
RESEARCH ARTICLE

Indexing Arbitrary-Length k-Mers in
Sequencing Reads
Tomasz Kowalski1, Szymon Grabowski1, Sebastian Deorowicz2*

1 Institute of Applied Computer Science, Lodz University of Technology, Al. Politechniki 11, 90-924 Łódź,
Poland, 2 Institute of Informatics, Silesian University of Technology, Akademicka 16, 44-100 Gliwice, Poland

* sebastian.deorowicz@polsl.pl

Abstract
We propose a lightweight data structure for indexing and querying collections of NGS reads

data in main memory. The data structure supports the interface proposed in the pioneering

work by Philippe et al. for counting and locating k-mers in sequencing reads. Our solution,

PgSA (pseudogenome suffix array), based on finding overlapping reads, is competitive to

the existing algorithms in the space use, query times, or both. The main applications of our

index include variant calling, error correction and analysis of reads from RNA-seq

experiments.

Introduction
The genome sequencing costs dropped recently to less than 5 thousand U.S. dollars per human
genome with about 30-fold coverage [1]. Using the recent (and expensive) Illumina HiSeq X
Ten system [2], it may be even possible to reduce this cost to about 1 thousand dollars (or
somewhat more) on a long run. The scale of the largest sequencing projects is amazing, e.g., the
Million Veteran Program [3] aims at sequencing 1M human genomes. Needless to say, all this
results in enormous amounts of sequencing data.

These data have to be processed in some way. Usually, they are mapped onto reference
genomes and then variant calling algorithms are used to identify the mutations present in
sequenced genomes. Since the mapping requires fast search over reference genomes, a lot of
indexing structures for genomes were adopted or invented. The obvious candidates were the
suffix tree and the suffix array [4], but their space requirements were often prohibitive, espe-
cially in the beginning of the 21st century. The situation changed with the advent of much
more compact (compressed) index data structures. The most widely used in the read aligning
software is the family of FM-indexes [5], employed by the popular Bowtie [6], BWA [7] and
many other mappers. Modern computers are more powerful, hence nowadays using a suffix
array is often not a problem, especially if the array is sparsified (i.e., only a fraction of indexes is
represented explicitly) [8]. One of the recent successful examples is the MuGI multi-genome
index [9], allowing to index 1092 human genomes in less than 10 GB of memory.

As said above, a lot was done in the area of genome indexing, but very little for the other
standard component of the input, i.e., sequencing reads. The main reason is that when the

PLOSONE | DOI:10.1371/journal.pone.0133198 July 16, 2015 1 / 16

OPEN ACCESS

Citation: Kowalski T, Grabowski S, Deorowicz S
(2015) Indexing Arbitrary-Length k-Mers in
Sequencing Reads. PLoS ONE 10(7): e0133198.
doi:10.1371/journal.pone.0133198

Editor: Carl Kingsford, University of Maryland,
UNITED STATES

Received: February 13, 2015

Accepted: June 24, 2015

Published: July 16, 2015

Copyright: © 2015 Kowalski et al. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: All relevant data
(including URLs to public repositories) are available
within the paper.

Funding: This work was supported by The Polish
National Science Centre under the project DEC-2012/
05/B/ST6/03148. The infrastructure was supported by
POIG.02.03.01-24-099/13 grant “GeCONiI—Upper
Silesian Center for Computational Science and
Engineering.” The funders had no role in study
design, data collection and analysis, decision to
publish, or preparation of the manuscript.

Competing Interests: The authors have declared
that no competing interests exist.

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0133198&domain=pdf
http://creativecommons.org/licenses/by/4.0/

reads are simply mapped onto a reference genome, indexing them is pointless. In many situa-
tions, however, the reads are processed in some way before (or instead of) mapping. The most
obvious case is read correction, which makes the mapping (or de novo assembling) easier and
yields better final results, i.e., better determination of mutations. There are a number of read
correctors, e.g., Quake [10], RACER [11], BLESS [12], Fiona [13]; see the recent survey [14] for
more examples. Sometimes the paired reads are joined if they overlap, with benefits in the map-
ping quality [15]. In some other applications, e.g., in metagenomic studies, the goal is to assign
reads to species (to identify which organisms can be found in the analyzed probe), and the
reads are not mapped at all [16–18].

In such cases no reference sequence is used (or it is used only implicitly) and all the available
knowledge can be retrieved only from the reads. The simplest approach is to calculate the sta-
tistics of k-mers (i.e., all k-symbol long substrings of reads), but some programs use more
sophisticated knowledge. Therefore, the necessity of indexing reads was identified recently
[19]. Philippe et al. defined therein the index supporting the following queries. Given a query
string f:

Q1 In which reads does f occur?

Q2 In how many reads does f occur?

Q3 What are the occurrence positions of f?

Q4 What is the number of occurrences of f?

Q5 In which reads does f occur only once?

Q6 In how many reads does f occur only once?

Q7 What are the occurrence positions of f in the reads where it occurs only once?

There are two ways in which f can be given in those queries, which may lead to different
time complexities and actual timing results. In one, f is given as a sequence of DNA symbols. In
the other, f is represented as a read ID followed with the start position of f in this read (and
optionally, f’s length, if it is not fixed).

There are a number of potential applications of this index. Philippe et al. [19] described the
following. The queries Q1 and Q2 can be used for mutation (both SNPs and short indels)
detection. The query Q2 can be used to calculate a “local coverage” of a k-mer, i.e., the number
of reads sharing it. This was used in the work [20] for calculation of “support profile” of each
k-mer in a large package for analyzing reads from RNA-seq experiments. One more potential
usage of index queries Q3 and Q4 can be in clustering and assembly without a reference
genome.

One of the successful techniques in read correctors, e.g., BLESS, RACER, is to preprocess
the reads to collect the k-mer frequencies (i.e., allow to answer the Q4 queries), which can be
obtained with specialized software [21–23]. In some other tools, like Fiona [13], Shrec [24],
HybridShrec [25], it is necessary also to obtain the list of reads containing the k-mer (i.e., they
need Q1 queries). The solution used in Fiona is to construct the generalized suffix array, i.e.,
suffix array containing all suffixes from all reads. Unfortunately, this implies huge memory
requirements, e.g., for reads of human sequencing with 10-fold coverage, the memory occupa-
tion is 224 GB.

The recent paper by Salzberg et al. [26] deals with mutation detection. One of the main diffi-
culties in this problem is a large amount of candidate mutations that must be filtered out. Salz-
berg et al. propose an innovative approach in their Diamund software. At the first stages, they
collect the statistics of k-mers in the sequencing results of a trio (mother, father, proband).

Indexing Arbitrary-Length k-Mers in Sequencing Reads

PLOS ONE | DOI:10.1371/journal.pone.0133198 July 16, 2015 2 / 16

Then the statistics are reduced by a huge factor in some way. More precisely, Diamund
attempts to identify all k-mers unique to an affected proband and missing from both unaffected
parents. The proband data are filtered to remove the k-mers likely to contain sequencing errors,
based on the assumption that any k-mer occurring just a few times (in a dataset with a high
coverage) represents an error. Intersecting all three sets identifies k-mers that are unique to the
proband. Finally, when the number of different k-mers is counted in (tens of) thousands, they
need to identify the reads containing these k-mers. Diamund uses Kraken [17] or MUMmer
[27] for this task. Nevertheless, this is an obvious potential application of an index for sequenc-
ing reads.

Currently, only a few indexing structures supporting the mentioned list of queries are
known. Historically, the first one is Gk arrays (GkA) [19]. This scheme works for a single length
of f only (set at construction time). The main GkA idea is to order lexicographically all sub-
strings of length k = jfj of the reads. Let us denote the cardinality of the reads collection with q.
Assume that the reads are of equal lengthm. As the number of reads substrings is q(m − k + 1),
the binary search for sequences with a given k-long prefix, like in a suffix array [28], has time
complexity of O(k log((m − k+1)q)). In the following we use the symbol n = q(m − k+1) to sim-
plify notation. This operation answers queryQ4 with f given as a sequence of symbols. If, how-
ever, the query position is given, thenQ4 is handled in constant time. GkA is based on three
arrays: one for storing the start position of each k-mer, one inverted array telling the lexico-
graphic rank of a k-mer given its position in a read, and finally an array associating to a k-mer’s
rank its number of occurrences. The proposed data structure was found to be both more mem-
ory efficient and (in most cases) faster than two alternatives, a hash table and a suffix array aug-
mented with some helper tables.

Välimäki and Rivals [29] proposed a compressed variant of Gk arrays, based on the com-
pressed suffix array (CSA) [30]. Their index, CGkA, reduces the size of its predecessor by
about 40% to 90%, handling most queries with similar time complexity. There is a sampling
rate parameter in the CGkA index telling how many, evenly sampled, suffix array and inverted
suffix array entries are stored directly. Like GkA, this solution also supports a single value of k.

The index presented in this paper is based on two ideas: building a pseudogenome by find-
ing overlapping reads in the collection, and using the sparse suffix array [8] as the search
engine in the resulting sequence. We performed a number of experiments to compare the
proposed PgSA (pseudogenome suffix array) and the existing GkA and CGkA indexes for the
supported queries. Then, to see how PgSA would work in a real environment, we replaced
the GkA in CRAC [20] by our index to check its overall memory consumption and process-
ing time.

Materials and Methods
We assume that the input alphabet contains 4 (ACGT) or 5 symbols (ACGTN). The actual num-
ber of symbols in the input data implies some design choices in the internal representation of
our index. By a pseudogenome we mean a sequence obtained by concatenation of all (possibly
reverse-complemented) reads with overlaps. More formally, let us have a read arrayR = [R1,
. . ., Rq], where Ri = Ri[1. . .m] for all i 2 {1, . . ., q}. A pseudogenome is a sequence PG[1. . .p]
for which

• there exists a sequence j1, j2, . . ., jq such that j1 = 1, ji+1 − ji 2 {0, 1, . . .,m} for all i 2 {2, . . ., q}
and jq = p −m + 1,

• for each ji we have PG[ji. . .ji +m − 1] = Rui or PG[ji. . .ji+m − 1] = rc(Rui), where rc(�) is the
reverse-complement operation on a DNA sequence,

Indexing Arbitrary-Length k-Mers in Sequencing Reads

PLOS ONE | DOI:10.1371/journal.pone.0133198 July 16, 2015 3 / 16

• [u1, u2, . . ., uq] is a permutation of {1, 2, . . ., q}.

We attempt to minimize the pseudogenome length p. In further considerations we usually deal
with the permuted read array, hence we define it asR0 ¼ ½Ru1

; . . . ;Ruq
�, where the indices ui

are described just above. Additionally, two symbols, + and �, will be useful. S+T is a plain con-
catenation of strings S and T. S � T denotes a concatenation of strings S and T with a non-zero
overlap of maximal length.

While a sequence approximating a real genome may be obtained by a de novo assembly pro-
cedure, we refrain from it because of two reasons. First, our procedure is lightweight, at least in
conceptual and programming sense, while the problem of de novo assembly is known to be
hard. Second, removing sequencing errors during the assembly is obviously beneficial for the
output accuracy, but we aim at indexing original reads, and mapping the reads onto a “cor-
rected” genomic sequence would complicate the index representation and would possibly be
detrimental to query handling effectiveness.

Note that the minimal pseudogenome problem, without allowing the reverse-complement
operations on the reads, is known in string matching literature under the name of the shortest
common superstring (SCS) problem. SCS is NP-hard, as shown by Maier and Storer [31].

The pseudogenome is generated in the following way. (Fig 1 illustrates the main idea of the
construction algorithm.) We keep the reads packed, having 3 symbols (when σ = 5) or 4 sym-
bols (when σ = 4) per byte. The alphabet size is found in a preliminary pass over the data. We
will say that a read has a prefix (suffix) overlap if it is already preceded (followed) with another
read with a non-empty overlap. During the main phase of the algorithm we maintain five main
arrays: P, Q, Q0, S, and S0. The main loop of the algorithm is runm − 1 times. In each loop itera-
tion, the following invariants are held:

Fig 1. Pseudogenome generation example. The input read collectionR contains 6 reads of length 6.

doi:10.1371/journal.pone.0133198.g001

Indexing Arbitrary-Length k-Mers in Sequencing Reads

PLOS ONE | DOI:10.1371/journal.pone.0133198 July 16, 2015 4 / 16

• The elements of array P have two fields, the information if the current read (i.e., with the ID
given by the current index in P) has a suffix overlap and if so, the ID of the suffix-overlapping
read and the overlap length.

• Array Q always stores the IDs of the reads which are not suffix-overlapping any other reads.
The items in Q are arranged by the lexicographical order of the reads.

• Array S always stores the IDs of the reads which are not prefix-overlapping any other reads.
In i-th loop iteration, i� 1, they are arranged by the lexicographical order of the suffix of the
read starting at the position i.

At the start array S0 contains IDs of lexicographically sorted reads. (To obtain sorted reads,
we use C++ std::sort, working in O(mq log q) time. Replacing it with radix sort we could reduce
this time complexity to O(mq), yet it was not implemented.) In the initial phase we use array S0

to find reads with an overlap of lengthm, i.e., duplicates. If consecutive reads in array S0 are
identical, then we mark in array P that the second one is suffix-overlapping the first. While tra-
versing S0 we copy the reads without a suffix overlap to array S and the reads without a prefix
overlap to array Q. The array Q0 is initially empty and S0 is flushed before the main loop. In
each loop iteration we traverse the reads from array S, but in the order of their suffixes starting
from position i+1. To this end, we need to store σ pointers for the current suffix in each group
defined by the symbol at position i, which allows to find the minimal of the σ suffixes starting
at the next symbol in O(σ) string comparisons. From now on, we assume that σ = O(1) for
DNA, which allows to neglect the σ factor in the complexities. Note that finding the next read
in S takes O(σm) = O(m) time, which gives O(qm) time for traversing once the whole array. “In
parallel”, we also traverse the reads from array Q in their natural order. This resembles merging
two sorted arrays (as used, e.g., in the textbook merge sort), with the difference that we do not
sort the strings, but rather look for matches (overlaps) of length exactlym − i, in the ith itera-
tion. Each check for an overlap takes O(m) time, hence a pass over the arrays of S and Q takes
O(qm) time. Now, if for a read x 2 S we find a suffix-overlapping read y 2 Q, y 6¼ x, we store
this information in P together with the length of the overlap (i.e.,m − i). If there is no overlap
(of lengthm − i) for x, we copy the ID of x to array S0. Similarly, if while traversing Q we have
not found any prefix-overlapping read for y 2Q, then we copy its ID to array Q0. When looking
for overlaps we have to take care that the overlapped reads do not form a cycle. It is done by
storing (in a separate auxiliary array) for each read that is not suffix-overlapped, the ID of the
non-prefix-overlapped read in a chain of overlapped reads. For example, if there is a chain of
overlapped reads R1 � R2 � R3 � R4, we store for R4 that the “head” of the chain is R1. Then,
when we look for a candidate for suffix overlap of R4, we can exclude R1. These data are easily
updated in O(1) for each newly found overlap.

After a pass, S0 contains the IDs of only those reads which are not suffix-overlapped yet,
sorted by their suffix starting at position i+1 and Q0 contains the IDs of only those reads which
are not prefix-overlapped yet (in lexicographical order). The content of S0 and Q0 is then copied
to S and Q, respectively. S0 and Q0 are flushed before the next iteration. (Of course, in a real
implementation, the pointers to arrays are simply swapped, without physical array copying.) It
can be easily noticed that the time complexity of the construction algorithm is O(qm(m + log
q)). Using radix sort to initially sort the reads in the array Q would reduce the time complexity
to O(qm2).

Note that our current pseudogenome implementation does not handle reverse-comple-
mented reads. Yet, our preliminary experiments with adding reverse-complemented reads to
the generated sequence resulted in rather moderate improvement in the pseudogenome length
(e.g., shorter by about 15%), while handling the queries requires significant changes in the used

Indexing Arbitrary-Length k-Mers in Sequencing Reads

PLOS ONE | DOI:10.1371/journal.pone.0133198 July 16, 2015 5 / 16

data structures (and possibly more space needed for them). For this reason, we leave this harder
problem version as future work.

We note that this procedure is only a heuristic and does not guarantee to produce an opti-
mal (shortest possible) pseudogenome. To see this, consider an example of three reads: R1 =
ACAT, R2 = CATG and R3 = ATCA. According to the presented algorithm, we obtain the
assembly (R1 � R2)+R3! ACATGATCA of length 9. Yet, the assembly (R1 � R3) � R2! ACAT-
CATG produces a sequence of length 8.

The actual pseudogenome representation depends on the given data (number of reads, read
length etc.). In general it contains the PG string and the read arrayRPG consisting of either 9-
or 13-byte records. Consecutive records correspond to consecutive reads in the pseudogenome
and contain the following fields:

• read offset in the pseudogenome (4 or 8 bytes, depending on the pseudogenome length),

• flag data occupying 1 byte (repetitive read flag, occurrence flag, single-occurrence flag, to be
described later; several bits of this byte are not used),

• read index in the original read arrayR (4 bytes).

Over the pseudogenome a search structure is built. Our basic solution is based on the classic
suffix array (SA) [28], as a simple and fast full-text index. The SAPG elements require from 4 to
6 bytes. One element, associated with one pseudogenome suffix, stores the following fields:

• a read array index of the furthest read (ofRPG) containing starting symbols of the given suf-
fix (3 or 4 bytes, depending on the number of reads in the collection),

• start position of the suffix with regard to the beginning of the read (1 or 2 bytes, depending
on the read length).

In order to access a suffix one has to obtain from the read arrayRPG the offset of the speci-
fied read and add an offset of the suffix. Such organization enables straightforward identifica-
tion of reads containing the sought prefix of the suffix.

Packing DNA symbols into bytes is a standard idea in compact data structures. We adopt
this solution for the pseudogenome, in order to reduce the space use, minimize the rate of
cache misses during searches and boost string comparisons (due to a lesser number of com-
pared bytes on average). When the alphabet contains 4 symbols we handle the following com-
paction variants: (i) 2, 3 or 4 symbols per byte, (ii) 5 or 6 symbols per 2-byte unit (“short”). For
the 5-symbol alphabet we pack either (i) 2 or 3 symbols per byte, or (ii) 4, 5 or 6 symbols per
2-byte unit.

Apart from the standard variant, we also implement a sparse suffix array (SpaSA) [8], which
samples the suffixes in regular distances from the SA. The distances between sampled suffixes
are specified by input parameter s. More precisely, if the pseudogenome is represented with PG
[1. . .p] (w.l.o.g. assume that s divides p), the SpaSA index contains p/s suffix offsets: s, 2s, . . ., p.
The data stored for a sampled suffix are like described above, plus s − 1 preceding symbols, in
packed form. We set the s� 6 limitation. Storing these s − 1 symbols allows not to access the
pseudogenome sequence during a scan over the suffix array (cf. the Q3 query, described later)
and is thus cache friendly. More precisely, the idea of storing the s − 1 symbols directly preced-
ing a given suffix together with the corresponding offset in the sparse suffix array with sparsity
s is to avoid verifying these symbols (of which some or all may belong to the query’s prefix of
length at most s − 1) with an access into the pseudogenome, which resides in another array. In
this way we have more local memory accesses. To make the current implementation easier and
faster (due to less conditions necessary to check in the search procedure) the sparsity of the

Indexing Arbitrary-Length k-Mers in Sequencing Reads

PLOS ONE | DOI:10.1371/journal.pone.0133198 July 16, 2015 6 / 16

suffix array determines the packing of symbols, e.g., s = 5 means that 5 symbols are packed into
2-byte unit. Note that the s − 1 packed symbols require up to 2 bytes, hence the whole element
for a suffix requires from 5 to 8 bytes.

For small values of k it is feasible to precompute all answers for the counting queries (Q2,
Q4, and Q6). We assume the query is over the 4-symbol alphabet (ACGT). When the pseudo-
genome is small (up to 300 Mbases) we cache the answers for all k� 10, and for larges pseudo-
genomes for all k� 11. The Q2 and Q6 results occupy 4 bytes each and Q4 results 8 bytes.
(Handling Q4 needs more space since fmay appear in a single read several times.)

We note that the queries Q2, Q4, and Q6 are related. For example, the number of reads in
which string f occurs only once (Q6) is often not much smaller than the total number of occur-
rences of f (Q4), and sometimes these values may be even equal; the equality of Q4 and Q6 also
implies the same value of Q2. We make use of this fact and store answers also for some longer
k-mers: up to k = 12 using 2-byte units and single bytes for k = 13. The precomputed answers
are stored only if Q2 = Q4 = Q6, and Q2 less than 216 − 1 or 28 − 1, depending on the used vari-
ant. The opposite case is signaled on the 1- or 2-byte field with an unused value.

We call the main variant as variable-k PgSA. Still, our tool also has a fixed-kmode, in which
the worst case complexities (although not significantly the performance on real data) improve.
In this mode, after building the suffix array over the pseudogenome, the suffixes whose prefix
of length k is not a substring of any read are removed from the SA. Such a check is performed
for each suffix with a reference toRPG. Note that the removed suffixes may start only in reads
which are overlapped by at most k − 2 symbols or are not overlapped at all. As each suffix in
the found SA range contains at least one occurrence of the query f, the SA range width does not
exceed jQ3j.

Table 1 compares the worst-case time complexities for the queries Q1–Q7 of the existing
algorithms. We use the notation jQxj to represent the number of occurrences reported by
query Qx (for x = 1, 3, 5, 7). In the following paragraphs we describe how the seven queries are
performed in an order dictated by exposition clarity.

Table 1. Worst-case time complexities. To save space, theO(.) symbols around each formula were omitted. Note that n = q(m − k+1). The time complexi-
ties for PgSA are given for the fixed-kmode with SA sparsity set to 1. In the variable-kmode or when SA sparsity larger than 1 is used, the number of visited
SAPG locations should be added to the PgSA complexities.

query GkA (pos) CGkA (pos) GkA (seq) CGkA (seq) PgSA (pos/seq)

Q1 jQ3j jQ1j log log n k log n + jQ3j k log σ + polylog n + |Q1| log log n k log p + jQ3j
Q2 jQ3j log log n k log n + jQ3j k log σ + polylog n k log p + jQ3j
Q3 jQ3j jQ3j log log n k log n + jQ3j k log σ + polylog n + |Q3| log log k log p + jQ3j
Q4 1 log log n k log n k log σ + polylog n k log p + jQ3j
Q5 jQ3j jQ5j log log n k log n + jQ3j k log σ + polylog n + |Q5| log log n k log p + jQ3j
Q6 jQ3j log log n k log n + jQ3j k log σ + polylog n k log p + jQ3j
Q7 jQ3j jQ7j log log n k log n + jQ3j k log σ + polylog n + |Q7| log log n k log p + jQ3j
doi:10.1371/journal.pone.0133198.t001

Table 2. Dataset characteristics.

Dataset No. reads [M] Read length Alphabet size PG length [MB]

E. coli 11.5 151 5 551.4

GRCh37 42.4 75 4 567.9

C. elegans 67.6 100 5 1603.1

doi:10.1371/journal.pone.0133198.t002

Indexing Arbitrary-Length k-Mers in Sequencing Reads

PLOS ONE | DOI:10.1371/journal.pone.0133198 July 16, 2015 7 / 16

Q3 We binary search the suffix array SAPG for the string f, and for each potential match in
the found range, pointing to some position in the pseudogenome PG (represented as a pair:
read ID in the read arrayRPG and the suffix offset with regard to the beginning of the read), we
check in how many (0 or more) reads f really occurs. To this end, we check if the suffix offset
shifted by k symbols does not exceed the read lengthm. If this is the case, we add its position to
the output list, otherwise we terminate. Then, we scan over the read arrayRPG backward, add-
ing a position as long as the suffix offset plus k still does not exceedm. To speed up the binary
search over SAPG, we make use of a lookup table (LUT) storing the ranges of suffixes of all pos-
sible prefixes of length 11 (note that the number of LUT entries is, depending on the alphabet
in a given dataset, 411 or 511, which is less than 50M).

Q4 We follow the procedure for Q3, but simply count the matches.
Q1 This query is related to Q3, but requires filtering, as fmay occur in a read more than

once. To this end, “occurrence flags” (stored in flag fields ofRPG) are used. Initially, all these

Fig 2. Q1 query results on E. coli (top row) and H. sapiens (bottom row) data. The three points in PgSA series correspond to sparsity s = 6 for the
leftmost point, s = 3 (E. coli) or s = 4 (H. sapiens) for the middle point and s = 1 for the rightmost point. The three points in CGk series correspond to sampling
rates sr of 512, 25 and 6 (E. coli), and 512, 22 and 6 (H. sapiens), respectively. On the left figures the query is given as a position in the read list, while on the
right ones as a string.

doi:10.1371/journal.pone.0133198.g002

Indexing Arbitrary-Length k-Mers in Sequencing Reads

PLOS ONE | DOI:10.1371/journal.pone.0133198 July 16, 2015 8 / 16

flags are set to false. During the iteration over reads (like in the Q3 query) only non-visited yet
reads are added to the output list and for each new read the corresponding flag is set to true.
The flag locations are also put on a stack, to remove them in O(jQ1j) time at the end, leaving all
“occurrence flags” set to false inRPG. In general jQ1j � jQ3j, but since the equality often holds,
we implemented some optimization. The arrayRPG stores “repetitive read flag” for each read.
This flag is true if the read contains at least one 11-mer at least twice. When we process the
reads answering the Q1 query we verify the flag. If it is false we are sure that no f (of length at
least 11) can appear in the read more than one time.

Q2 This query is to Q1 exactly like Q4 to Q3.
Q5 Again, this query is related to Q3, with extra filtration needed. Now “single-occurrence”

flags inRPG are used. The one-visit only mechanism for reads and unsetting the flags with aid
of a stack is identical as in Q1. The operations on the stack take O(jQ5j) time, where jQ5j �
jQ3j. Also here the “repetitive read” flags are used as a helpful heuristic.

Q6 This query is to Q5 exactly like Q4 to Q3, or Q2 to Q1.
Q7 We follow the procedure for Q5, only with replacing read IDs with the match positions.

Fig 3. Q2 query results on E. coli (top row) and H. sapiens (bottom row) datasets. The three points in PgSA series correspond to sparsity s = 6 for the
leftmost point, s = 3 (E. coli) or s = 4 (H. sapiens) for the middle point and s = 1 for the rightmost point. The three points in CGk series correspond to sampling
rates sr of 512, 25 and 6 (E. coli), and 512, 22 and 6 (H. sapiens), respectively. On the left figures the query is given as a position in the read list, while on the
right ones as a string.

doi:10.1371/journal.pone.0133198.g003

Indexing Arbitrary-Length k-Mers in Sequencing Reads

PLOS ONE | DOI:10.1371/journal.pone.0133198 July 16, 2015 9 / 16

As a final note, we admit that the flag fields stored inRPG prevent multiple threads from
querying the data structure concurrently, so the algorithm must be single-threaded. We are
going to address this issue in a future version of the algorithm.

Results
We ran experiments to confirm validity of our algorithm in practice. The testbed machine was
equipped with an Intel i7 4930K 3.4 GHz CPU and 64 GB of RAM (DDR3-1600, CL11), run-
ning Linux 3.13.0-43-generic x86_64 (Ubuntu 14.04.1 LTS). Table 2 presents the datasets used
in the tests. All these datasets are available at public repositories:

• E. coli (11.5M reads of 151 bp)—ftp://webdata:webdata@ussd-ftp.illumina.com/Data/
SequencingRuns/MG1655/MiSeq_Ecoli_MG1655_110721_PF_R1.fastq.gz, ftp://webdata:
webdata@ussd-ftp.illumina.com/Data/SequencingRuns/MG1655/MiSeq_Eco-
li_MG1655_110721_PF_R2.fastq.gz, this dataset was used in the CGkA paper [29],

Fig 4. Q3 query results on E. coli (top row) and H. sapiens (bottom row) datasets. The three points in PgSA series correspond to sparsity s = 6 for the
leftmost point, s = 3 (E. coli) or s = 4 (H. sapiens) for the middle point and s = 1 for the rightmost point. The three points in CGk series correspond to sampling
rates sr of 512, 25 and 6 (E. coli), and 512, 22 and 6 (H. sapiens), respectively. On the left figures the query is given as a position in the read list, while on the
right ones as a string.

doi:10.1371/journal.pone.0133198.g004

Indexing Arbitrary-Length k-Mers in Sequencing Reads

PLOS ONE | DOI:10.1371/journal.pone.0133198 July 16, 2015 10 / 16

• GRCh37 (42.4M reads of 75 bp; no N symbols in the data)—http://crac.gforge.inria.fr/index.
php?id = genomes-reads, this dataset was used in the CRAC paper [20],

• C. elegans (67.6M reads of 100 bp)—http://ftp.sra.ebi.ac.uk/vol1/fastq/SRR065/SRR065390/.

The command lines of the examined programs can be found in the PgSA package available at
project homepage http://sun.aei.polsl.pl/pgsa.

In the first experiments, we compare PgSA versus GkA (version 2.1.0) and CGkA (version
cgka_2013_08_21) on two datasets, E. coli and GRCh37-75bp-simulated reads (Figs 2, 3, 4, 5).
We can see that in Q1 and Q3 queries PgSA is by more than an order of magnitude faster than
CGkA at comparable or better compression rate. As expected, GkA is faster than CGkA (and
sometimes faster, although not very significantly, than PgSA), yet requiring at least 3 times
more space. The speed relation is different for Q2 and Q4 queries. Here CGkA defeats PgSA,
sometimes by an order of magnitude. In the Q4 query, given by position, GkA is a clear winner
in speed. We note that the tested (latest) GkA version (v2.1.0) does not support Q1, Q2 and Q4

Fig 5. Q4 query results on E. coli (top row) and H. sapiens (bottom row) datasets. The three points in PgSA series correspond to sparsity s = 6 for the
leftmost point, s = 3 (E. coli) or s = 4 (H. sapiens) for the middle point and s = 1 for the rightmost point. The three points in CGk series correspond to sampling
rates sr of 512, 25 and 6 (E. coli), and 512, 22 and 6 (H. sapiens), respectively. On the left figures the query is given as a position in the read list, while on the
right ones as a string.

doi:10.1371/journal.pone.0133198.g005

Indexing Arbitrary-Length k-Mers in Sequencing Reads

PLOS ONE | DOI:10.1371/journal.pone.0133198 July 16, 2015 11 / 16

http://crac.gforge.inria.fr/index.php?id�=�genomes-reads
http://crac.gforge.inria.fr/index.php?id�=�genomes-reads
http://ftp.sra.ebi.ac.uk/vol1/fastq/SRR065/SRR065390/
http://sun.aei.polsl.pl/pgsa

when the query is given as a sequence rather than a position. Overall, we believe that PgSA
offers attractive space-time tradeoffs for most queries, and in contrast to its competitors it han-
dles arbitrary values of k (rather than a fixed one). Additionally, we note that the latest GkA
and CGkA versions do not support the Q5–Q7 queries.

In the next experiment we ran only PgSA and GkA on C. elegans dataset (Fig 6). We were
not able to run CGkA on this dataset. The PgSA lines on the figures are for the queries Q1–Q7
given as a sequence (the time differences with regard to queries given as a position are up to 1
percent), and the left and right figure corresponds to the query length k = 11 and k = 16, respec-
tively. Note that the results for the queries Q2, Q4, and Q6 are precomputed (cached) for
k = 11.

In Tables 3 and 4 we detail out how much space is consumed by the components of the
PgSA solution.

It may be informative to show the times and maximummemory usages for particular phases
of the PgSA index construction. They are revealed in Table 5, for the variant based on the plain
suffix array (i.e., sparsity s = 1). Morover, Table 6 contains index construction time, peak con-
structiontime memory usages and index spaces for the three solutions: GkArrays, CGk, and
PgSA.

Finally, we checked how replacing GkA with PgSA affects the CRAC performance (Table 7).
We used CRAC v1.3.2 (http://crac.gforge.inria.fr) and the dataset GRCh37. Unfortunately, the

Fig 6. Q1–Q7 query results of PgSA and GkA on C. elegans dataset. The six points in the series correspond (from left to right) to sparsities s = 6, . . ., 1.
The letter ‘p’ appended to some query names means that the query is given as a position in the read list.

doi:10.1371/journal.pone.0133198.g006

Table 3. E. coli dataset, space consumption. All sizes in megabytes.

SA sparsity PG RPG SAPG LUT total

1 551 149 2205 195 3101

2 276 149 1378 195 1999

3 184 149 919 195 1447

4 276 149 689 195 1309

5 221 149 662 195 1227

6 184 149 551 195 1080

doi:10.1371/journal.pone.0133198.t003

Indexing Arbitrary-Length k-Mers in Sequencing Reads

PLOS ONE | DOI:10.1371/journal.pone.0133198 July 16, 2015 12 / 16

http://crac.gforge.inria.fr

build time grows several times (and even including the CRAC processing time the difference is
at least by factor 2), yet the memory requirements of the PgSA-based variant are significantly
lower, which may be a crucial benefit if a low-end workstation is only available.

Discussion
We proposed a new indexing structure for read collections. The experiments proved that this
structure is much more compact than the existing solutions, GkA and CGkA. The running
times of the counting queries are worse than of the CGkA, but in the listing queries PgSA is
usually faster.

Several aspects of the presented scheme can be improved. We have noticed that using both
direct and reverse-complemented reads in our construction of the pseudogenome reduces its
size by about 15%. Still, this easy change for the construction is not equally easy to handle dur-
ing the search, therefore the current implementation refrains from it. Additionally, our recent
progress with read compression [32] suggests to build the pseudogenome from large datasets
on disk (disk-based SA construction algorithms also exist, see, e.g., [33] and references therein).
Finally, the sparse suffix array may be replaced by a recent sparse index, SamSAMi (sampled
suffix array with minimizers) [34], with hopefully better performance.

Table 4. C. elegans dataset, space consumption. All sizes in megabytes.

SA sparsity PG RPG SAPG LUT total

1 1603 879 8016 195 10693

2 802 879 4809 195 6685

3 534 879 3206 195 4814

4 802 879 2405 195 4280

5 641 879 2244 195 3959

6 534 879 1870 195 3479

doi:10.1371/journal.pone.0133198.t004

Table 5. Times andmaximummemory usages for the PgSA index construction phases.

Dataset

E. coli GRCh37 C. elegans

Maximal space usage [MB]

Pseudogenome (RAM) 1,361 2,193 5,258

Suffix array (HDD) 2,206 2,272 6,413

Total (RAM) 3,028 3,787 10,278

Time [s]

Pseudogenome construction 189 219 603

Repetitive reads filter calculation 9 7 23

Suffix array construction 221 236 733

SA lookup construction 13 9 33

Total (including I/O) 452 509 1,476

doi:10.1371/journal.pone.0133198.t005

Indexing Arbitrary-Length k-Mers in Sequencing Reads

PLOS ONE | DOI:10.1371/journal.pone.0133198 July 16, 2015 13 / 16

Acknowledgments
The Polish National Science Centre under the project DEC-2012/05/B/ST6/03148. The infra-
structure supported by POIG.02.03.01-24-099/13 grant: ‘GeCONiI—Upper Silesian Center for
Computational Science and Engineering’. We thank the anonymous reviewers for constructive
comments helping to improve the manuscript.

Author Contributions
Conceived and designed the experiments: TK SG SD. Performed the experiments: TK. Ana-
lyzed the data: TK SG SD. Wrote the paper: TK SG SD.

Table 6. Index construction times andmemory usages for the GkArrays, CGk and PgSA algorithms.
For the CGkA algorithm sr denotes the sampling rate parameter, being a space-time tradeoff. CGkA
crashed on the C. elegans dataset, in all tested configurations. GkA index is not written to disk, as
opposed to the other two tools.

Index Index space [MB] Max. working space [MB] User + system time [s]

E. coli

GkA, k = 11 12,500 19,358 494

GkA, k = 22 12,400 17,881 439

CGkA (sr = 8), k = 11 3,120 3,858 1,171

CGkA (sr = 8), k = 22 3,120 3,859 1,235

CGkA (sr = 128), k = 11 1,538 3,857 1,128

CGkA (sr = 128), k = 22 1,538 3,859 1,181

PgSA (s = 1), var-k 3,101 3,028 452

PgSA (s = 2), var-k 1,999 1,951 394

PgSA (s = 3), var-k 1,447 1,411 344

GRCh37

GkA, k = 11 21,300 32,887 844

GkA, k = 22 19,360 27,615 695

CGkA (sr = 8), k = 11 3,983 7,930 1,313

CGkA (sr = 8), k = 22 3,983 7,930 1,400

CGkA (sr = 128), k = 11 2,957 7,930 1,280

CGkA (sr = 128), k = 22 2,957 7,930 1,395

PgSA (s = 1), var-k 3,975 3,787 509

PgSA (s = 2), var-k 2,556 2,401 421

PgSA (s = 3), var-k 1,893 2,181 378

C. elegans

GkA, k = 11 44,500 62,728 2,486

GkA, k = 22 39,300 62,740 2,295

PgSA (s = 1), var-k 10,693 10,278 1,476

PgSA (s = 2), var-k 6,685 6,364 1,275

PgSA (s = 3), var-k 4,814 5,134 1,065

doi:10.1371/journal.pone.0133198.t006

Table 7. CRAC, k = 22, on the dataset GRCh37. Times in minutes, sizes in gigabytes.

Type Build time Build+CRAC time Index size Max mem. (build) Max mem. (CRAC)

PgSA, s = 1 8.48 418.98 3.98 3.79 6.40

PgSA, s = 4 7.02 517.04 1.56 2.40 3.48

GkA 11.57 220.88 20.30 27.60 21.98

doi:10.1371/journal.pone.0133198.t007

Indexing Arbitrary-Length k-Mers in Sequencing Reads

PLOS ONE | DOI:10.1371/journal.pone.0133198 July 16, 2015 14 / 16

References
1. National Human Genome Research Institute. DNA Sequencing Costs; 2015. http://www.genome.gov/

sequencingcosts/.

2. Hayden EC. Is the $1,000 genome for real?; 2014. Nature News.

3. U S Department of Veteran Affairs. Million Veteran Program; 2015. http://www.research.va.gov/mvp/.

4. Gusfield D. Algorithms on Strings, Trees and Sequences: Computer Science and Computational Biol-
ogy. Cambridge University Press; 1997.

5. Ferragina P, Manzini G. Opportunistic data structures with applications. In: Foundations of Computer
Science, 2000. Proceedings. 41st Annual Symposium on. IEEE; 2000. p. 390–398.

6. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie. Nature Methods. 2012; 9:357–
359. doi: 10.1038/nmeth.1923 PMID: 22388286

7. Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformat-
ics. 2009; 25(14):1754–1760. doi: 10.1093/bioinformatics/btp324 PMID: 19451168

8. Kärkkäinen J, Ukkonen E. Sparse suffix trees. In: Proceedings of the 2nd Annual International Confer-
ence on Computing and Combinatorics; 1996. p. 219–230.

9. Danek A, Deorowicz S, Grabowski S. Indexes of large genome collections on a PC. PLoS ONE. 2014;
9(10):e109384. doi: 10.1371/journal.pone.0109384 PMID: 25289699

10. Kelly DR, Schatz MC, Salzberg SL. Quake: quality-aware detection and correction of sequencing
errors. Genome Biology. 2010; 11(R116).

11. Ilie L, Molnar M. RACER: Rapid and accurate correction of errors in reads. Bioinformatics. 2013; 29
(19):2490–2493. doi: 10.1093/bioinformatics/btt407 PMID: 23853064

12. Heo Y, Wu XL, Chen D, Ma J, HwuWM. BLESS: Bloom filter-based error correction solution for high-
throughput sequencing reads. Bioinformatics. 2014; 30(10):1354–1362. doi: 10.1093/bioinformatics/
btu030 PMID: 24451628

13. Schulz MH, Weese D, HoltgreweM, Dimitrova V, Niu S, Reinert K, et al. Fiona: a parallel and automatic
strategy for read error correction. Bioinformatics. 2014; 30(17):i356–i363. doi: 10.1093/bioinformatics/
btu440 PMID: 25161220

14. Molnar M, Ilie L. Correcting Illumina data. Briefings in Bioinformatics. 2014;p.

15. Zhang J, Kobert K, Flouri T, Stamatakis A. PEAR: a fast and accurate Illumina Paired-End reAd
mergeR. Bioinformatics. 2014; 30(5):614–620. doi: 10.1093/bioinformatics/btt593 PMID: 24142950

16. Ames SK, Hysom DA, Gardner SN, Lloyd GS, Gokhale MB, Allen JE. Scalable metagenomic taxonomy
classification using a reference genome database. Bioinformatics. 2013; 29(18):2253–2260. doi: 10.
1093/bioinformatics/btt389 PMID: 23828782

17. Wood D, Salzberg S. Kraken: ultrafast metagenomic sequence classification using exact alignments.
Genome Biology. 2014; 15(3):R46. doi: 10.1186/gb-2014-15-3-r46 PMID: 24580807

18. Bazinet AL, Cummings MP. A comparative evaluation of sequence classification programs. BMC Bioin-
formatics. 2012; 13:1–13. doi: 10.1186/1471-2105-13-92

19. Philippe N, Salson M, Lecroq T, Léonard M, Commes T, Rivals E. Querying large read collections in
main memory: a versatile data structure. BMC Bioinformatics. 2011; 12:Paper no. 242. doi: 10.1186/
1471-2105-12-242 PMID: 21682852

20. Philippe N, Salson M, Commes T, Rivals E. CRAC: an integrated approach to the analysis of RNA-seq
reads. Genome Biology. 2013; 14(3):R30. doi: 10.1186/gb-2013-14-3-r30 PMID: 23537109

21. Rizk G, Lavenier D, Chikhi R. DSK: k-mer counting with very low memory usage. Bioinformatics. 2013;
29(5):652–653. doi: 10.1093/bioinformatics/btt020 PMID: 23325618

22. Marçais G, Kingsford C. A fast, lock-free approach for efficient parallel counting of occurrences of k-
mers. Bioinformatics. 2011; 27(6):764–770. doi: 10.1093/bioinformatics/btr011 PMID: 21217122

23. Deorowicz S, Debudaj-Grabysz A, Grabowski S. Disk-based k-mer counting on a PC. BMC Bioinfor-
matics. 2013; 14:160. doi: 10.1186/1471-2105-14-160 PMID: 23679007

24. Schröder J, Schröder H, Puglisi SJ, Sinha R, Schmidt B. SHREC: a short-read error correction method.
Bioinformatics. 2009; 25(17):2157–2163. doi: 10.1093/bioinformatics/btp379 PMID: 19542152

25. Salmela L. Correction of sequencing errors in a mixed set of reads. Bioinformatics. 2010; 26(10):1284–
1290. doi: 10.1093/bioinformatics/btq151 PMID: 20378555

26. Salzberg SL, Pertea M, Fahrner JA, Sobreira N. DIAMUND: Direct Comparison of Genomes to Detect
Mutations. Human Mutation. 2014; 35(3):283–288. doi: 10.1002/humu.22503 PMID: 24375697

Indexing Arbitrary-Length k-Mers in Sequencing Reads

PLOS ONE | DOI:10.1371/journal.pone.0133198 July 16, 2015 15 / 16

http://www.genome.gov/sequencingcosts/
http://www.genome.gov/sequencingcosts/
http://www.research.va.gov/mvp/
http://dx.doi.org/10.1038/nmeth.1923
http://www.ncbi.nlm.nih.gov/pubmed/22388286
http://dx.doi.org/10.1093/bioinformatics/btp324
http://www.ncbi.nlm.nih.gov/pubmed/19451168
http://dx.doi.org/10.1371/journal.pone.0109384
http://www.ncbi.nlm.nih.gov/pubmed/25289699
http://dx.doi.org/10.1093/bioinformatics/btt407
http://www.ncbi.nlm.nih.gov/pubmed/23853064
http://dx.doi.org/10.1093/bioinformatics/btu030
http://dx.doi.org/10.1093/bioinformatics/btu030
http://www.ncbi.nlm.nih.gov/pubmed/24451628
http://dx.doi.org/10.1093/bioinformatics/btu440
http://dx.doi.org/10.1093/bioinformatics/btu440
http://www.ncbi.nlm.nih.gov/pubmed/25161220
http://dx.doi.org/10.1093/bioinformatics/btt593
http://www.ncbi.nlm.nih.gov/pubmed/24142950
http://dx.doi.org/10.1093/bioinformatics/btt389
http://dx.doi.org/10.1093/bioinformatics/btt389
http://www.ncbi.nlm.nih.gov/pubmed/23828782
http://dx.doi.org/10.1186/gb-2014-15-3-r46
http://www.ncbi.nlm.nih.gov/pubmed/24580807
http://dx.doi.org/10.1186/1471-2105-13-92
http://dx.doi.org/10.1186/1471-2105-12-242
http://dx.doi.org/10.1186/1471-2105-12-242
http://www.ncbi.nlm.nih.gov/pubmed/21682852
http://dx.doi.org/10.1186/gb-2013-14-3-r30
http://www.ncbi.nlm.nih.gov/pubmed/23537109
http://dx.doi.org/10.1093/bioinformatics/btt020
http://www.ncbi.nlm.nih.gov/pubmed/23325618
http://dx.doi.org/10.1093/bioinformatics/btr011
http://www.ncbi.nlm.nih.gov/pubmed/21217122
http://dx.doi.org/10.1186/1471-2105-14-160
http://www.ncbi.nlm.nih.gov/pubmed/23679007
http://dx.doi.org/10.1093/bioinformatics/btp379
http://www.ncbi.nlm.nih.gov/pubmed/19542152
http://dx.doi.org/10.1093/bioinformatics/btq151
http://www.ncbi.nlm.nih.gov/pubmed/20378555
http://dx.doi.org/10.1002/humu.22503
http://www.ncbi.nlm.nih.gov/pubmed/24375697

27. Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M, Antonescu C, et al. Versatile and open soft-
ware for comparing large genomes. Genome Biology. 2004; 5(2):R12. doi: 10.1186/gb-2004-5-2-r12
PMID: 14759262

28. Manber U, Myers G. Suffix arrays: a newmethod for on-line string searches. SIAM Journal on Comput-
ing. 1993; 22(5):935–948. doi: 10.1137/0222058

29. Välimäki N, Rivals E. Scalable and versatile k-mer indexing for high-throughput sequencing data. In:
Proceedings of the 9th International Symposium on Bioinformatics Research and Applications; 2013.
p. 237–248.

30. Grossi R, Gupta A, Vitter JS. High-order entropy-compressed text indexes. In: Proceedings of the Four-
teenth Annual ACM-SIAM Symposium on Discrete algorithms; 2003. p. 841–850.

31. Maier D, Storer JA. A Note on the Complexity of the Superstring Problem. Princeton University; 1997.
233.

32. Grabowski S, Deorowicz S, Roguski L. Disk-based compression of data from genome sequencing. Bio-
informatics. 2015; 31(9):1389–1395. doi: 10.1093/bioinformatics/btu844 PMID: 25536966

33. Bingmann T, Fischer J, Osipov V. Inducing Suffix and Lcp Arrays in External Memory. In: Proceedings
of the 15th Meeting on Algorithm Engineering and Experiments (ALENEX); 2013. p. 88–102.

34. Grabowski S, Raniszewski M. Sampling the suffix array with minimizers; 2014. Publicly available pre-
print arXiv:1406.2348v2.

Indexing Arbitrary-Length k-Mers in Sequencing Reads

PLOS ONE | DOI:10.1371/journal.pone.0133198 July 16, 2015 16 / 16

http://dx.doi.org/10.1186/gb-2004-5-2-r12
http://www.ncbi.nlm.nih.gov/pubmed/14759262
http://dx.doi.org/10.1137/0222058
http://dx.doi.org/10.1093/bioinformatics/btu844
http://www.ncbi.nlm.nih.gov/pubmed/25536966

