinations was 1.72 kgC m-2.

Previous studies have optimized MIMICS parameters using MCMC79 and shuffled complex evolution (SCE) 
algorithms46. We chose to employ a MC simulation to optimize the model parameters due to the simplicity of the 
algorithm relative the MCMC and SCE methods. The MC simulation requires no statistical assumptions and has 
no inherent potential to bias the optimized parameters chosen. The MC optimization approach is computationally 
inefficient compared with MCMC and SCE, which required us to use high performance computing clusters to 
complete the necessary number of model simulations (n = 500,000). We performed a threefold cross-validation 
to ensure the MC optimization method results were not biased by the nature of the RCEW forcing data or the 
number of simulations performed. Each cross-validation of the MC optimization procedure used a unique 
sub-sample (n = 60) of the field observations of SOC stocks to derive the optimized parameter distributions. 
Cross-validation sub-samples were stratified by co-located estimates of GEP to ensure consistency in the scope 
of the model projections. The resulting optimized parameter distributions from cross-validation simulations 
showed no concerning disparities between the subsample distributions and the distributions derived from the 
full dataset (Figure SI3).

We used the following approach to quantify the variability in MIMICS C pool estimates produced by the 
unique parameterizations in the parameter ensemble. For each location in the dataset, we calculated the range 
of estimated values and then divided that by the minimum estimated value. We then calculated the average and 
standard deviation of those location specific estimate variability factors across all locations.
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Spatial data analysis.  Model estimation of soil C stocks across the entirety of the RCEW-CZO required 
continuous spatial data layers for elevation and incoming solar radiation, soil temperature, net primary produc-
tivity, soil clay content and the lignin:N ratio for the dominant vegetative source of surface litter. Digital eleva-
tion and soil clay content layers were used as provided online courtesy of the U.S. Geological Survey (https://​
earth​explo​rer.​usgs.​gov/) and USDA Web of Soil Survey76 respectively. Clay content was procured from the Web 
Soil Survey as an average value for the soil layer from 0–30 cm. The underlying source of the WSS clay data is 
the SSURGO database81. To create a spatial map of lignin:N content of the dominant vegetative species across 
the RCEW, the vegetation map provided in Seyfried et al.82 was paired with corresponding litter lignin:N values 
reported in the literature. From the digital elevation map, incoming solar radiation was calculated using the 
ESRI Solar Radiation Toolset, which calculates net incoming solar radiation by simulating the solar path over the 
digital elevation map surface while accounting for atmospheric effects, site latitude and elevation, slope, aspect, 
daily shifts of the sun angle, and effects of shadows cast by surrounding topography83.

Soil temperature.  A continuous spatial layer for mean annual soil temperature (MAST) was created based on 
the relationship found between soil temperature, elevation and incoming solar radiation. Across the full extent 
of the elevation gradient of Reynolds Creek, and for soils with similar aspects, there is a strong relationship 
between soil temperature and elevation. However, soil temperatures differ substantially for soils with opposing 
north and south facing aspects, as shown by Godsey et al.84 and Seyfried et al. 62,63. To compensate for these 
aspect effects on MAST, estimated annual incoming solar radiation was used as an adjustment factor as shown 
in the following equation:

where ELEV represents elevation (m); solarMID represents the average incoming solar radiation across the 
RCEW-CZO (553,833 W m-2); solarIN represents the incoming solar radiation at the estimate location (W 
m-2) and tMOD is employed as a scaling factor (46,385.8 W m-2). All coefficients, and the tMOD scaling factor, 
were determined using a linear optimization algorithm set to minimize error between observed and estimated 
MAST values for a series of locations across the RCEW-CZO (n = 35, data from Seyfried et al.62,63 and Godsey 
et al.84). The spatially dispersed and depth stratified MAST observation data showed no significant differences 
in MAST across soil depth increments of 5, 10, 20 and 30 cm. Based on this evidence, all MAST data available 
for soil depths < 30 cm were used to calibrate the MAST estimation equation. Correlation between observed and 
predicted MAST values equaled R2 = 0.73 (Fig. SI4). The resulting continuous spatial map of MAST produced is 
assumed to be representative of MAST from 0–30 cm soil depth.

Gross primary productivity.  Hyperspectral satellite-based imagery was used to generate a continuous spatial 
map of gross ecosystem productivity (GEP) across the RCEW-CZO. Following work previously completed by 
Fellows et al.60, Landsat 5 imagery courtesy of the U.S. Geological Survey was collected across 10 years, from 2002 
to 2011. From this data, specific images were chosen from each year to determine the maximum modified soil-
adjusted vegetation index (MSAVI2) values at a 30 m2 resolution across the RCEW-CZO. The MSAVI2 index has 
been demonstrated as a viable method for identifying differences in vegetative productivity85–87. MSAVI2 was 
calculated using the following equation:

where NIR is the near infrared band reflectance and RED is the red band reflectance value. Generation of a 
continuous map of GEP was then based on the observed relationship between maximum mean annual MSAVI2 
and observed measures of GEP across the RCEW-CZO (GEP = 1972.8(MSAVI2) + 101; r = 0.69). Observations of 
GEP were also collected between 2002–2011 and were generated by eddy covariance at three elevation stratified 
flux towers. The relationship between observed and predicted GEP is shown in (Fig. SI4). To run the MIMICS 
model, which requires a measure of vegetative productivity in the form of annual net primary productivity, we 
estimated ANPP to equal half of GEP.

Spatial extrapolation and environmental change scenarios.  As needed, all spatial data layers were 
resampled into raster format with 10 m2 resolution using nearest neighbor resampling method, and all layers 
were re-projected to a common projection and coordinate reference system (World Geodetic System (WGS) 
1984, Universal Transverse Mercator (UTM) Zone 11). For model calibration and validation datasets, pixel val-
ues from the spatial data layers for GEP, MAST, clay content and litter lignin:N content were extracted at the 
coordinates of sampling points.

We performed MIMICS simulations for each grid cell in the RCEW-CZO spatial data (2.4 million grid cells). 
Each grid cell simulation involved producing estimates from each member of the parameter ensemble (n = 30). 
The average estimate at each grid cell was then used to construct the continuous maps (Figs. 5, 6, 7). The cor-
responding parametric uncertainty maps were similarly generated by calculating the standard deviation of the 
estimates for each grid cell. Continuous spatial estimates of SOC responses to idealized scenarios were similarly 
performed. Idealized scenarios were applied through a uniform shift in the corresponding forcing data layer 
(+ 10% increase in GPP or + 1 °C MAST) prior to the model simulations. The High-Performance Computing 
(HPC) resources provided by Idaho State University and the U.S. Department of Energy Idaho National Labo-
ratory were invaluable for the high-resolution spatial projections, allowing us to complete over 300 million 
MIMICS simulations.

MAST = −0.0087(ELEV)+ 22.43− (solarMID − solarIN/tMOD)

MSAVI2 =

(

2 ∗ NIR + 1−

√

(

(2 ∗ NIR + 1)2 − 8 ∗ (NIR − RED)
)

)

/2

https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
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Statistical analysis and code.  All modeling, analysis and spatial mapping for this study were performed 
in R88. Root mean square error and correlation between model estimates and field data were specifically per-
formed using the Metrics (https://​github.​com/​mfras​co/​Metri​cs) and base R packages respectively88. The MIM-
ICS model and the developed Markov Chain Monte Carlo and Monte Carlo simulation algorithms were com-
posed in R programming scripts and are available in open-access repositories on GitHub (https://​github.​com/​
piers​ond/​MIMICS_​HiRes, https://​github.​com/​wwied​er/​MIMICS/​tree/​sandb​ox). The MIMICS_HiRes reposi-
tory provides all modeling and analysis code associated with this study, as well as useful startup information and 
simplified examples to assist future use. Scripts in the repository were assembled specifically for use with HPC 
to reduce the time required for model parameterization and simulations.

Data availability
The spatial and tabular datasets used for model forcing, calibration and validation within this study are publicly 
available from Boise State University ScholarWorks. (https://​schol​arwor​ks.​boise​state.​edu/​reyno​ldscr​eek/​26/; 
https://​doi.​org/​10.​18122/​reyno​ldscr​eek.​26.​boise​state).

Code availability
Codes used for MIMICS parameterizations, estimates, projections and spatial extrapolations associated with 
this manuscript are publicly available on GitHub. (https://​github.​com/​piers​ond/​MIMICS_​HiRes; https://​doi.​
org/​10.​5281/​zenodo.​57946​55).
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