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Abstract: Supplementing chemotherapy and radiotherapy with selenium has been shown to have
benefits against various cancers. This approach has also been shown to alleviate the side effects
associated with standard cancer therapies and improve the quality of life in patients. In addition,
selenium levels in patients have been correlated with various cancers and have served as a diagnostic
marker to track the efficiency of treatments or to determine whether these selenium levels cause or
are a result of the disease. This concise review presents a survey of the selenium-based literature,
with a focus on hematological malignancies, to demonstrate the significant impact of selenium in
different cancers. The anti-cancer mechanisms and signaling pathways regulated by selenium, which
impart its efficacious properties, are discussed. An outlook into the relationship between selenium
and cancer is highlighted to guide future cancer therapy development.

Keywords: selenium; selenoprotein; cancer; chemoprevention; chemotherapeutic; radiotherapy;
leukemia; hematologic malignancies; murine disease model

1. Introduction

Due to the high incidence rate of individuals diagnosed with cancers and the corre-
sponding harmful effects to their quality of life from treatment, determined efforts have
focused on improving cancer prevention and treatment, which have been pursued through-
out the literature [1–4]. Cancer is a disease characterized by normal cells mutating and
proliferating uncontrollably and/or by the improper gene expression or signaling pathways
of specific targets, which results in malignant transformations [5,6]. Typically, chemother-
apy, immunotherapy, radiation therapy, or surgery is employed to treat cancer patients [3,7].
The earlier the cancer is detected, staged, and aggressively treated, the better the prognosis
of the disease, and this may also prevent cancer from metastasizing to other parts of the
body [7]. Blood cancers, such as acute myeloid leukemia (AML) and acute lymphoblastic
leukemia (ALL), are characterized by the over-proliferation of blasts in the blood, bone
marrow, and other tissues, which can hinder the hematopoietic pathways. AML is a rapidly
progressive cancer that is heterogenous in nature, making it difficult to effectively treat;
therefore, it is associated with low survival and high relapse rates. This is especially true
for the elderly, who commonly exhibit pre-existing conditions that can be compounded by
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side effects from the treatment or the disease itself [8]. Among the cancers that children
are diagnosed with, leukemia is one of the most prevalent, wherein acute lymphoblastic
leukemia (ALL) is responsible for about one fourth of all childhood malignancies [9].

Further, among adults that are diagnosed with acute leukemia, AML is one of the most
common forms and has a five-year survival rate of 26.9% [10]. The standard treatment for
AML includes treating patients in the acute phase with high-dose induction chemother-
apy to reduce the leukemic blast growth and with consolidation chemotherapy and/or
allogenic stem cell transplantation in the remission phase [4,11]. The major drawbacks
of current cancer therapy include a lack of selectivity between targeting cancer versus
healthy cells (which can lead to severe infections), the toxicity associated with most current
methods, and the development of drug resistance with continued treatment over time [3,7].
Recent efforts have been focused on developing more effective and less toxic cancer ther-
apies [12]. Reduced levels of selenium (Se) in the blood serum of children with AML
(76.46 ± 24.59 µg/L) versus healthy children (102.38 ± 19.25 µg/L) before chemotherapy
has been reported [13]. A trend of significantly reduced levels of serum selenium was also
observed among fifty patients, 16 to 75 years of age, which were diagnosed with either ALL
or AML but never previously treated, in comparison to healthy subjects [14]. Additionally,
a significant difference among the serum selenium levels was shown when patients with
different subsets of AML were compared [14]. Investigations have been driven to determine
whether selenium deficiency causes the disease or is a resulting effect of cancer [13].

Selenium is an essential, naturally occurring trace mineral element, implicated in a
diverse set of biological processes that impact health and disease [15–21]. Among the three
elements (oxygen, sulfur, and selenium) from the chalcogen group of the periodic table
that are incorporated into biological macromolecules, both sulfur and Se exhibit similar
chemical characteristics in terms of valence states (−2, 0, +2, +4, and +6). Although the
two elements are utilized in a variety of biochemical reactions, selenium is found to be
more abundant in biological systems than sulfur due to its stability, reactivity, and the
greater polarity of its chemical bonding [22–24]. Selenium is a key component in several
metabolic pathways, including the antioxidant system, DNA stability and the production
of proteins and nucleic acids, redox signaling, thyroid hormone metabolism, and the im-
mune system [18,19]. The amino acid selenocysteine (Sec) is present in the active site of
25 selenoproteins in humans (e.g., glutathione peroxidase (GPX) or thioredoxin reductase
(TXNRD), Figure 1) and selenoproteins require selenium to function properly [15,25]. The
selenium-based enzymes such as GPX and TXNRD (Figure 1) have important roles in
multiple biological pathways and are utilized by cells to protect against oxidative damage
on the cell membrane and in DNA, which may prevent or protect against cancer [26,27].
Although the majority of studies have highlighted the chemopreventive role of selenium,
recent randomized control trials and observational studies have reported that selenium
alone failed to exhibit anticancer activity [28–30]. Conversely, selenium supplementation
has raised several concerns for increased risks of cancer and detrimental effects, especially
in conjunction with type 2 diabetes [31]. The oxidation of NADPH to NADP+ by enzymes
such as thioredoxin reductases (Figure 1) is necessary for the reduction of reactive oxygens
species (ROS) such as hydrogen peroxide (H2O2) to water by glutathione peroxidases.
These GPXs significantly contribute to protecting cells against oxidative damage from
ROS and reactive nitrogen species (RNS) including superoxide, H2O2, and nitric oxide
(NO) [25,32]. Selenium supplementation modulates the NO-mediated apoptosis induced
by cadmium [33]. A deficiency in selenium results in the increased expression of inducible
nitric oxide synthase (iNOS) and NO production [34]. The crystal structures of the se-
lenoproteins in Figure 1 were obtained from the Protein Data Bank (PDB) and generated
in PyMOL [35]. The significant role of selenium in major biological processes and activ-
ities suggests the potential therapeutic benefit that may come from incorporating it into
standard-of-care cancer therapies. Herein, we present a detailed survey of the literature that
demonstrates the anti-cancer activities exerted by selenium. The mechanisms or pathways
in which selenium imparts its activity and its potential towards treating different cancers
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will be discussed, with a focus on hematological cancers. The compatibility of selenium
supplementation alongside conventional cancer treatments such as chemotherapy and
radiotherapy will also be examined. These insights will aid future investigations with the
aim of improving the efficacy and minimizing the toxicity of cancer therapies.
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Figure 1. Selenium is required to ensure the expression and functionality of selenoproteins to
protect cells from oxidative damage. (A) Structure of selenoenzyme glutathione peroxidase GPX1
in Bos taurus (Bovine), which plays an essential role in detoxifying hydrogen peroxide (PDB: 1GP1).
Selenium is a crucial intracellular part of this enzyme’s ability to protect cells. (B) Crystal structure
of recombinant rat thioredoxin reductase TXNRD1 with oxidized C-terminal tail depicting the
selenocysteine residue that is key for its catalytic activity (PDB: 3EAO). The functionally important
selenocysteine residue present in the active site of (A,B) is highlighted in color. (C) Scavenging of
ROS by GPX1 and catalytic redox cycle of selenoprotein thioredoxin (Trx) by Trx reductase TXNRD1.
GR, glutathione reductase; GSH, glutathione (reduced form); GSSG, glutathione disulfide.

2. Regulation of Signaling Pathways by Selenium in Cancer
2.1. Selenoproteins Play a Role in Cancer

Selenium is present in all mammals and is utilized by selenoproteins (Figure 1), a
family of proteins that need the selenium containing amino acid, selenocysteine, to effec-
tively carry out target processes [36,37]. Selenium has its own mRNA codon that allows for
its insertion as selenocysteine into selenoproteins [38]. Selenoproteins play a crucial role
in protecting cells from cancer. Thus, a deficit of selenium in the diet could result in the
depletion of selenoprotein levels and consequently deprive the body of their benefits [38,39].
Selenoproteins also have roles in DNA-repair and cytokine control pathways [40,41]. Dif-
ferential expression profiles of GPXs and TXNRDs indicate that selenoprotein families
have importance in carcinogenesis, the occurrence of cancer, and influence the immune-cell
subtypes, mechanistic cell infiltration, and tumor cell stemness [38,39]. These genes were
found to have key roles in cancer survival (e.g., TXNRD1 and TXNRD3 are correlated with
a poor prognosis), the tumor microenvironment (e.g., TXNRD1, GPX1, and GPX2 are linked
to tumor mutagenesis and development), and drug sensitivity (TXNRD1, GPX1, GPX2,
and GPX3 are associated with the formation of drug resistance) [26]. A low expression
of GPX3 has been correlated with the poor prognosis (overall survival and disease-free
survival) of AML patients and suggests that targeting substrates related to the glutathione
metabolic pathway may advance AML treatment [42]. The antioxidant thioredoxin system
has also been reported to be upregulated in cancer cells and linked to cancer development,
relapse, and chemoresistance in acute leukemia [43,44]. The ROS-facilitated signaling of
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c-Jun activation domain-binding protein-1 and thioredoxin have been correlated with the
pathology, poor survival, and relapse in AML-M5 patients [45]. Recent findings indicate
that single nucleotide polymorphisms (SNPs) in selenoprotein and selenium metabolic
pathway genes alone or in combination with suboptimal levels of selenium contribute
to cancer development [46]. Research and development considering the link between
selenoproteins and tumorigenesis may allow for the design of more effective targeted
therapies [26,43].

2.2. Role of Selenoproteins in Hematological Malignancies

Selenoproteins play an important biological role in maintaining human health by
regulating selenium transport, redox homeostasis, thyroid hormone metabolism, and im-
munity, as stated above. The dysregulation of selenoproteins and selenium deficiency can
result in several serious disorders such as cancer, cardiovascular disease (Keshan disease),
osteoarthritis, liver disease (hepatopathy), arthropathy (Kashin–Beck disease), and a defec-
tive immunity against viral infections [25,47,48]. The dysregulation of the cellular redox
systems plays an important role in both acute and chronic hematological malignancies [49].
The ubiquitous loss of mitochondrial thioredoxin reductase (TrxR2) in mice was associated
with embryonic death at embryonic day 13 and the presentation of smaller embryos that
were severely anemic with increased apoptosis in the liver [50]. A pan-cancer expression
analysis revealed the association of selenoprotein P (SELENOP) with a better prognosis in
most cancers, but a poorer prognosis in brain glioma and uterine corpus endometrioid car-
cinoma [51]. Furthermore, the overexpression of Glutathione peroxidases (GPXs) in AML
patients compared to normal controls was significantly associated with a poor prognosis
of overall survival [52]. The overexpression of the selenoprotein Glutathione peroxidase 4
(GPX4) contributed to the poor prognosis of aggressive diffuse large B-cell (DLBC) lym-
phoma via the inhibition of ROS-induced cell death [53]. Further, the downstream regulator
of GPX4, i.e., SECISBP2 (Selenocysteine Insertion Sequence-Binding Protein 2), which
regulates various selenoproteins, was revealed as a novel prognostic predictor of DLBC
lymphomas and may serve as a potential therapeutic target [54]. Recently, Eagle K et al.
integrated pan-cancer genetic dependency data with that of a comprehensive enhancer
landscape and identified SEPHS2, a selenoprotein biosynthesis gene, as a highly AML-
selective dependency encoded by a Myb-regulated oncogenic enhancer. The suppression
of the SEPHS2-regulated production of selenoproteins by diet selectively renders AML
susceptible to oxidative stress without affecting normal hematopoiesis [55]. Overall, the
current literature highlights the potential role of selenoproteins and selenium metabolism
in different cancers including hematopoietic malignancies.

2.3. Inorganic and Organic Selenium Compounds Exert Therapeutic Activities

Multiple reports have shown that selenium in varying forms (e.g., organic, inorganic,
or as selenoproteins) can exert anticarcinogenic or antimutagenic properties that allow
them to serve as promising candidates for anticancer therapies (Figures 2 and 3) [16,32,56].
It has been reported that Se possesses anti-proliferative, anti-inflammatory, and anti-viral
activities in addition to immune altering properties and has been implicated in various
cancers [56,57]. Inorganic selenium-based compounds (such as selenite and selenate) tend
to metabolize into hydrogen selenide and organic forms of selenium (such as diselenides,
selenides, selenoesters, methylseleninic acid (MSA), 1,2-benzisoselenazole-3[2H]-one and
selenophene-based derivatives, and selenoamino acids and Selol) metabolize into methylse-
lenol [57,58]. These highly reactive, redox-active metabolites (e.g., hydrogen selenide
or methylselenol) exhibit distinct cellular functions and toxicities that give rise to their
chemopreventive or chemotherapeutic properties [57–59].
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Previous reports have focused on investigating the properties imparted by the organic
selenocompounds such as methylselenocysteine (MSC) and seleno-L-methionine (SLM)
(Figure 2) [57,60]. These studies have shown that, at supra-nutritional concentrations,
MSC and SLM exhibit anti-angiogenic and anti-cancer effects. The well-studied inorganic
selenium compound selenite (Figure 2) is clinically utilized and supplemented in the
diet of patients with the endemic Keshan disease [61,62]. Keshan disease arises due to
insufficient dietary selenium levels, which can result in cardiovascular atrophy if not
properly addressed [61,62]. The supplementation of selenite into the diet successfully treats
Keshan disease and the associated symptoms, suggesting the therapeutic benefits that can
be imparted by selenite [61,62].

Several studies indicate the ability of selenocompounds to work well with conventional
cancer therapies (e.g., chemotherapy or radiotherapy) to improve their efficacy toward
malignant cells and decrease their associated off-target or adverse effects [63]. Multiple
human studies [64–66] have demonstrated a decrease in the toxicity of the standard-of-care
chemotherapies (e.g., cisplatin, doxorubicin, cyclophosphamide, and busulfan), and noted
that the therapeutic benefit was not adversely affected upon supplementing cancer therapy
with selenium either in the form of sodium selenite (SS) or the organic SLM (Figure 2).
Xenograft studies have shown that SLM was more efficacious in improving conventional
chemotherapies relative to SS [67,68]. The ability of organic Se-methylselenocysteine (MSC)
versus SS and SLM (Figure 2) to efficiently produce methylselenol, a metabolite that has
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been suggested to regulate a large part of the interactions with standard chemotherapies,
suggests that MSC is more promising and beneficial than SS and SLM [69,70]. Notably, the
anticancer activity of MSC and SLM partly depends on the endogenous expression levels of
various enzymes such as kynurenine aminotransferases (KATs) and cystathionine γ-lyase
(γ-cystathionase) in target tissues along with their ability to synthesize chemopreventive
metabolites, either methylselenol and/or seleno-keto acid metabolites, in situ [71]. SS is still
preferentially studied by some labs because of its demonstrated increased selectivity for
exerting a ROS-influenced cytotoxic effect that reduces the cell proliferation in malignant
cells when compared to normal cells [72,73]. However, the greater genotoxicity induced by
inorganic SS relative to SLM or MSC could result in possible late toxicities (e.g., myelodys-
plasia or acute leukemia), an important factor when selecting an agent to work beneficially
with DNA-damaging cancer treatments [74].

2.4. Selenium-Based Compounds or Proteins Act by Various Modes of Action

Reports have indicated that selenium-based compounds or selenoproteins exhibit
chemotherapeutic activity by regulating various biochemical pathways related to apopto-
sis [1], cell proliferation [56,75], cell cycle arrest [76,77], necrosis, autophagy, ferroptosis,
necroptosis, entosis, anoikis, NETosis, or mitotic catastrophe imparting cytotoxic effects or
cell death (Figure 3) [38,78]. The selenocompounds with promising anticancer activity were
summarized in Table 1. The selenoprotein glutathione peroxidase 4 (GPX4) and glutathione
can regulate ferroptosis to protect the cell from oxidative damage (e.g., excessive ROS/RNS
production) [79,80]. However, the overexpression of GPX4 has been correlated with the
poor prognosis and overall survival of diffuse large B-cell lymphoma [54]. Advantageous
responses from selenium-related cancer treatments have also been shown to be imparted
by protein modification, the impairment of tumor angiogenesis, and the regulation of pro-
cesses associated with DNA repair/damage, metastasis, or the endoplasmic reticulum (ER)
and oxidative stress responses (Table 1; Figure 3). Selenium has been linked to metastasis
in various cancers and is thought to impart anti-metastatic properties (Figure 3), such as
reducing the expression of Osteopontin and suppressing cell motility, migration, invasion,
and angiogenesis [78,81]. Selenocompounds have also been reported to increase the activity
of macrophages and enhance cell respiration [13].

The amount of the selenium agent administered can influence whether prooxidant or
antioxidant activity is observed. Typically, nutritional doses exert antioxidant and chemo-
preventive effects relative to supranutritional concentrations that can induce prooxidant
and anticancer pathways [82]. The metabolites derived from selenium have been linked to
the triggering of oxidative stress in cells via the production of ROS/RNS, which in turn
leads to the oxidation of protein thiol moieties [32,56]. Selenium-based compounds have
been shown to exhibit chemopreventive and anticancer properties through prooxidant ac-
tivities and the regulation of cellular redox homeostasis by altering thiol groups in multiple
metabolic pathways, stimulating the production of ROS/RNS, and regulating changes in
the chromatin [57,83].

Selenium-based compounds have been shown to modulate cellular responses by
regulating p53 phosphorylation [76,84–86]. Selenium treatments have been demonstrated
to increase the host cell’s reactivation of a UV-damaged reporter plasmid template [87],
indicating its possible role in DNA repair [86,88]. However, it has been established that
selenium can only regulate DNA repair in wildtype p53 containing cells [86,88]. The
selenoprotein thioredoxin reductase and redox factor 1 (Ref-1) are needed for p53 cysteine
reduction, which allows for the prevention of DNA damage [88–90]. Studies have shown
that SLM activates DNA repair and shields cells from DNA damage without inducing
cell cycle arrest or apoptosis [76,84–86,88]. In one study, mouse embryonic fibroblasts,
either wildtype or null for p53 genes, were pre-treated with the nontoxic agent, SLM [86].
This pretreatment induced a DNA repair response and protected the fibroblasts against
DNA damage in the presence of UV radiation or UV-mimetic chemotherapy [86]. The
beneficial activity imparted by SLM was not seen in cell lines that were null for the tumor
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suppressor p53 gene. Therefore, p53 may be crucial for distinguishing healthy and cancer
cells [86]. On a similar note, selenium nanoparticles exhibited an inhibitory effect on
p53’s ability to mitigate chemotherapy-induced diarrhea and possibly serve as potential
chemoprotectants [91].

The addition of Se alongside treatment with DNA-damaging chemotherapeutics has
been shown to selectively protect healthy tissues and prevent the typically observed dose-
limiting toxicity [86]. This has allowed for the administration of increased chemotherapeutic
doses and has induced a cytotoxic effect on cancer cells [86]. Human tumor xenograft
murine models (human squamous cell carcinoma of the head and neck, FaDu and A253,
and colon carcinomas HCT-8 and HT-29) that were administered seleno-L-methionine prior
to and during chemotherapy treatment experienced an improved tolerance to higher doses
of irinotecan [92]. The ability to treat tumor-bearing mice with higher concentrations of
drugs allowed for an enhanced efficacy towards chemoresistant tumors [92]. Phase 1 trials
have explored the potential of SLM to improve chemotherapy and found that patients
could tolerate high doses of SLM without displaying adverse toxic effects [93,94].

Table 1. List of selenium-based compounds with promising anticancer activity.

S. No. Compound Redox Property Cytotoxicity Mechanism References

1 Selenate Proapoptotic, genotoxic

Activates protein phosphatase 2A, which
inhibits various signaling cascades such as

phosphatidylinositol 3-kinase (PI3K)/
Akt pathway.

Induces apoptosis, but at a relatively
high concentration.

[95]

2 Selenite/Sodium
selenite (SS)

Proapoptotic,
prooxidative, genotoxic,

inhibits cell
proliferation

Activation of extracellular signal-regulated
protein kinase (ERK) pathway.

Inhibition of autophagy through PI3K/
Akt pathway

[96,97]

3 Selenocysteine
(SeCys) Antioxidant

Induces apoptosis through the cell cycle
arrest, and oxidative damage.

Paraptotic-like effect mediated by ER stress.
[98,99]

4 Selenomethionine
(SeMet)

Proapoptotic,
proliferation inhibition

Pro-apoptotic effects in several cancer
cell lines.

Activation of p53-dependent proteins.
Non-toxic and non-genotoxic.

[1,85]

5 Methylselenocysteine
(MSC)

Proapoptotic,
anti-angiogenic,

proliferation inhibition

Anti-cancer effects in various cell lines,
including promyelocytic leukemia.

ER stress and mitochondrial
dysfunction/signaling

[83,100]

6 Methylselenic acid
(MSA)

Pro-apoptotic,
anti-inflammatory,

pro-oxidant,
anti-angiogenic

Induces cytotoxicity through DNA damage.
Regulation of PI3k/Akt, ERK1/2,

and p38 pathways
[77,101]

7 Selenodiglutathione
(SDG)

Antioxidant,
pro-apoptotic

Induction of apoptosis through ROS and
oxidative damage. [102]

8 Methylselenol Pro-apoptotic; inhibits
cell growth

Inhibition of the ERK1/2 pathway activation
and c-Myc expression.

Induces cell cycle arrest.
[103]

9 Ebselen

Anti-inflammatory,
antioxidant, protects

against oxidative stress
as well as

DNA damage

As an antioxidant, Ebselen induces apoptosis
through many pathways.

Induces ROS generation and
oxidative damage

[104]
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Table 1. Cont.

S. No. Compound Redox Property Cytotoxicity Mechanism References

10 Ethaselen

Proliferation
suppression,

synergistically effective
with cisplatin against

resistant leukemic cells

Induces ROS and apoptosis by TrxR inhibition [105,106]

11 Dimethyl
diselenide Antioxidant Induces NADPH quinone oxidoreductase [107]

12 Zidovudine
derivatives Pro-apoptotic Induced apoptosis through the

mitochondrial pathway [108]

13 Phenylindolyl
Ketone Derivative Pro-apoptotic Induced apoptosis through cell cycle arrest

and inhibition of tubulin polymerization. [109]

14 Combretastatin 4-A
analog

Inhibit tubulin
polymerization Inhibition of cell growth. [110]

15 Diphenyl
diselenide

Antioxidant, inhibitor
of nociception

Protective against genotoxic substances.
Induces apoptosis through oxidative damage. [111,112]

16 Selol
Cytotoxic effects,

inhibits proliferation,
apoptotic

Induced apoptosis in resistant cancer cell
lines including leukemia through

oxidative damage.
[113]

Selenium-derived compounds have been shown to alter the expression of various
target genes or modulate the interplay between signaling networks [83,114]. Powers and
co-workers demonstrated that selenium supplementation in the form of selenite plays a role
in cellular signaling and its consequences by regulating the highly conserved Delta–Notch
signaling pathway [61]. In vitro studies indicated that selenite treatment on primary mouse
hepatocytes, MCF7 breast adenocarcinoma cells, or HEPF2 liver carcinoma cells altered the
transcription levels of various genes involved in the Delta–Notch signaling network (e.g.,
Notch1) [61]. The intraperitoneal administration of selenite (2.5 mg/kg) to mice resulted in
significantly reduced Notch1 expression levels in liver and kidney tissues [61]. These results
provide support for selenite’s role as an inhibitor in the Notch signaling pathway and its
promise as a targeted therapy of Notch, which has been correlated with the prognosis in
various cancers, fibrosis, and neurodegenerative diseases [61,115].

3. Role of Selenium and Its Therapeutic Advantages in Various Cancers

Selenium has been linked to the pathophysiology of a diverse set of conditions (e.g.,
depression, atherosclerosis, and cancer) [15]. In 1969, populations with an increased
selenium intake were found to have a decreased cancer incidence and thus paved the
way for research into the therapeutic benefit of selenium [116,117]. Additional evidence
suggested that selenium could be useful in cancer treatment and prevention [56,118,119].
Studies have also shown a link between cancer progression, incidence, or overall age-
adjusted cancer mortality and selenium intake at supranutritional doses or the level of
selenium in the serum [13,120,121].

3.1. Pre-Clinical Selenium-Based Therapeutic Studies Are Promising in Disease Animal Models

Animal studies have shown the chemotherapeutic properties imparted by selenium in
different types of cancer [122–124]. Many murine or rat-related studies that investigate the
effect of selenium in cancer models have provided selenium in the rats’ food or drinking
water [125]. Upon supplementing the diet with 5 ppm of selenite, the rats with liver tumors
that were induced by the azo dye (m′-methyl p-dimethylaminoazobenzene) experienced a
fifty percent reduction in tumor development [126]. Mammary tumorigenesis rat models
that were fed with a selenium supplemented diet, in the form of SS, showed that tumorige-
nesis was inhibited [125]. Medina and Shepherd investigated the tumor-inhibiting efficacy
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of dietary selenium on the primary hyperplastic alveolar nodules (HAN) of the mammary
glands of BALB/c mice [127]. They observed a significant reduction in the tumor-producing
capability of hyperplastic alveolar nodules and the inhibition of mammary tumorigenesis
when the mice were fed dietary selenium. These results suggest that selenium could be a
promising candidate to inhibit neoplastic transformation in preneoplastic cells and to hin-
der their formation [127]. Selenium has also been reported to effectively exert anti-cancer
effects associated with its oxidative activities in bone cancers without adversely affecting
healthy tissues [128].

Jiang and co-workers revealed that chitosan oligosaccharide-conjugated selenium
(COS-Se) was selectively active in human gastric cancer (SGC-7901) versus normal fibroblast
(L-929) cells [129]. The potency of COS-Se in human gastric cancer cells was exemplified
through enhanced immune function activities and reduced cancer growth, proliferation,
and metastasis. This COS-Se was well tolerated and presented no toxicity in mice. Gastric
adenocarcinoma SGC-7901 murine models that were subcutaneously injected and orally
administered with COS-Se for 28 days exhibited significantly reduced tumor volumes and
weights, reduced expressions of pro-angiogenesis related factors (e.g., CD34 and vascular
endothelial growth factor (VEGF)) in the treated tumor tissues, and decreased serum levels
of tumor metastasis-related targets (e.g., matrix metalloproteinase-9 (MMP-9) and VEGF)
relative to the control group, demonstrating the anti-cancer efficacy of COS-Se in vivo.
These findings suggest that dietary supplementation with selenium-oligosaccharides may
be promising in cancer prevention and may play a critical role in improving gastric cancer
disease [129].

Karelia et al. reported the potency of a novel selenazolidine-bis-aspirinyl derivative,
AS-10, in pancreatic ductal adenocarcinoma (PDAC) to overcome the poor survival rates
and negative effects of standard PDAC therapeutics [130]. The PDAC cell lines were
sensitive towards AS-10, exerting a selective cytotoxic effect, wherein the cell proliferation
of the cancer cells was reduced relative to non-malignant mouse embryonic fibroblasts
that were unaffected at similar concentrations of AS-10. The treatment of the PDAC cell
line, Panc-1, with AS-10 exhibited caspase and ROS-mediated apoptosis without activating
necrosis or DNA damage genes, reduced nuclear transcription factor-kappa B (NF-κB)
signaling by inhibiting the proinflammatory cytokine TNF-α, and arrested G1/G0 cell cycle
progression. The observations from in vitro studies were supported by RNA-sequencing
and bioinformatic analysis, which indicated that AS-10 played a role in NF-κB signaling
and pathways related to the cell cycle, death, and survival, while not affecting DNA
damage marker genes. The cytotoxic and pro-apoptotic properties of AS-10 in PDAC cell
lines and the synergistic effects observed upon treating PDAC cells with a combination
of gemcitabine and AS-10 suggest the potential for selenium-based compounds to treat
patients diagnosed with PDAC [130].

Numerous studies have reported potential therapeutic benefits from selenium supple-
mentation or the use of selenium-derived compounds in breast cancers [131–134]. There
are limited available treatments for triple-negative breast cancer (TNBC) patients, espe-
cially since these types of patients tend to develop chemoresistance [135]. This subtype
of breast cancer is aggressive, tends to metastasize, and results in poor survival [135,136].
Patients with TNBC have been demonstrated to exhibit increased levels of VEGF, a tumor
angiogenesis and vascular permeability inducer, resulting in cancer stem cell formation
and tumor proliferation, migration, and survival [137–139]. Antiangiogenic treatments
such as the monoclonal antibody against VEGF (Avastin, also known as bevacizumab)
have been shown to be therapeutically beneficial towards treating TNBC patients; how-
ever, at high doses, these agents can have adverse effects [137,140]. Antiangiogenic drugs
have been shown to induce distant metastasis and result in the poor prognosis of TNBC
patients [137,141].

Nutritional supplements such as marine-based fish oil and selenium have been shown
to have chemotherapeutic properties [142,143]. The potency of selenium in an in vitro
model of lung adenocarcinoma was increased with the addition of fish oil [142]. Reduced
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concentrations of selenium in the blood of breast cancer patients [144] and the established
anticancer properties of selenium (e.g., exerting oxidative stress in tumor tissues, reducing
tumor growth and metastasis, decreasing VEGF expression, enhancing immune resistance,
and diminishing antitumor drug resistance) suggest that selenium could be an apt treatment
for TNBC patients [137,145]. Peng et al. [137] found that the addition of fish oil and selenium
augmented the efficacy of the low-dose antiangiogenic antibody Avastin on triple-negative
4T1 mammary-carcinoma mice (Figure 4). The mice exhibited reduced tumor progression
and metastasis with the combination treatment relative to Avastin alone (Figure 4) [137].
The observed increase in the antibody’s efficacy with the combination-treated mice was
attributed to the regulation of multiple signaling pathways by examining the mRNA
and protein expression of cancer-related signaling molecules [137]. The combination
treatment of Avastin, fish oil, and selenium reduced the expression of various potent
proangiogenic (growth) factors and their membrane receptors, inhibited downstream
targets (e.g., transcriptional factors, kinases, and cancer stem cell markers), and induced a
pro-apoptotic tumor effect, thereby supporting the potential therapeutic value of selenium
in breast cancer patients [137].
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Li and coworkers [146] observed synergistic effects, such as a reduction in tumor
growth, upon treating MCF-7 breast cancer xenograft models in ovariectomized female
athymic nude mice, with a combination of tamoxifen and MSC relative to a single drug
treatment (Figure 4). The immunohistochemistry and TUNEL analysis indicated that MSC
or combination treatment significantly lowered ERα expression and ERα-related genes
(e.g., progesterone receptor and cyclin D1 expression), the Ki-67 index, and the microvessel
density, and enhanced the percentage of apoptosis in tumor tissues. The efficacy imparted
by the organic selenium compound MSC and tamoxifen on ERα-positive breast cancer
mouse xenografts models (Figure 4) demonstrates the compatibility of selenium working
in conjunction with conventional cancer therapies [146]. It also suggests the therapeutic
potential of selenium as an adjuvant therapy or in chemoprevention.
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3.2. Clinical Studies Support Adjuvant Selenium Supplementation

Clinical trials have demonstrated the efficacy that can be imparted by selenium sup-
plementation during chemotherapy in the development of various cancers such as prostate,
lung, and colorectal cancer [118,147,148]. In clinical trials, it has been observed that sele-
nium and vitamin C supplementation decrease the incidence and mortality of gastric and
lung cancer [149,150]. Patients with a past medical record of non-melanoma skin cancer
that took 200 µg daily of elemental Se, as selenized yeast, had a decreased incidence of
colon, lung, and prostate cancers in a Nutritional Prevention of Cancer (NPC) study, which
supported the potential of selenium towards chemoprevention [69].

Patients with lung and breast cancer that were being treated with cisplatin experienced sig-
nificantly improved peripheral white blood cell counts when they also received 400 µg per day
of selenium in the form of Seleno-Kappacarrageenan as compared to patients that underwent
a regimen without selenium supplementation (3.35 ± 2.01 versus 2.31 ± 1.38 [×109 L])/L,
p < 0.05) [151]. Selenium supplementation in the form of Seleno-Kappacarrageenan increased
serum selenium levels from 70.4 ± 22.86 to 157.04 ± 60.23 ng/mL (p < 0.001), reduced the
consumption of the granulocyte colony-stimulating factor, and decreased volumes of blood
transfusion without systemic toxicity [86,151]. It was also shown in this study that selenium
could potentially be utilized to reduce the nephrotoxicity and bone marrow suppression
that is exhibited with the conventional drug treatment, cisplatin [151].

Supplementing chemotherapy with selenium also had efficacious results for ovarian
cancer patients [152]. Patients that were undergoing Protecton® Zellactiv (Smith Kline
Beecham, Fink Naturarznei GmbH, Bühl, Germany) chemotherapy and that ingested sele-
nium daily experienced significantly higher levels of serum selenium, enhanced glutathione
peroxidase 1 (GPX1) activity in their erythrocytes, higher levels of malondialdehyde (MDA),
increased white blood cells counts, reduced neutropenia, and a reduction in the negative
side effects induced by chemotherapy (e.g., hair loss, abdominal pain, weakness, malaise,
and loss of appetite) [152]. A selenium supplementation did not negatively impact the
efficacy of chemotherapy in the studies carried out by Hu et al. [151] and Sieja et al. [152].
In a retrospective study, Meyer et al. examined the serum in renal cell cancer patients
and their survival [153]. The researchers reported that reduced levels of serum selenium
and selenoprotein P, the major selenium transport protein in blood, upon diagnosis were
correlated with a poor, five-year survival [153]. These clinical findings suggest that adju-
vant selenium supplementation may allow conventional therapy to be more effective in
selenium deficient patients diagnosed with various cancers and suggest that monitoring
selenium levels in these types of patients could be a key biomarker to track the efficiency of
treatments or to gain further insights into the disease.

4. Selenium Reduces Disease Progression in Blood Cancers

Selenoproteins have been reported to have crucial roles in the immune system path-
ways regulating T-cell proliferation, differentiation, and metabolism signaling that can
have implications in various diseases [154]. Selenium supplementation has been shown
to have anti-cancer properties corresponding to a reduced cancer cell survival and to
activate antibody formation and the activity of helper T-cells, cytotoxic T-cells, and nat-
ural killer cells [14,154,155]. The fundamentally important element, Selenium, can be
found in red blood cells and in blood proteins such as hemoglobin and albumin [156,157].
Acute leukemias have been associated with the modified bioavailability and/or altered
levels of trace elements by reducing absorption, enhancing urinary loss, and modifying
element-binding proteins [14,155].

4.1. Selenium Induces a Cytotoxic Effect in Leukemia/Lymphoma Cells

Multiple studies have shown the chemotherapeutic properties of selenocompounds
in different leukemia/lymphoma cells (e.g., the AML HL-60 cell line) and their ability to
induce cytotoxic effects or protective activities to prevent healthy tissue toxicities without
compromising the treatment’s efficiency [158–162]. MSA has also been reported to sensitize



Int. J. Mol. Sci. 2022, 23, 7972 12 of 28

human B-cell acute lymphoblastic leukemia (B-ALL) cell lines to standard chemothera-
peutics, wherein cytotoxic activities were increased with the addition of MSA [160]. The
synergistic effects of MSA were in part attributed to inhibiting the NF-κB pathway [160].
Wu and co-workers demonstrated that the treatment of human T-cell acute lymphoblastic
leukemia (T-ALL) cell lines, Jurkat, and MOLT-4 with a selenium–platinum compound
reduced cell proliferation relative to the platinum-only analogue, induced cell cycle arrest,
and exerted caspase and ROS-mediated pro-apoptotic activities by regulating a mitochon-
drial signaling network [163]. Additionally, the well-studied SS exerted a cytotoxic and
pro-apoptotic effect on the human T-ALL cell line, MOLT-3, resulting in a reduced cellular
proliferation in a dose-dependent manner [164]. Mouse leukemia cells such as L1210,
L797, and L615 were also shown to be sensitive to SS via cytotoxic assays [165,166]. The
selenite treatment of mouse leukemic L1210 cells induced DNA single-strand breaks and a
pro-apoptotic effect, and stimulated endonucleases that resulted in DNA double-strand
breaks [165]. In addition, an in vivo study involving the intraperitoneal administration of
SS resulted in a prolonged survival in the syngeneic mouse leukemia model L797 [166].

The human AML cell line, HL-60, exhibited a reduction in DNA, RNA, and protein syn-
thesis in the presence of selenium, as assessed by examining the uptake of [3H]-thymidine,
[3H]-uridine, and [3H]-leucine, respectively [166]. The synthesis of DNA was reverted
to normal in cells upon the removal of selenium from the media, indicating that the ef-
fects of selenium were attributed to an interference with DNA biosynthesis (e.g., DNA
replication and transcription) rather than a DNA template damage [166]. Additionally,
Wu et al. demonstrated that sodium selenite induced cell cycle arrest as well as cytotoxic
and pro-apoptotic activities in HL-60 cells by regulating pathways related to c-Jun NH2-
terminal kinase 1 (JNK1), p21, p27, and cyclin D1 [161]. Misra and co-workers showed that
pharmacological concentrations of selenite-induced cytotoxic activities by targeting the
PML/RARα oncoprotein in the human acute promyelocytic leukemia cell line with t (15:17)
chromosomal translocation NB4 and in combination with all-trans retinoic acid facilitated
the induced maturation of these cells [167]. Sodium selenite (0.6 µg/mL) was also active
towards primary leukemia patient samples (AML and ALL), inducing a cytotoxic yet
selective effect, wherein healthy cells such as normal bone marrow or peripheral blood
cells were not affected [166]. A reduced cellular proliferation and an induced apoptosis
in lymphoma cell lines and primary lymphoma cells were demonstrated in the presence
of MSA and SDG [162]. These findings indicate the prospective therapeutic value of the
clinical development of selenium compounds in leukemias and lymphomas.

4.2. Selenium Impacts AML in In Vitro and In Vivo Models

Mutational and expression-profiling studies can provide insights into the modified epi-
genetics or transcription pathways of AML patients to uncover key genes or pathways that
could be targeted to inhibit leukemogenesis [168]. A bioinformatic analysis by Jing et. al.,
involving pan-cancer super enhancer profiling and CRISPR dropout screens, revealed that
the selenoprotein synthesis pathway may have critical implications towards AML [168].
The data from The Cancer Genome Atlas (TCGA) indicated that the SEPHS2 gene, which
plays an important role in the selenoprotein synthesis pathway, is greatly upregulated
in AML patients relative to healthy patients’ blood cells [168]. The CRISPR deletion of
genes critical to the synthesis of selenoproteins, such as SEPHS2, SEPSECS, and EEFSEC
in human AML cells (e.g., MOLM-13, Kasumi-1, THP-1, and patient-derived xenograft
samples) and murine AML cells with an MLL-AF9 mutation exhibited a reduced prolif-
eration and an enhanced production of ROS relative to healthy cord blood and myeloma
cells (U266B1) [168]. Transplantation studies of these modified AML cells into secondary
recipients slowed the disease progression, reduced leukemia burden, and prolonged the
survival [168].

A biochemical analysis of CRISPR-modified AML cells by Jiang and co-workers sug-
gested that the deficiency to produce antioxidants, such as GPX1 and GPX4, disrupted
the redox environment necessary for the viability of AML cells, as evidenced by the re-
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duced antioxidant Gpx4 and increased DNA damage marker γ-H2AX protein expression
levels [168]. This was further supported by the slightly improved cellular proliferation
of these CRISPR modified AML cells in the presence of the widely employed antioxidant
and stable aminoxyl radical species, 4-hydroxy-2,2,6,6-tetramethylpiperidin-1-oxyl (TEM-
POL) [168]. The AML murine models that received a diet deficient in selenium experienced
a prolonged survival, reduced Gpx4 protein expression, and enhanced ROS production
versus the control subjects that were fed a selenium adequate diet [168]. These findings
suggest that the disruption in the production or functionality of selenoproteins may be
a promising step towards improving the poor prognosis of AML patients [168]. Further
pre-clinical and clinical investigations and a retrospective examination of these studies
would be necessary to fully understand the benefits and disadvantages of supplementing
or reducing the selenium levels in cancer therapy.

An epigenetic analysis done by Khalkar and co-workers showed that selenite and
MSA affect distinct gene sets in the human AML cell line K562 [169]. These selenium-based
compounds impacted the pathways related to the response to oxygen and hypoxia, cell
adhesion, and glucocorticoid receptors, wherein a reduced cellular adhesion was observed
among K562 and primary AML patient cells that were treated with MSA [169]. This
suggests that selenocompounds may be able to weaken the interaction between leukemia
and stromal cells in bone marrow tissues to allow chemotherapeutics to exert a greater
cytotoxic effect on leukemia cells, thereby slowing the progression of AML [169].

Jin et al. demonstrated that polysaccharide nanotube-containing selenium nanoparti-
cles induced potent cytotoxic activity in AML cells wherein the cellular proliferation was
reduced, apoptosis was triggered, and cell cycle progression was arrested [170]. Further,
the antioxidant activities were augmented in AML cells upon treatment with polysaccha-
ride nanotube-containing selenium nanoparticles, as supported by the reduced protein
expression of two oxidative stress related substrates, namely, c-Jun activation domain-
binding protein 1 (Jab1) and thioredoxin 1 [45,170]. AML patient-derived xenograft cells
derived from a hyperleukocytic AML-M5 patient with NPM1 and DNMT3A mutations
were intravenously injected administered the polysaccharide B-NSG mice and intraperi-
toneally administered the polysaccharide nanotube containing selenium nanoparticles
(0.05 mg/kg) [170]. The in vivo therapeutic efficacy was observed, and the mice exhibited
a slowed loss of body weight, prolonged survival, and a reduced population of human
leukemia cells in the blood and bone marrow, indicating the reduced progression of the dis-
ease [170]. The significant anti-cancer activities imparted by these selenium nanoparticles
in the AML cells and murine models supported the therapeutic promise of this agent in
AML [170].

The treatment of the human AML cell lines, ML-2 and HL-60, with SLM resulted in a
decreased cellular proliferation and induced a pro-apoptotic effect [171]. Immunocompro-
mised mice that were subcutaneously injected with ML-2 or HL-60 luciferase expressing
cells were then treated with either the vehicle, SLM, the standard AML chemotherapeutic
cytarabine (Ara-C), or the combination of SLM and Ara-C. The in vivo efficacy of the single
and combination treatment groups was comparable to the vehicle-treated control group.
However, the anti-angiogenic and anti-tumor activities of the anti-VEGF antibody, beva-
cizumab (BV), with the addition of SLM, was augmented after 3 weeks of treatment in these
human AML xenograft murine models [171]. The data from the bioluminescent imaging
and tumor volume and weight measurements demonstrated the synergistic interactions
between SLM and BV to reduce the disease progression in the HL-60 and ML-2 AML
xenograft models. For instance, the mean tumor volume was further reduced by 13% in the
HL-60-injected mice that were treated with the combination of SLM and BV relative to a
single treatment with BV [171].

Annageldiyev et al. [172] observed the in vitro potency and in vivo efficacy imparted
by phenybutyl isoselenocyanate (ISC-4) in human and mouse AML cells lines (e.g., MOLM-
13, MV4-11, OCI-AML2, U937, and C1498) and human AML primary patient samples. In
addition, ISC-4 exerted a selective cytotoxic and pro-apoptotic effect in human AML cell
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lines, primary human AML cells, and primary human AML leukemic stem cells versus
cells from healthy patients, which were unaffected by the ISC-4 treatment. Synergistic
effects were shown upon treating human AML cell line U937, primary human AML cells,
and primary human AML stem cells with ISC-4 and Ara-C. The combination treatment
significantly reduced the viability and augmented the apoptotic population in cancer
cells relative to the single drug treatment [172]. In addition, ISC-4 has been shown to
downregulate the PI3K/Akt pathway, resulting in the induction of apoptosis in melanomas
as well as in prostate and colon cancers [173–176]. The PI3K/Akt signaling network
is commonly upregulated in AML and is correlated with the poor prognosis of AML
patients [172]. The anti-leukemic activity of ISC-4 was attributed to downregulating the
PI3K/Akt signaling pathway and thereby activating caspase-regulated apoptotic signaling
pathways (e.g., cleavage of caspases 9 and 3 and PARP).

A significant reduction of disease progression was observed in syngeneic murine AML
xenograft mice treated with ISC-4 (7 mg/kg; i.p.) versus the vehicle (Figure 5), as measured
by bioluminescence imaging, flow cytometry analysis of leukemic cells in the liver, and
an enhanced overall survival. The reduced bioluminescent signal on day 16 (Figure 5)
effectively illustrated the diminished metastasis of cancer in ISC-4-treated mice relative to
the vehicle-treated control group [172]. Immunocompromised NRG mice intravenously
injected with the human AML cell line, U937, and subsequently intraperitoneally treated
with ISC-4 (7.5 mg/kg) exhibited a decreased human CD45+ population in the bone marrow
via flow cytometry versus the control group [172]. In this study, immunocompromised
mice were also intraperitoneally administered either Ara-C (50 mg/kg) or a combination
of both Ara-C and ISC-4. A comparable reduction in the human CD45+ populations of
the bone marrow was shown in the mice treated with either ISC-4 or Ara-C relative to
the vehicle-treated mice. Synergistic efficacy was observed upon treating the mice with
a combination of ISC-4 and Ara-C (Figure 4), where a significant decrease in the human
CD45+ population of the bone marrow tissue was seen relative to the control and single
drug treatment groups. The synergism shown between ISC-4 with conventional AML
chemotherapeutic Ara-C and the significant reduction in the leukemia burden in AML
mouse models suggests the potential for ISC-4 to be clinically utilized in the treatment of
AML [172].
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4.3. Selenium Is Potent in Leukemia Stem Cells through In Vitro and In Vivo AML/CML Models

Leukemia stem cells (LSCs) are responsible for generating bulk leukemia cells that are
correlated with the pathology of blood cancers, and relative to bulk leukemia cells, LSCs
can induce leukemia in secondary recipients [177–179]. These LSCs are also related to the
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chemoresistance and relapse that are hallmarks of this disease [177–179]. Hematopoietic
stem cells that express the BCR-ABL1 fusion protein from the 9:22 translocation can give
rise to LSCs in chronic myeloid leukemia (CML) [177,180]. Conventional chemotherapy,
such as the use of tyrosine kinase inhibitors, can inhibit the proliferation of bulk leukemia
cells and allow for the remission of CML [177,178]. Standard agents are not active towards
LSCs, and thus targeted therapies that can exert a cytotoxic effect on LSCs are necessary
to prevent relapse [177,178]. Sodium selenite (Na2SeO3) has been shown to reduce the
leukemia burden by stimulating p53 to induce apoptotic pathways [166,181,182]. Selenium-
cystine administered to CML and AML patients, in the form of diselenodialanine, resulted
in reduced total leukocyte and immature leukocyte counts [177,183].

Gandhi and co-workers investigated the role of selenium, in the form of inorganic
selenite and organic methylseleninic acid, in the metabolic pathways in cancer stem-like
cells (CSC) [177]. The authors observed that selenium, at supraphysiologic and nontoxic
doses, induced selective ATM-p53-dependent apoptosis and higher intracellular oxidative
stress (or levels of ROS) in chronic or acute myeloid leukemia stem cells among two
established leukemia murine models and in AML or blast-crisis CML patient samples.
However, these treatments spared hematopoietic stem cells. The blood from human patients
diagnosed with AML or blast-crisis CML was examined and the CD34+CD38−CD123+ LSC
population had an increased percentage of apoptotic cells upon treating the blood with
lipid extracts from selenium-supplemented macrophages. It was also demonstrated that
selenium increased the endogenous formation of the cyclooxygenase-based prostaglandins
(CyPGs), ∆-12 prostaglandin J2 (∆12-PGJ2) and 15-deoxy-∆12,14-prostaglandin J2 (15d-
PGJ2), suggesting that the apoptotic properties of selenium are in part associated with the
endogenous eicosanoids [177].

Serial transplantation assays in mice with BCR–ABL-expressing CSCs indicated that
selenium levels are important for the survival of CSCs [177]. The properties of selenium
in primary human and murine leukemia stem cells were linked to the arachidonic acid
metabolic pathway. This was further supported by the negative impact on selenium and
its ability to stimulate p53 and induce apoptosis in leukemia CSCs in the presence of
nonsteroidal anti-inflammatory agents (NSAIDs, e.g., indomethacin) and NADPH oxidase
inhibitors. The inhibited cellular proliferation in LSCs by selenium, which was hindered
by the presence of NSAIDs, indicates that the apoptosis triggered by selenium was in part
correlated with augmented oxidative stress facilitated by NADPH oxidases such as Nox1.
The selectivity imparted by selenium that is active in LSCs versus healthy hematopoietic
cells provides support to the notion that altered intracellular ROS levels are important in the
viability of LSCs [177]. A similar study by Finch et al. indicated that the selective cytotoxic
effect in leukemia stem cells, upon providing selenium supplemented diets to CML bearing
mice, is linked to the endogenous cyclopentenone prostaglandins production pathway
by triggering the nuclear hormone receptor known as peroxisome proliferator-activated
receptor γ (PPARγ) [184]. These results suggest the promise of selenium supplementation
as a CML adjunct therapy [177]. The efficacy of this treatment will depend on the selenopro-
tein expression and the regulation of the arachidonic acid metabolic pathway to drive the
production of cyclooxygenase-based prostaglandins, thereby selectively inducing apoptosis
in leukemia stem cells. Gandhi et al. demonstrates the significance of redox-dependent
processes towards impacting the viability of leukemia stem cells [177].

4.4. Selenium Is Therapeutically Valuable in Patients with Hematological Malignancies

Multiple reports have demonstrated a relationship between low serum selenium
levels and various hematological malignancies or solid tumor type cancers [13,14,185–188].
Hadjibabaie and co-workers found that twenty-two adult patients with hematological
malignancies (Hodgkin disease, ALL, AML, CML, and non-Hodgkin’s lymphoma) had
low mean selenium serum levels (19.91 µg/L, from 12.00 to 62.00 µg/L) prior to bone
marrow transplantation (BMT) [117]. Aggressive non-Hodgkin’s lymphoma patients were
studied, and it was found that the serum selenium concentration upon diagnosis can
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be independently related to their prognosis (e.g., treatment response and survival) [189].
Reduced serum selenium levels in patients with hematological malignancies have been
correlated with poorer chemotherapy dose delivery, tumor response, and survival [188,189].
A lower cancer incidence was shown upon providing selenium compounds to selenium-
deficient patients [18,190].

Selenium has been established to be a therapeutically beneficial nutritional supple-
ment for cancer patients, and selenium supplements are often prescribed to patients with
hematological malignancies [190,191]. Morel et al. found that a selenium-supplemented
diet consumed by survivors of childhood acute lymphoblastic leukemia protected these
patients from low HDL-C and cardiometabolic complications after cancer treatment [192]. It
was also shown by Rocha et al. that pediatric leukemia or lymphoma patients that received
dietary supplementation with selenium had lower neutropenic incidences and diminished
IgG and IgA levels [193]. However, clinical studies have utilized various doses and different
selenium compounds, primarily SS and SLM, indicating that further investigations are
necessary to establish the most efficacious dose and the pharmacodynamic endpoints of
these clinically-employed compounds [190]. Chronic lymphocytic leukemia (CLL) and
patients with solid malignancies, as part of a phase I clinical study, received 400 µg of
elemental selenium as either SS, MSC, or SLM for eight weeks to establish the safety, tolera-
bility, and pharmacokinetic profile of these agents [69]. These compounds did not induce
significant toxicities or genotoxicity [69]. Patients were able to sufficiently tolerate these
compounds, as these elemental selenium analogues increased the total plasma selenium
AUC (more Se with SLM) and slightly decreased the lymphocyte counts. Therefore, this
study demonstrated the clinical utility of selenium-based compounds and provided a
promising potential advancement of standard cancer treatments [69].

Preclinical and clinical studies have demonstrated the anticancer activities exhibited
by selenocompounds and their potential to work synergistically with current cancer thera-
pies [69,190]. Researchers have reported that the incorporation of selenium compounds into
various conventional chemotherapy regimens, hormonal drugs, or radiation treatments
enhances their therapeutic properties while diminishing some of their toxicities [93,194,195].
A combination of selenium with chemotherapy has been found to improve overall survival
rates and to be an efficient immunomodulator [158,196,197]. Sodium selenite synergistically
interacted with standard chemotherapy and exerted an apoptotic effect on lymphoma cells
in non-Hodgkin’s lymphoma (NHL) patients [158]. Patients that received chemotherapy
and adjuvant sodium selenite (0.2 mg/kg/day) for seven days presented increased apopto-
sis in lymphoma cells, as measured by flow cytometry, relative to the subjects that received
only conventional chemotherapy (78.9± 13.3% versus 58.9± 18.9%, p < 0.05) [158]. Further,
chemotherapy supplemented with sodium selenite resulted in a significant reduction of
cervical and axillary lymphadenopathy, spleen size, and the percentage of bone marrow
infiltration [158]. There was no diminished cardiac ejection fraction in the NHL patients
that received selenium and chemotherapy, suggesting the cardioprotective properties of
selenium [158]. This study indicates the potential for selenium to improve the prognosis of
NHL patients [158]. Clinical studies have reported decreased chemotherapeutic associated
toxicities in patients with hematological malignancies upon supplementing their treatment
with selenium [64,158,190,197]. Larger clinical studies are needed to establish the most
effective doses of selenocompounds and to extensively study the long-term therapeutic
effects, toxicities, and potential secondary malignancies imparted by selenium to advance
conventional cancer therapy in patients with hematological malignancies [65,190].

5. Selenium Alleviates Adverse Effects Associated with Radiotherapy
or Chemotherapy

Radiotherapy is an effective cancer treatment that is employed to treat about 50% of
patients diagnosed with cancer, and similar to chemotherapy, it can be associated with
harmful side effects (e.g., normal tissue injury) [198,199]. The production of ROS from
ionizing radiation contributes to the oxidative stress in cells that may result in negative
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protein modifications and adversely impact DNA, RNA, and cell membranes, leading to
cell death and tissue damage [40,199]. The antioxidative activities of selenoproteins that
allow them to reduce the formation of ROS brought on by radiation suggest the potential of
selenium to improve the quality of life associated with radiotherapy [40,200]. The treatment
of C6 rat glioma cells with selenite and irradiation demonstrated that selenium imparted
a radiosensitizing effect, which resulted in the reduced plating efficiency and survival
in glioma versus control cells [195]. Lobb and co-workers reported that low doses of
MSA alone, or in combination with cytotoxic chemotherapy or gamma radiation, induced
cytotoxic activities in malignant human mononuclear blood cells but spared the peripheral
blood mononuclear cells (PBMCs) of healthy blood donors from cancer therapy-associated
toxicity [201]. Supplementing standard cancer therapies with MSA also augmented the
potency in malignant cells [201]. Greater cytotoxic activity was observed upon the treatment
of malignant cells with higher MSA concentrations in combination with chemotherapy
or radiation; however, these concentrations were toxic to normal cells and enhanced
the cytotoxicity of the radiation [201]. This study suggested that the incorporation of
selenium with chemotherapy or radiotherapy could offer a promising solution to improve
the therapeutic properties of conventional cancer therapy and overcome the associated
toxicity [201].

Clinical studies have shown that the supplementation of radiotherapy with selenium
(300–500 µg/day over 10 days to 6 months) was well tolerated in patients with various
cancers with no additional toxicity, where the blood selenium levels were augmented, the
side effects associated with radiotherapy were decreased, and the efficacy of the radio-
therapy was not compromised [40,65,202]. In a phase 3 clinical trial, selenium-deficient
cervical and uterine cancer patients that orally supplemented adjuvant radiotherapy with
300–500 µg SS experienced higher blood selenium levels and a diminished number of
episodes and severity of radiation-induced diarrhea, without compromising the long-
term survival and therapeutic response imparted by radiation [65,203]. The quality of life
was also noted among patients receiving chemotherapy supplemented with selenium for
leukemia, lymphoma, or solid tumors, where fatigue and nausea as well physical, kidney,
and liver functions were improved relative to the beginning of the study or compared to
patients that received only chemotherapy [204]. Investigations that further establish and
optimize the synergistic effects from supplementing standard cancer therapy with selenium
may lead to improved prognoses and well-being in cancer patients.

Oncologists strategically utilize radiation therapy or chemotherapy to eliminate tumor
cells aggressively and selectively versus healthy cells before potential tumor metasta-
sis [205,206]. The combination therapy with chemo-radiation remains the standard of
care for the management of several cancers despite demonstrating significant and of-
ten dose-limiting toxicity [207–209]. In vivo studies have demonstrated the promise of
utilizing radiation-sensitive nanocarriers to deliver chemotherapeutics directly to tumor
tissues [207,210,211]. The main drawback of this drug delivery system is the high ra-
diation dose needed to release the drugs, which could present toxic effects to healthy
tissues [207,212]. Diselenide-based nanocarriers have been shown to be biodegradable and
radiosensitizing nanoparticles that are sensitive to ROS, resulting in the release of thera-
peutic agents and a nanocarrier breakdown into end products with beneficial antitumor
and immunomodulatory properties [207,213–215].

Zhang et al. [207] designed a drug delivery system in which diselenide block copoly-
mers act as a nanocarrier to release the desired cancer treatment upon receiving a radiation
dose of 2 gray (Gy) (Figure 6). The diselenium-derived polymer that makes up the nanocar-
rier (Figure 6) interacts with the X-ray dose and the high amounts of ROS commonly present
in the tumor microenvironment to break apart and release anticancer agents [207,216–219].
Mechanistic insights were gained by nuclear magnetic resonance and density functional the-
ory studies and suggest that the diselenium bond of the block copolymers is homolytically
cleaved in the presence of X-ray radiation to produce selenyl radical species [207]. The high
amounts of ROS (e.g., H2O2) present in various types of cancers results in its oxidization
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to a selenium-derived acid product and the release of enclosed chemotherapeutics [207].
Studies with 4T1 breast cancer tumor-bearing mouse models successfully demonstrated
the delivery of anticancer agents in these diselenide X-ray-responsive nanocarriers to the
tumor site with efficacious effects (reduced tumor volume/weight) and no additional
toxicity [207]. The further development of diselenide nanocarrier drug-delivery systems
may allow for a promising avenue leading to the reduction of the negative side effects of
conventional cancer therapy that improve or at least do not compromise its efficacy [207].
Recently, an amorphous form of Selenium nanoparticles (α-Se NPs) synthesized using
electron beam and stabilized within room-temperature ionic liquids (RTILs) as a host
matrix provided great control over the size of the nanoparticles. In addition, the in vitro
findings demonstrated that α-Se NPs exhibited the selective killing of A549 lung cancer
cells over normal INT407 control cells [220]. Similarly, Wan et al., synthesized a porphyrin-
containing covalent organic framework (COF) as a substrate for accommodating Se NPs,
thus preventing the aggregation of Se NPs and enhance the stability. The combination of Se
NP-mediated therapy with photodynamic therapy (PDT) greatly achieved long-acting and
effective anticancer effects [221]. So, the futuristic studies exploring Se-based therapy alone
or in conjunction with other therapeutics for the effective treatment of cancers are highly
encouraged. Multiple reports have demonstrated the therapeutic potential of selenium
nanoparticles in a wide range of biological processes and the exploitation of these properties
may improve treatments for various diseases [124,170,194,222–226].

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 19 of 29 
 

 

demonstrated the therapeutic potential of selenium nanoparticles in a wide range of bio-
logical processes and the exploitation of these properties may improve treatments for var-
ious diseases [124,170,194,222–226]. 

 
Figure 6. Diselenide nanocarrier-based drug delivery systems have been developed to selectively 
release chemotherapeutics in tumor tissues. 

6. Conclusions 
Selenium supplementation, via the addition of selenium to diets or the use of seleno-

compounds as drugs, can impart chemopreventitive and chemotherapeutic properties in 
various cancers. Different forms of selenium have been shown to impart their efficacy by 
regulating an array of biochemical pathways to induce cell death (e.g., apoptosis, cell cycle 
arrest, autophagy, etc.), affect gene expression or signaling networks relating to angiogen-
esis or tumor cell migration and invasion, or modulate the replicative properties of tumor 
cells or DNA repair/damage processes at different points of the cell cycle. The efficacy of 
standard-of-care cancer therapies, such as chemotherapy and radiotherapy, can also be 
improved, and the associated toxicities could be reduced with the addition of selenium. 
These findings have been substantiated in cell lines, animal models, and patients. Ad-
vances in cancer therapy will involve designing selenium-based compounds that are more 
effective and selective towards malignant cancer cells, less toxic to healthy cells, or that 
further benefit conventional cancer therapy. Efforts will continue to establish the role of 
selenium in various cancers and gain related mechanistic insights to aid in the develop-
ment of targeted cancer therapies. 

Author Contributions: A.S. conceptualized the project, supervised all the work, wrote, reviewed, 
and edited the manuscript. M.A.E. and U.G. wrote the first draft, prepared all the figures, and edited 
the manuscript. U.G. revised the manuscript. D.T. partly helped to write one section. S.D.P., S.V.R., 
D.C., D.D. and S.D. assisted in the manuscript’s review and editing. All authors have read and 
agreed to the published version of the manuscript. 

Funding: This research was partially supported by the funds from National Institutes of Health 
(NIH) under the National Cancer Institute (P01CA171983). 

Institutional Review Board Statement: Not applicable. 

Informed Consent Statement: Not applicable. 

Data Availability Statement: The data is available from the authors upon request. 

Acknowledgments: The authors thank the Penn State Cancer Institute, the Department of Pharma-
cology, Kenneth F Noel Memorial Fund, and the Delbert J. McQuaide Cancer Research Fund (AS). 

Conflicts of Interest: The authors declare no conflict of interest. 

Figure 6. Diselenide nanocarrier-based drug delivery systems have been developed to selectively
release chemotherapeutics in tumor tissues.

6. Conclusions

Selenium supplementation, via the addition of selenium to diets or the use of seleno-
compounds as drugs, can impart chemopreventitive and chemotherapeutic properties in
various cancers. Different forms of selenium have been shown to impart their efficacy by
regulating an array of biochemical pathways to induce cell death (e.g., apoptosis, cell cycle
arrest, autophagy, etc.), affect gene expression or signaling networks relating to angiogene-
sis or tumor cell migration and invasion, or modulate the replicative properties of tumor
cells or DNA repair/damage processes at different points of the cell cycle. The efficacy
of standard-of-care cancer therapies, such as chemotherapy and radiotherapy, can also be
improved, and the associated toxicities could be reduced with the addition of selenium.
These findings have been substantiated in cell lines, animal models, and patients. Advances
in cancer therapy will involve designing selenium-based compounds that are more effective
and selective towards malignant cancer cells, less toxic to healthy cells, or that further
benefit conventional cancer therapy. Efforts will continue to establish the role of selenium in
various cancers and gain related mechanistic insights to aid in the development of targeted
cancer therapies.
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