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Researchers working with neural networks have historically focused on either non-spiking

neurons tractable for running on computers or more biologically plausible spiking

neurons typically requiring special hardware. However, in nature homogeneous networks

of neurons do not exist. Instead, spiking and non-spiking neurons cooperate, each

bringing a different set of advantages. A well-researched biological example of such a

mixed network is a sensorimotor pathway, responsible for mapping sensory inputs to

behavioral changes. This type of pathway is also well-researched in robotics where it

is applied to achieve closed-loop operation of legged robots by adapting amplitude,

frequency, and phase of the motor output. In this paper we investigate how spiking

and non-spiking neurons can be combined to create a sensorimotor neuron pathway

capable of shaping network output based on analog input. We propose sub-threshold

operation of an existing spiking neuron model to create a non-spiking neuron able

to interpret analog information and communicate with spiking neurons. The validity

of this methodology is confirmed through a simulation of a closed-loop amplitude

regulating network inspired by the internal feedback loops found in insects for posturing.

Additionally, we show that non-spiking neurons can effectively manipulate post-synaptic

spiking neurons in an event-based architecture. The ability to work with mixed networks

provides an opportunity for researchers to investigate new network architectures for

adaptive controllers, potentially improving locomotion strategies of legged robots.

Keywords: spiking neural network, non-spiking interneuron, neuromorphic engineering, mixed network,

biologically plausible neuron, bio-inspired engineering

1. INTRODUCTION

Current research employing neural networks for locomotion control tends to focus on
homogeneous networks of neurons communicating through either graded signals (Aoi et al.,
2017) or action potentials (Bing et al., 2018). However, studies indicate that biological neural
networks utilize both communication strategies (Burrows, 1996) to achieve effective locomotion.
Based on this, our research introduces a biologically-inspired non-spiking interneuron (NSI) model
into a spiking neural network (SNN) to further increase biological fidelity. In nature, sensor
neurons receive information from the external environment and pass it onto NSIs through current
injections (Bidaye et al., 2018). This data is sent onwards by the NSI, affecting the membrane
potential of the connected neurons through a graded signal (Burrows and Siegler, 1978). However,
NSIs are not only translational units. They are also found to be the primary neuronal type in
some animals such as the C. elegans where communication through graded potentials is the
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main transmission method (Schafer, 2016). Thereby,
interneurons are computational units in and of themselves.
Figure 1 illustrates a simplified neural pathway depicting an
analog input from the environment producing movement by an
insect (Figure 1A) and the equivalent pathway implemented in
this study (Figure 1B).

Individual neurons can be described using different models
which try to capture the dynamics of a biological neuron. In
this study, we use two spiking neuron models, one works in
its intended fashion but the other operates within its sub-
threshold range so that the membrane potential never surpasses
the spiking threshold. Spiking neuron models try to replicate
biological neurons by calculating the membrane potential of the
neuron at each time step. The membrane potential is affected by
incoming spikes, bias current, and other parameters depending
on the model’s equation. Classical non-spiking neuron models
used in artificial neural networks (ANNs) attempt to replicate
neuron dynamics using a transfer function such as the sigmoid
function. These non-spiking models are able to map values but
they cannot integrate an input over time without a recurrent
connection. Therefore, our paper uses a spiking neuron model
in a non-spiking “mode” to create the NSI.

SNNs typically communicate through action potentials
commonly called spikes. Spikes allow information to be encoded
through the frequency of spikes as well as the timing of individual
spikes (Bohte, 2004). This creates the possibility to transfer more
information within a spike train as compared to traditional ANNs
(Bing et al., 2018). SNNs are used in our research so future
work incorporating data-rich sensory input can take advantage
of temporal features for encoding input information.

As SNNs are typically homogeneous, all communication is
handled by passing spikes between neurons. If an analog sensor
is added to the network, the information must be encoded into
spikes for the network to understand. This is also true for an
output signal whichmust be converted from spikes to continuous
values to control a motor. The known encoding mechanisms
found in nature include individual spike rate (Adrian, 1926),

FIGURE 1 | (A) An illustration of a simplified sensorimotor neuron pathway. A

signal is received from the outside world and sent onwards from the sensor

neuron to the NSI through current injection. The NSI passes the information

onto the motor neuron to generate movement. (B) A high-level overview of the

mixed neural network combining an NSI and SNN.

population activity (Panzeri et al., 2015), and precise spike
timing (Bohte, 2004). Neural network engineers have applied
each of these methods for translating sensory input, grouping the
different approaches into three main categories: rate, population,
and temporal coding respectively.

Each encoding category has recognized strengths. Population
coding is able to relay more information than individual neurons
so it can be useful for data-rich inputs (Mallot, 2013). On
the other hand, temporal coding is particularly applicable for
encoding streaming data as it quickly processes information
(Petro et al., 2019) while maximizing the amount of information
contained within the compressed data (Sengupta and Kasabov,
2017). Finally, while other methods are able to encode more
information, rate coding has been suggested to be the best tool
for handling input with high firing rates (Azarfar et al., 2018). In
our work, rate coding is used to filter the output of the network
from spikes to a continuous motor signal and we introduce the
NSI model as a hybrid encoding method able to directly translate
input by itself or work together with rate, population, or temporal
methods to increase the amount of information encoded.

1.1. Related Work
ANNs have been shown to effectively manipulate amplitude,
frequency, and phase in legged robots to create adaptive
controllers (Nachstedt et al., 2013; Schilling et al., 2013; Barikhan
et al., 2014; Dürr et al., 2019; Pitchai et al., 2019; Thor
and Manoonpong, 2019). Thor and Manoonpong (2019) used
an error signal to update synaptic weights for adaptation of
frequency to optimize walking, resulting in increased efficiency
and reduced tracking error. Pitchai et al. (2019) also created
an energy-efficient control mechanism for a legged robot by
using an ANN to shape network outputs coupled with a non-
spiking central pattern generator (nCPG) to change frequency.
Nachstedt et al. (2013) were able to create a self-tuning network
using adaptive oscillators which allowed a robot to navigate
a more complex environment. Barikhan et al. (2014) showed
that a decoupled nCPG network using sensory feedback to
adapt to the environment was able to handle changes in robot
morphology and could coordinate movement with another robot
when working on cooperative tasks. Schilling et al. (2013) used
rules for coordination to adapt walking according to sensory
input. Similarly, Dürr et al. (2019) developed an ANN to control a
hexapod robot which relied on feedback for posture and rules for
coordination. Their network produced emergent gaits, adjusting
based on the posturing of the robot. The addition of non-spiking
interneurons to ANNs has been investigated by Szczecinski
et al. (2015). They reported control of a hexapod robot using
interneurons modeled as classical non-spiking neurons to trigger
different bio-inspired reflexes. The interneurons were used
to control output oscillations, indicating that shaping nCPG
outputs via interneurons to reproduce biological behaviors is
possible. Our paper combines the use of NSIs and spiking
neurons to update amplitude, frequency, and phase, as a step
toward creating a more biologically plausible adaptive controller
capable of interpreting temporal data.

Pure SNNs are also capable of manipulating output amplitude,
frequency, and phase by updating different synaptic and neuronal
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characteristics (Strohmer et al., 2020). It was found that
frequency could be changed by updating the value of the voltage
threshold potential of the spiking central pattern generator
(sCPG) neuron populations while amplitude was increased or
decreased using the weight of the synaptic conductance to the
motor neuron population (MNP). Finally, phase was determined
by the network architecture and synaptic delays. However, as
input currents to NSIs are known to change firing rates of
connected motor neurons, reset rhythmic output (Bidaye et al.,
2018), and update amplitude (von Uckermann and Büschges,
2009), it is useful to look into how they interact with an sCPG
network to shape these outputs.

Woźniak et al. (2020) integrated spiking neurons into an
ANN to take advantage of their power-saving potential and
temporal data encoding capabilities. They implemented the
spiking neurons as a “spiking neural unit” consisting of two
non-spiking neurons, one of which handles integration of the
membrane potential and the other to emit a spike. The spiking
neural unit dynamics were modeled after the leaky integrate-
and-fire model of spiking neurons. Their integration of the
membrane potential was handled through a recurrent connection
while spiking was mimicked using a step function. This approach
differs from our implementation as it defined the spiking neurons
as a combination of non-spiking neurons whereas we take the
dynamics of a spiking neuron model and use it in the sub-
threshold region to create a non-spiking neuron model.

Patil et al. (2015) took a similar approach to our research
and created a non-spiking neuron modeled as a spiking neuron
that communicated via graded potentials. Their work was
based on the neural architecture of the C. elegans which is
mostly composed of non-spiking neurons though recent research
indicates more advanced sensory systems in the worm might
use spiking neurons (Liu et al., 2018). The paper showed that
a mixed neural network could be built to mimic the escape
response of the C. elegans upon being touched externally. Their
mixed network was implemented as neuromorphic hardware,
simulating both non-spiking and spiking neurons using analog
circuitry, as opposed to our research using simulation software to
mathematically model neurons.

Niu et al. (2017) explore first principles of the sensorimotor
loop using neuromorphic hardware designed on a field-
programmable gate array. They are able to successfully model
spiking neurons andmuscle physiology in hardware to reproduce
stretch reflexes in both an attached cadaveric finger and a
robotic finger. This study reinforces the expectation that a
simplified model of the sensorimotor loop produces realistic
behavior in an anatomical system. Other biological studies
investigate the architecture of the central pattern generator
(CPG) itself, using multi-layered CPG networks to generate
rhythmic output and implementing mutual inhibition on several
layers (see review by McCrea and Rybak, 2008). Markin et al.
(2010)’s CPG network tests the removal of descending signals
and is able to regain stable locomotion by increasing synaptic
weights associated with sensory feedback. Conversely, Danner
et al. (2017) present a network reliant on both descending
and ascending signals for coordination of motion. They add
interneurons to their network to communicate between legs

in addition to relaying descending/ascending signals, finding
that some gait patterns were not achievable when certain
interneurons were removed. Further work by Mileusnic et al.
(2006) suggest a mathematical model for muscle spindles
which are the sense organs responsible for relating length
and velocity of muscles. The paper confirms the ability to
recreate biological data, providing another way to investigate
the role of sensory feedback in locomotion. Expanding upon
this research, Raphael et al. (2010) use the muscle spindle
model in their “spinal-like regulator” capable of processing 184
control inputs, controlling an approximation of the human
hand using both descending inputs and sensory feedback.
Our work integrates ideas from this biological research by
investigating first principles of communication within a mixed
neural network.

Our paper presents a novel encoding mechanism, sub-
threshold encoding, that uses NSIs to relate values from
analog sensory inputs to an SNN. Our proposed method is
referred to as sub-threshold encoding because the output
is a consequence of membrane potential fluctuations below
the spiking threshold. In contrast to using current injections
to directly manipulate network output, the momentary
membrane potential of the NSI plays a role in how the post-
synaptic neurons are affected. The main contribution of
this research is the introduction and investigation into how
these NSIs can be integrated into an existing SNN to shape
network output.

2. METHODS

Biological research indicates that sensory input to NSIs
affects motor output (Büschges and Wolf, 1995). Furthermore,
depolarizing currents received by NSIs are shown to reset
biological central pattern generator (bCPG) rhythms (Bidaye
et al., 2018). We can replicate these behaviors by creating
an equivalent neural network representing the sensorimotor
neuron pathway. In the neural network, the sensor neuron is
replaced by an input bias current to the NSI (see Figure 1B) so
that a change in input current represents a change in sensory
information from the external environment. The NSI then relates
this information to the connected SNN in order to adjust the
network output. Figure 2B shows the block diagram of the
selected SNN, an sCPG network. The architecture of a pair of
mutually inhibitory neuron populations is based on the biology
of spiking oscillators driving an antagonistic muscle pair (Bidaye
et al., 2018). The output from the sCPG network is spikes but
an analog signal is required for control of a motor. Therefore,
Figure 2A demonstrates how these spike events are converted
to an analog signal using rate coding. This mimics the low-
pass filtering performed by biological muscles (Hooper et al.,
2007) by counting the amount of spikes occurring within a time
window to produce an analog value. Figure 2C highlights the
characteristics of the rate-coded output to be adjusted by the
input to the NSI.

A diagram of the implemented network is shown in
Figure 3A. The network consists of an NSI capable of injecting
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FIGURE 2 | (A) Illustration of how spikes are converted to analog values. The spike events for all neurons within a time window are counted. This value is used as the

analog output value of the network. (B) Block diagram of the sCPG network. Neuron populations 1 and 2 create the spiking oscillator, sending spikes to the MNP. The

output spikes from the MNP are considered the network output. (C) Visualization of the meaning of network output characteristics amplitude, frequency, and phase by

use of two sample signals.

current and manipulating the voltage characteristics of the
post-synaptic neurons.

The sCPG populations and MNP consist of 5 neurons each in
order to produce a smooth output with a minimum amount of
neurons (Strohmer et al., 2020). The NSI is a single neuron so
that all post-synaptic neurons connected to it receive the same
inputs. This reduces the complexity of the experiments so that
the tests focus on the communication from the NSI. The sCPG
populations and MNP are comprised of adaptive exponential
integrate-and-fire (AdEx) neurons to allow for bursting behaviors
(Brette and Gerstner, 2005). Neuronal parameters are set based
on regular bursting as outlined in Naud et al. (2008) and their
dynamics are shown in Equations (1) and (2).

C
dVm

dt
= −gL(Vm − EL)+ gL(1T)e

Vm−Vth
1T − w+ Ie (1)

when Vm > 0mV then Vm → Vreset

τw
dw

dt
= a(Vm − EL)− w (2)

when Vm > 0mV then w → w+ b
where C is the membrane capacitance, Vm is the membrane

potential, EL is the resting potential, gL is the leakage
conductance, Ie is the bias current plus Gaussian white noise,
a is the sub-threshold adaptation conductance, b is the spike-
triggered adaptation, 1T is the sharpness factor, τw is the
adaptation time constant, Vth is the voltage threshold potential,
Vreset is the reset potential, and w is the spike adaptation
current (Naud et al., 2008). Equation (1) defines the change in
membrane potential per time step whereas Equation (2) outlines
the current adaptation.
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FIGURE 3 | (A) Block diagram outlining the network structure. Spiking neuron populations “1” (excitatory neuron population) and “2” (inhibitory neuron population)

comprise the sCPG. The MNP is also spiking, it is regulated by an excitatory and inhibitory connection from the sCPG populations. The combination of the sCPG

populations and the MNP create the complete sCPG network. The interneuron is non-spiking, communicating with the sCPG neuron populations through current

injection and voltage characteristic manipulation. The MNP only receives current injections from the NSI. The neural network is altogether composed of 16 neurons, 5

neurons per population plus a single NSI. Red dashed lines indicate input and output of current between different neurons while blue dashed lines mark voltage

characteristic manipulations. The dashed lines do not show direct connections because testing combined different configurations of current injection and voltage

characteristic manipulation. (B) Network for regulating output signal amplitude using the MNP spike count. The total number of spikes output by the motor neurons

during the latest time step is sent to the NSI to determine the size of the current injection to the MNP. (C) The event-based network consisting of an sCPG of two

single AdEx neurons. The Vth of each AdEx neuron is manipulated by an NSI based on spiking input.

The NSI is simulated as a leaky integrate-and-fire neuron, the
dynamics of the neuron are shown in Equation (3). The spiking
threshold is set high enough to avoid spiking so there is no reset
condition. The simpler neuron model is used for the NSI because
the only necessary behavior is the integration of input current
and leakage.

τm
dVm

dt
= −Vm + RIinput (3)

where τm = RC is the membrane time constant,Vm is membrane
potential, Iinput is input bias current plus Gaussian white noise,
and R is membrane resistance.

Yang et al. (2013) show that the magnitude of the NSI output
is a graded function of the difference between the interneuron’s
membrane potential and its rest potential. Additionally, they find
a linear correlation between the signal produced by the NSI
and the response from the post-synaptic neuron. Based on this
knowledge, we construct a relation between the NSI membrane
potential and the effect on the post-synaptic neuron (Equations 4
and 5).

Vcm =
Vrest − Vm

3
(4)

where Vcm is voltage characteristic manipulation, Vrest is rest
potential, and Vm is membrane potential.

The application of Vcm in the network is further described in
section 2.1 outlining experimentation.

Equation (4) provides the offset to the voltage characteristic
being adjusted for an sCPG neuron population. Vrest is set to
−60mV to stay consistent with biological findings (Graubard,
1978). The practical implementation of Vrest uses the starting
value of the NSI membrane potential as it fluctuates around
the desired resting potential due to noise added to the system.
The divisor in Equation (4) limits the voltage characteristic

offset within a stable range. It is determined by dividing the
biologically plausible 15mV NSI membrane potential fluctuation
range (Burrows and Siegler, 1978) with the 5mV voltage
characteristic manipulation range known to be stable for the
sCPG network (Strohmer et al., 2020).

Equation (5) calculates the amount of current (Iinjection), in
pA, to be added to the original current bias (Ie) of the post-
synaptic neuron.

Iinjection = w · (Vrest − Vm) (5)

where Iinjection is current injection, w is synaptic conductance
weight, Vrest is rest potential, and Vm is membrane potential.

The synaptic conductance weight, w, scales the current
injection from the NSI to the post-synaptic neuron. Conductance
is measured in Siemens (S), the inverse of Ohms (�−1).

2.1. Time-Driven Experimentation
Two main categories of tests are performed on the network,
excitatory and inhibitory. The input bias current (Iinput) to the
NSI is always positive, this is the input current defined in
Equation (3). However, the injection current (Iinjection) from the
NSI to the post-synaptic neurons changes sign depending on test
type, sending a positive current if excitatory and negative current
if inhibitory. The value of Iinjection is determined by Equation (5).
Testing is further broken into interactions between the NSI and
post-synaptic neuron populations. The overview of these tests is
outlined in Table 1 and visualized in Figure 4.

The tests step through different configurations of injecting
current and manipulating voltage characteristics of post-
synaptic neuron populations as seen in Figure 4. The voltage
characteristics tests separately investigate adjusting voltage
threshold potential (Vth), voltage reset (Vreset), and membrane
potential (Vm) within Equations (1) and (2). The amount of the
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offset is determined by the voltage characteristic manipulation
Equation (4). The offset generated by Vcm is applied to the
individual characteristic being tested. When Vcm is added to
the membrane potential (Vm) of the neuron, it is applied after
Equation (1) has been calculated, allowing Vcm to be added
directly to the Vm at that time step. On the other hand, when
Vcm is applied to Vth or Vreset , it is added to the initial values set
for each. Therefore, when testing with one of these characteristics

TABLE 1 | Test code reference.

Test no. Current injection Current injection Voltage characteristic

(MNP) (sCPG) (sCPG)

NSI Communication Testing

1 Stepping None None

2 None Stepping None

3 Stepping Stepping None

4 Stepping None Vth

5 Stepping None Vreset

6 Stepping None Vm

7 No None Vth

8 Stepping Stepping Vth

9 None None Vreset

10 Stepping Stepping Vreset

11 None None Vm

12 Stepping Stepping Vm

the actual value of either is as follows in Equations (6) and (7).

Vth = Vth_initial + Vcm (6)

Vreset = Vreset_initial + Vcm (7)

where Vth_initial = −56mV and Vreset_initial = −41mV for
excitatory tests of that characteristic; Vth_initial = −51mV and
Vreset_initial = −46mV for inhibitory tests of that characteristic.

Each of the voltage characteristic manipulations is tested
on individual sCPG neuron populations as well as both
simultaneously, these are defined by test subcategories seen in
Table 2 and visualized in Figure 5. When a test is running that
does not update a particular voltage characteristic, the following
values are used: Vth = −51mV and Vreset = −46mV . These
values are known to produce a regular bursting pattern by the
sCPG network (Strohmer et al., 2020). The MNP never changes
voltage characteristics, it only receives current injections because
it is not involved in generating rhythmic patterns, only shaping
the output.

The test results are compared by plotting the rate-coded
output of the MNP. A sliding time window of 5ms is used,
counting all spikes from the MNP occurring within each time
window to produce an analog value. The output signal from
the MNP is considered the output of the network because this
would be the signal used to control a motor when testing on a
physical robot.

Static Iinput tests are performed first to find the maximum
value for the conductance weight, w (Equation 5). These static

FIGURE 4 | Visualization of NSI communication testing outlined in Table 1. Red indicates a current injection and blue indicates a voltage characteristic manipulation.

Input bias current to the NSI is always excitatory (black dashed arrow). The numbers indicate the main test number corresponding with the depicted setup.
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tests are not outlined in the above tables as they are only for
parameter tuning. In order to find w, Iinput is set to the maximum
value determined by the change in the NSI membrane potential,
restricting it to the biologically plausible range of 15mV (Burrows
and Siegler, 1978). Then w is increased by increments of 10nS
until the maximum weight is found. The maximum is accepted
as the largest weight value to produce an ideal output signal, this
is further discussed in section 3. This value is set as the maximum
conductance weight (wmax) for both excitatory and inhibitory
tests. After this is found, all test configurations update Iinput at
regular intervals to confirm a change in analog input is able to
manipulate network output online. These stepping input current
trials all use wmax to calculate Iinjection in Equation (5). When the
test is excitatory, Iinput starts at 0pA and ends at the determined
maximum, the opposite is true when the test is inhibitory. This

TABLE 2 | Test subcategory code reference.

Test Current injection Excitatory sCPG Inhibitory sCPG

subcategory type neuron neuron

NSI Communication Testing

_0 Excitatory Yes Yes

_1 Excitatory Yes No

_2 Excitatory No Yes

_3 Inhibitory Yes Yes

_4 Inhibitory Yes No

_5 Inhibitory No Yes

allows the system to be “excited” by reducing inhibition so the
same general behavior can be expected at the output.

Neural Simulation Tool (NEST) (Jordan et al., 2019) is used
to simulate the network and record test results. The simulation
is run for 6s for all trials. The input current to the NSI updates
every 1 s, allowing the network to settle after initial transients
before the input changes again. Iinput starts at 0pA and ends
at the maximum, 148pA. Thus, each step adds 29.6pA of input
current. Gaussian white noise current is added to all neurons
in the network. The standard deviation of the noise current to
the NSI is set to 25pA so that the noise current is comparable
to the current steps. When testing with larger values than this,
the output no longer reliably produces the necessary offsets for
the voltage characteristic manipulation. For all other neurons, the
standard deviation is 50pA. The standard deviation of the noise
currents are selected and have not been tuned. A bash script is
used to run tests in a reliable manner. The bash script and the
python test script are available on GitLab (see Data Availability
Statement).

After performing all of the test combinations for frequency
and amplitude manipulation as outlined in Tables 1, 2, one
further test is performed to see how output phase is affected
by switching between frequencies. The frequency is either held
constant for 6s or toggled between 4Hz and 8Hz updating
every second for 6s. There is no current injection to the
motor population for these tests in order to examine phase as
affected solely by frequency. This test differs from previous phase
manipulations of an sCPG network where phase was determined

FIGURE 5 | Visualization of NSI communication testing subcategories outlined in Table 2. Arrows are excitatory and solid circles are inhibitory connections. The

connection may be a current injection, a voltage characteristic manipulation, or both depending on the main test number found in Table 1. This visualization shows

how the subcategories determine the input to the sCPG populations. The numbers indicate the test subcategory corresponding with the depicted setup.
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by synaptic delay (Strohmer et al., 2020). Instead of trying to
create a specific phase shift, this trial only confirms that phase
is affected by changing frequencies and does not attempt to
control it.

Insects use proprioceptive sensor neurons to understand the
position of their limbs in relation to their body. These internal
feedback loops can help an insect engage resistance reflexes to
maintain posture (Tuthill and Wilson, 2016). This knowledge is
used to implement a simplified network simulating an internal
feedback loop (illustrated in Figure 3B) as a proof of concept
application. The rate-coded output from theMNPdetermines the
strength of the synapse connecting the NSI and MNP. A number
of trials are run to determine an appropriate scaling factor for
excitatory and inhibitory weight calculations.

w = scaling_factor

· (desired_spike_number − current_spike_number) (8)

Varying the synaptic conductance weight, w, will regulate the
output amplitude for this internal feedback loop. Equation (8)
determines thew to be used in Equation (5) instead of usingwmax.
The scaling factor is a value which allows for maximum effect
without over-exciting or over-inhibiting the output. The desired
spike number acts as a set point whereas the current spike number
is the actual number of spikes from the MNP occurring in the
last time step. In this network an inhibitory weight is applied if
the number of spikes in the time window is above the desired
number and an excitatory weight if below.

2.2. Event-Driven Experimentation
In order to confirm the NSI’s compatibility with a neuromorphic
architecture, the network is also simulated on CloudBrain
(Larsen et al., 2021). CloudBrain is a scalable event-based
SNN simulation platform utilizing event stream processing
technologies to communicate between neurons implemented
as microservices on a cluster. The NSI in CloudBrain is
implemented as an event-based leaky integrator neuron so that
the neuron model is comparable to the NEST simulation. The
neuron updates its membrane potential upon receipt of an input
event according to the dynamics shown in Equation (9).

1Vm = Vrest + (Vm − Vrest)decay
1t

− Vm +
Iinput

C
(9)

Where1Vm is the change in membrane potential,Vrest is the rest
potential, decay is the decay factor simulating leakage, dt is the
time since last incoming spike, Iinput is the input current from
other neurons, and C is the membrane capacitance.

Equation (9) is the event-driven equivalent of the Equation
(3) in the time-driven system. The event-driven simulation
does not include noise as the experiment is only designed to
confirm functionality of an NSI. In addition to updating the
membrane potential, the NSI saves the time stamp of last received
input (tupdated).

Each microservice consists of a neuron and all incoming
synapses, so the post-synaptic AdEx neurons cannot directly
access the voltage of the NSI. Instead, the NSI parameters (V ,
Vrest , Vm, decay, and tupdated) are sent to the synapses connected

to the AdEx neurons each time they are updated. Based on
this information, the synapse asynchronously calculates the exact
membrane potential of the neuron as needed using Equation (10).

Vm(t) = Vrest + (Vm − Vrest)decay
t−tupdated (10)

Where t is the current time,Vm is themembrane potential,Vrest is
the rest potential, decay is the decay factor simulating the leakage,
and tupdated is the time at which the parameters were updated.

A network consisting of an NSI and an sCPG is created in
CloudBrain to confirm the NSI is able to update the voltage
threshold potential of the post-synaptic neurons in an event-
based architecture. In this setup, the sCPG is comprised of two
single neurons mutually inhibiting each other. Figure 3C shows
the block diagram of the network in CloudBrain. The input to
the NSI is spikes since it is an event-based architecture. The
input spikes are the equivalent of the stepping input current
used in the time-based NEST simulation. A step function is
encoded to spikes using Ben’s Spiker Algorithm (Schrauwen and
Van Campenhout, 2003) for transmission to the NSI. In turn, the
NSI updates the Vth (as described in Equation 1) of the sCPG
neurons based on the frequency of spiking input. The Vth of
the sCPG neurons is calculated using a linear mapping of the
membrane potential. This allows us to control the upper and
lower limits of the Vth. The NSI’s Vm is recorded for comparison
with the Vth and spiking output of the sCPG populations.

3. RESULTS

Simulating with a constant Iinput of 148pA shows the NSI
membrane potential starts close to the rest potential,−60mV and
ends around −45mV , though these values vary slightly due to
noise. This gives us the maximum allowable Iinput that restricts
the NSI’s membrane potential within a 15mV range.

The maximum synaptic conductance weight for the NSI
output synapse is determined to be wmax = 70nS. The effect
on amplitude as compared to a lower weight of 2nS is visible
in Figure 6. Increasing w to 80nS produces unwanted lifting
behavior from the excitatory current injection where the rate-
coded output does not always return to zero. This result can be
seen in Supplementary Figure 1.

Figure 6 shows that amplitude is affected by a change in
Iinjection without altering the frequency or phase of the output for
both excitatory (Figure 6A) and inhibitory (Figure 6B) tests. The
filled circles on the plots illustrate the peak values (local maxima)
of the rate-coded output. The difference in average peak value
when comparing 2 vs. 70nS is 28.37 spikes when excitatory and
16.69 when inhibitory.

Table 3 shows the progressive increase in average number of
spikes per 5ms time window based on the size of Iinjection to the
MNP. This reveals that the change in the number of output spikes
due to Iinjection is scalable over a range.

3.1. Online Amplitude Manipulation
The online manipulation of Iinjection to the MNP results in a
change in the number of spikes per time window for both
excitatory and inhibitory tests (Figures 7A,B). The addition of
Iinjection to both of the sCPG populations changes the behavior
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FIGURE 6 | Comparison of the output from the MNP when w in Equation (5) is

2nS vs. 70nS with a constant maximum Iinput of 148pA into the NSI (Equation

3). There is a visible change in amplitude without affecting the frequency or

phase. The peaks (local maxima) are marked with a filled circle. (A) Injects

excitatory current to the MNP; (B) Injects inhibitory current to the MNP.

TABLE 3 | Average maximum number of spikes per time window when injecting

excitatory or inhibitory current to the MNP. Iinjection shown is an approximation,

calculated using Equation (5) where Vm = −45mV and w is as defined in the table.

Calculated current Conductance, Average peak Average peak

injection, Iinjection (pA) w (nS) (excitatory) (inhibitory)

30 2 24.26 23.00

150 10 26.50 20.76

300 20 29.33 18.10

450 30 32.19 14.43

600 40 36.33 12.74

750 50 41.14 10.64

900 60 46.94 8.02

1,050 70 52.63 6.31

Iinjection is positive when excitatory and negative when inhibitory. The average peak number

of spikes increases and decreases with excitation and inhibition respectively.

of spiking, shifting the phase in comparison to the static input
current tests (Figures 7C–F). Additionally, the strong inhibition
of both sCPG neuron populations leads to complete suppression
of the output.

Injecting current to one sCPG population at a time creates
instability in the system. Supplementary Figures 4A,B show that
the excitation of the excitatory sCPG population produces lifting

behavior when Iinjection reaches a specific threshold. Likewise,
an increase in excitation of the inhibitory neuron population
dampens MNP spiking.

All figures in the Supplementary Material present both
excitatory and inhibitory trials. Excitatory current injections
produce a larger change in amplitude whereas inhibition
suppresses output up to a certain point in many tests.

3.2. Online Frequency Manipulation
Figure 8 compares frequency manipulation of the output with
and without current injection to the MNP. Updating either Vth

or Vreset of the sCPG neuron populations points to a linear
relationship with frequency.

Based on the voltage characteristic manipulation calculation
(Equation 4), Vth and Vreset are either increased or decreased
by approximately 1 at each time step. Figures 8A–D show that
their manipulation results in an increase in frequency by the
addition of approximately 1 peak per second, implying a linear
relationship. Figures 9A–C reinforce the expectation of a linear
relationship between frequency and the change in Vth or Vreset .
By contrast, adding an offset to Vm does not reliably change
the frequency and introduces instability as the current injection
increases. Figure 9D shows that the frequency does not trend in a
particular direction for theVm manipulation. Additionally, as the
inhibitory test’s output is suppressed for much of the duration of
the trial, there are fewer data points as compared to other tests.

Figure 9A highlights the similarity in the frequency change
when comparing Vth and Vreset . This is also true whether the
test is excitatory or inhibitory. Supplementary Table 1 shows the
exact start and end frequency values for the voltage characteristic
manipulation tests. The starting frequency for Vth and Vreset tests
is between 2.36 and 2.94Hz, ending between 8.01 and 8.94Hz.
This reveals frequency can be affected by a factor of 3.

Amplitude is also affected by frequency, the average number
of maximum spikes for each frequency can be seen in
Supplementary Table 2. The lower the frequency, the more
spikes are counted per time window, resulting in a higher value
of the rate-coded output. The relationship does not appear to be
linear as the number of spikes is reduced by a larger amount when
comparing the lowest 3 frequencies as compared to the highest
3 frequencies.

3.3. Online Phase Manipulation
Phase is affected by frequency manipulation as seen in Figure 10.
Figures 10A,B both show the initial 1,000 time steps of the
simulation produce the exact same results for amplitude and
phase. However, after a frequency change the phase shifts.

3.4. Online Amplitude Regulation Using
Internal Feedback
Figure 11 shows the effects of amplitude regulation when
updating the frequency of the network by adjusting Vth in
Equations (1) and (2).Vth changes based on the offset determined
by Equation (4). The scaling factors found to have the most effect
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FIGURE 7 | Comparison of various current injection configurations to the original static input test. For the stepping tests 1, 2, and 3, I input to the NSI increases every

1,000 time steps (1 s). Outputs show that current injection to the MNP changes the amplitude but the addition of current to the sCPG neurons creates a phase shift to

the output. (A,B) Baseline stepping current tests injecting current from the NSI to the MNP; (C,D) I injection from the NSI to both sCPG populations; (E,F) I injection

from the NSI to both sCPG populations and the MNP; Excitatory tests are on the left while inhibitory tests are on the right. See Tables 1, 2 and Figures 4, 5 for setup

and details per test number.

without over-inhibition or over-excitation are 50 for inhibition
and 2 for excitation (insert into Equation 8).

The amplitude based on a “desired spike value” (see Equation
8) of 10 vs. 50 confirms that the network is monitoring the output
and adjusting. This is seen more drastically when comparing
the control experiment (originally test 4_0) and the trial with
a desired spike value of 10. Regardless of whether the test is
increasing or decreasing frequency, the amplitude is adjusted
to a similar value. Figure 11 confirms the number of spikes
per time window is consistent based on the desired value and
the frequency. Furthermore, the phase is unaffected by this
amplitude regulation.

3.5. Event-Driven Manipulation
The step input to the NSI resulting in an increase in Vth

of the AdEx neuron is seen in Figure 12A. The y-axis is
adjusted for each graph so the height of the curves should
not be directly compared. However, the time axis is common
to both graphs and shows the Vth follows the change in Vm

almost immediately.
Figure 12B confirms the output frequency of the AdEx

neuron is increased when the input spike bursting frequency
increases. The graph shows the increase in input bursting
frequency starts ramping up the Vm of the NSI. This promotes
an increase in output bursting frequency from the AdEx neurons.
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FIGURE 8 | Comparison of voltage characteristic manipulation with and without current injection to the MNP. Network behavior remains the same when current is

injected to the MNP during frequency changes for all voltage characteristic manipulations. Frequency changes linearly during V th and V reset tests. Excitatory and

inhibitory tests are compared to their respective counterparts. Vertical lines indicate when a change in input current occurs once per second. (A,B) Test 4 includes

current injection to the MNP, Test 7 only updates voltage threshold potential; (C,D) Test 5 includes current injection to the MNP, Test 9 only updates voltage reset;

(E,F) Test 6 includes current injection to the MNP, Test 11 only updates membrane potential. See Tables 1, 2 and Figures 4, 5 for setup and details per test number.

The AdEx neurons are confirmed to spike out of phase with each
other and increase to the same bursting frequency.

4. DISCUSSION

The results confirm our model of an NSI is capable of shaping
output and setting rhythmic patterns of an sCPG network
based on a changing analog input. The amount of influence
the NSI has on the output is constrained since the change in
membrane potential must stay within the biologically plausible
15mV range. However, the range still allows at least a doubling

of average output spikes per time window from the MNP
and triple the frequency when moving from a low to high
input current to the NSI. The output from the MNP also
dictates usable parameter ranges. The lifting behavior observed
when using a synaptic conductance larger than 70nS means
that the output cannot always return to zero due to some
neurons always spiking. This is not ideal as an output signal
so the maximum conductance to the post-synaptic neurons is
limited to 70nS.

The baseline stepping current tests (1_0 and 1_3) confirm
amplitude can be manipulated online without changing the
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FIGURE 9 | Calculation of frequency for each voltage characteristic manipulation using the time difference between peaks. Double peaks are removed as outliers. The

x-axis only represents iteration through the array by subtracting the previous array element from the current element, it does not indicate time. The frequency of the

MNP output trends upwards for (A–C), indicating that peaks occur more frequently when the absolute difference in voltage between V reset and the V th is decreased.

The suffix 0 is used for excitatory tests and 3 for inhibitory tests. (A) Compares peak frequencies of Vth and Vreset; (B) Vth; (C) Vreset; (D) Vm. See Tables 1, 2 and

Figures 4, 5 for setup and details per test number.

FIGURE 10 | Comparison of output phase when toggling between frequencies vs. a constant frequency. Both plots show the first 1,000 time steps (equivalent of 1 s)

are exactly the same as the toggling (blue) and constant (red) frequency plots follow each other. After a change in frequency, the phase shifts so that they no longer

follow each other exactly even though the frequency returns to the original speed. (A) Compares a constant high frequency (red) to a toggling frequency (blue). (B)

Compares a constant low frequency (red) to a toggling frequency (blue).

behavior of the system by updating the injection current to
the MNP. Table 3 shows that the difference in amplitude can
be controlled using synaptic conductance. It can logically be

concluded that the average number of maximum spikes per time
window when no current is injected is between 23 and 24.26.
The number of spikes either increases or decreases from this
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FIGURE 11 | Comparison of amplitude when running the network unregulated vs. creating a set point (SP) at 10 spikes and 50 spikes. The SP in this plot is

equivalent to the “desired spike value” referred to in Equation (8). There is more overshoot for lower frequencies as compared to higher frequencies but the change in

amplitude is visible from the control experiment where wmax is applied uniformly. Vertical lines indicate when a change in voltage threshold potential occurs thereby

changing the frequency. The threshold updates every 1,200 time steps (1.2s) creating a total of 10 divisions. Vth starts at −54.81mV producing a frequency of 3.77Hz

and increases to −50.79mV producing a frequency of 9.14Hz. After 6,000 time steps Vth decreases again, returning to a value of −54.74mV producing a final

frequency of 4.00Hz. The middle two trials from 4,800 to 7,200 time steps are held at the highest Vth, around −50.79mV. The values fluctuate by hundredths of a mV

because Vth is affected by current noise.

FIGURE 12 | (A) Comparison of the NSI’s Vm to the post-synaptic AdEx neuron’s Vth. The plot shows Vth follows Vm confirming that the neuronal characteristics are

updated based on the membrane potential of the NSI. The AdEx neurons are defined as “left” and “right” based on their relative position in the sCPG. There is no

noise on the synapses to the AdEx neurons so the Vth of each neuron follows each other exactly thereby obscuring the view of the right neuron underneath the left.

(B) Comparison of each AdEx neuron’s Vth to the input and output spike events. The spikes are not rate-coded because there is only one neuron per population. Vth
increases when the input spike events increase which leads to an increase in bursting frequency of the AdEx neuron. The left and right neurons spike 180◦ out of

phase as expected based on the sCPG architecture of mutual inhibitory coupling.

starting point depending on if the connection is excitatory or
inhibitory. The difference between maximum spikes over the
range of current tested is steady, reinforcing the conclusion that
amplitude is reliably altered by current injection. If the synaptic
weight is changed in addition to the current injection, the average
number of spikes per time window can be regulated from 6.31 to
52.63. This configuration increases the average spike difference to
a factor of 8 (52.63/6.31 = 8.34).

Tests involving a current injection to the sCPG neuron
populations produce a phase shift. This is expected
because they are the populations driving the rhythmic
output. The delay generated could be an exploitable
feature when coordinating multiple joints. However,
the exact effect has not been calculated and the delay
changes based on the level of current injection (see
Figure 7).
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The linear relationship found between frequency and voltage
threshold potential seen in Figure 9 is consistent with previous
research by Strohmer et al. (2020). It follows that reset
potential has a similar relationship to frequency as voltage
threshold potential. Both characteristics change the amount a
neuron’s membrane potential must change before reaching the
spiking threshold. Adding an offset directly to a post-synaptic
population’s membrane potential introduces discontinuities,
creating small “jumps” based on the value of the offset. The
frequency does not appear to be linearly correlated with the
change in Vm when looking at Figure 9D. However, this might
be due to the limited range of the offset tested in this study.

The comparison of frequency to the maximum amount of
spikes depends on the size of the time window chosen for
rate coding as well as the number of neurons within the
motor population. Likewise, a larger number of neurons in
the motor population increases the maximum possible spikes.
The results shown in this study are based on a time window
of 5ms and a MNP size of 5. When comparing the start
and end frequencies for Supplementary Table 1 against the
average frequencies in Supplementary Table 2, the static tests
show a higher starting frequency (both tables are located in
the Supplementary Material). The static tests average frequency
over a total of 5 s, removing the first second in case of transients.
However, Test 4_0 updates the frequency every 1 second so the
minimum frequency and maximum frequency shown are not
averaged but single calculations. The averaging process most
likely accounts for this difference in start and end frequencies.
This limits the reliable change in frequency to a difference of 2.8x.

Toggling between a low and high frequency over a single trial
as compared to a constant frequency produces a phase shift as
expected due to the alteration of the output signal’s period. This
phase shift is with respect to the sCPG network’s own output from
the MNP and does not indicate how frequency changes might
affect a larger system with connected oscillators. However, these
results imply that an NSI is able to reset rhythmic behavior of
an sCPG network in accordance with biological research (Bidaye
et al., 2018).

Trials that only affected a single sCPG neuron population at a
time created network instability, most likely due to the change
in network dynamics. The sCPG populations are mutually
inhibitory so the excitation or inhibition of one population
affects the balance of the network. This is particularly visible in
Supplementary Figure 4 where over-excitation of the excitatory
neuron causes lifting and over-inhibition of the excitatory
neuron suppresses network output. Based on these results, a
stable and predictable output requires updating both sCPG
neuron populations with the same current injection or voltage
characteristic manipulation. This conclusion can only be inferred
for a mutually inhibitory sCPG architecture. Furthermore, this
result cannot predict stability over time or with different
noise profiles.

Reviewing the frequency tests with and without current
injection to the motor population shows that the amplitude
adjusts based on the level of current injection without affecting
frequency. Furthermore, the frequency is equally affected by a
change in Vth or Vreset but biological research shows evidence

that voltage threshold adaptation is a strategy used by neurons
to change firing rate (Azarfar et al., 2018). Therefore, based
on research findings and biological research, our recommended
approach for parameter manipulation of a mutually inhibitory
sCPG network is to inject current to the MNP while updating
the voltage threshold potential of the sCPG neuron populations.

The regulation of amplitude is a building block for developing
closed-loop adaptive controllers with NSIs. The proof of concept
network implemented shows that NSIs are capable of controlling
output based on live feedback. The method is solely for
demonstration purposes and is not necessarily biologically
plausible though there is evidence that short-term plasticity
affects rhythmic outputs (McDonnell and Graham, 2017) and
that the synaptic weight influences the magnitude of the post-
synaptic potential (Burrows, 1996). Testing the network reveals
visible overshoot from the desired set point but this is expected
because the spike value must surpass the set point before
inhibition initiates. The lower frequencies are also worse at
reducing the number of spikes, this is probably because of the
significant excitation received from the sCPG populations. As
can be seen in the control experiment, the maximum numbers of
spikes per time window can reach 100 for the lowest frequency
trial. It is more difficult to dampen the effects of these high
spike counts than the lower spike counts seen in higher MNP
output frequencies.

The results of the event-based CloudBrain simulation are
consistent with the time-based NEST simulation showing that
output frequency can be manipulated based on input to the
NSI. This suggests that the NSI can translate both spiking and
analog data into usable information for the network. The ability
to receive spiking input increases the usability of the NSI as a
possible encoding tool, indicating potential for interfacing with
event-driven sensors. Additionally, the ability to run the NSI
on an event-based simulation in real-time means that it can be
applied in closed-loop control of robots.

5. CONCLUSION

The method introduced in our research is able to integrate
an NSI into an SNN to create a mixed network. Our model
NSI is a biologically plausible input value encoder, receiving
analog values as Iinput and passing the information to spiking
neuron populations which naturally output spikes. This research
confirms that the amplitude, frequency, and phase of an sCPG
network can be manipulated based on changing input to an NSI,
implying that an NSI can function as an encoding mechanism
within an SNN. Furthermore, the ability of the network to adjust
to an internal signal suggests that this setup could be useful in
adaptive controllers.

Our recommended architecture for integrating an NSI with
a mutually inhibitory sCPG network is shown in Figure 4, plot
4,5,6, allowing frequency to be adjusted by changing the voltage
threshold potential. In this specific setup, the average frequency
of the network can be regulated between 3.0Hz and 8.5Hz.
Additionally, the regulation of synaptic conductance weight
from the NSI allows an average peak output amplitude between
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approximately 6 and 52 spikes per time window. This assumes a
rate-coding time window of 5ms and 5 neurons for the MNP as
investigated in this study. The recorded frequency and amplitude
ranges are determined by the architecture and parameter ranges
so it would be advantageous to look further into the dynamics of
this system to maximize flexibility. Additionally, the resolution
of attainable frequencies should be evaluated as this will be an
important metric for adaptive control.

An implementation of an NSI should be further researched
to compare sub-threshold use of existing spiking neuron models
to a unique non-spiking model. Further research into both the
offset and injection current equations as well as their respective
parameters is also necessary. Additionally, the leakage constant
of the NSI could be optimized to ensure biological-plausibility
and effectiveness. The relationships between frequency and phase
as well as frequency and amplitude should be quantified so that
these dependencies can be fully exploited.

The finding that amplitude can be scaled based on the value of
the current injection to the MNP leads to the possibility of using
an NSI to prioritize sensory inputs or inform coordination tasks.
Insect inter-leg coordination is known to depend on sensory
input not only from the local leg but also neighboring legs
(Bidaye et al., 2018). Therefore, synaptic weights from a single
NSI population could be tuned in order to inject more current
to the local leg while also providing varying amounts of injection
current to neighboring legs.

The event-based demonstration on the CloudBrain platform
indicates that implementation on neuromorphic hardware is
possible. A closed-loop mixed network should be further studied
in CloudBrain since it can communicate with a robot in real-
time (Larsen et al., 2021). This provides the opportunity for
investigation of a mixed network adaptive controller using
environmental interaction.

The ability of sub-threshold encoding to shape an sCPG
network’s output opens up possibilities for new approaches to
coordination and control tasks. Storchi et al. (2012) report
observing the use of combinations of encoding mechanisms in

biological systems, indicating that the use of multiple methods
within a single robot could be a fruitful investigation direction
for adaptive controllers.
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