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de México, Mexico

Copyright Ramos-Vicente et

al. This article is distributed under

the terms of the Creative

Commons Attribution License,

which permits unrestricted use

and redistribution provided that

the original author and source are

credited.

Metazoan evolution of glutamate
receptors reveals unreported
phylogenetic groups and divergent
lineage-specific events
David Ramos-Vicente1,2, Jie Ji3, Esther Gratacòs-Batlle4, Gemma Gou1,2,
Rita Reig-Viader1,2, Javier Luı́s1,2, Demian Burguera5, Enrique Navas-Perez5,
Jordi Garcı́a-Fernández5, Pablo Fuentes-Prior6, Hector Escriva7, Nerea Roher3,
David Soto4, Àlex Bayés1,2*
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Abstract Glutamate receptors are divided in two unrelated families: ionotropic (iGluR), driving

synaptic transmission, and metabotropic (mGluR), which modulate synaptic strength. The present

classification of GluRs is based on vertebrate proteins and has remained unchanged for over two

decades. Here we report an exhaustive phylogenetic study of GluRs in metazoans. Importantly, we

demonstrate that GluRs have followed different evolutionary histories in separated animal lineages.

Our analysis reveals that the present organization of iGluRs into six classes does not capture the

full complexity of their evolution. Instead, we propose an organization into four subfamilies and ten

classes, four of which have never been previously described. Furthermore, we report a sister class

to mGluR classes I-III, class IV. We show that many unreported proteins are expressed in the

nervous system, and that new Epsilon receptors form functional ligand-gated ion channels. We

propose an updated classification of glutamate receptors that includes our findings.

DOI: https://doi.org/10.7554/eLife.35774.001

Introduction
Glutamate is the principal excitatory neurotransmitter in the central nervous system of animals (Fon-

num, 1984; Danbolt, 2001; Pascual-Anaya and D’Aniello, 2006). It acts on two families of structur-

ally unrelated receptors: ionotropic glutamate receptors (iGluRs), which are ligand-gated ion

channels and G-protein coupled receptors (GPCRs), known as metabotropic glutamate receptors

(mGluRs) (Sobolevsky et al., 2009; Conn and Pin, 1997). While fast excitatory neurotransmission is

mediated by iGluRs, metabotropic receptors modulate synaptic transmission strength. iGluRs are

formed by four subunits, which can be traced back to bacteria (Tikhonov and Magazanik, 2009).
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The current classification of iGluR subunits includes six classes: a-amino-3-hydroxy-5-methyl-4-isoxa-

zolepropionic acid (AMPA) receptors, Kainate receptors, N-methyl-D-aspartate (NMDA) receptors

(actually comprising three classes: NMDA1-3) and Delta receptors (Traynelis et al., 2010). iGluR

subunits of the same class assemble into homo- or heterotetramers (Karakas and Furukawa, 2014;

Kumar et al., 2011) and their ligand selectivity is dictated by a small number of residues located in

the ligand-binding domain (Traynelis et al., 2010). Accordingly, NMDA subunits GluN1 and GluN3

as well as the Delta subunit GluD2 bind glycine and D-serine, while all subunits from the AMPA and

Kainate classes bind glutamate (Traynelis et al., 2010; Kristensen et al., 2016). Metabotropic gluta-

mate receptors are class C GPCRs and as such are formed by a single polypeptide. mGluRs also

appeared before the emergence of metazoans, being present in unicellular organisms such as the

amoeba Dictyostellium discoideum (Taniura et al., 2006). mGluRs are presently organized into three

classes (I, II and III) and all their members respond to glutamate (Conn and Pin, 1997; Pin et al.,

2003).

While the phylogeny of the two families of GluRs is well characterized in vertebrates, that of the

entire animal kingdom is only poorly understood. The few studies on iGluR evolution outside verte-

brates concentrate on a few phyla, leaving many proteins unclassified (Greer et al., 2017;

Brockie et al., 2001; Janovjak et al., 2011; Kenny and Dearden, 2013). Similarly, the vast majority

of mGluRs described so far fall into the three classes described in vertebrates (Krishnan et al.,

2013; Kucharski et al., 2007; Dillon et al., 2006). Although, the existence of three insect mGluRs

that cluster apart from classes I-III led to propose the existence of a fourth class (Mitri et al., 2004).

Here we present what to our knowledge is the most comprehensive phylogenetic study of ionotropic

and metabotropic GluRs along the animal kingdom. We have favored the use of more slow-evolving

species for the construction of phylogenetic trees. These species are particularly amenable to phylo-

genetics (Simakov et al., 2013; Simakov et al., 2015; Putnam et al., 2007) as they arguably

eLife digest Nerve cells or neurons communicate with each other by releasing specific

molecules in the gap between them, the synapses. The sending neuron passes on messages through

packets of chemicals called neurotransmitters, which are picked up by the receiving cell with the

help of receptors on its surface. Neurons use different neurotransmitters to send different messages,

but one of the most common ones is glutamate.

There are two families of glutamate receptors: ionotropic receptors, which can open or close ion

channels in response to neurotransmitters and control the transmission of a signal, and

metabotropic receptors, which are linked to a specific protein and control the strength of signal.

Our understanding of these two receptor families comes from animals with backbones, known as

vertebrates. But the receptors themselves are ancient. We can trace the first family back as far as

bacteria and the second back to single-celled organisms like amoebas. Vertebrates have six classes

of ionotropic and three classes of metabotropic glutamate receptor. But other multi-celled animals

also have these receptors, so this picture may not be complete.

Here, Ramos-Vicente et al. mapped all major lineages of animals to reveal the evolutionary

history of these receptors to find out if the receptor families became more complicated as brain

power increased. The results showed that the glutamate receptors found in vertebrates are only a

fraction of all the types that exist. In fact, before present-day animal groups emerged, the part of

the genome that holds the ionotropic receptor genes duplicated three times. This formed four

receptor subfamilies, and our ancestors had all of them. Across the animal kingdom, there are ten,

not six, classes of ionotropic receptors and there is an extra class of metabotropic receptors. But

only two subfamilies of ionotropic and three out of four metabotropic receptor classes are still

present in vertebrates today.

The current classification of glutamate receptors centers around vertebrates, ignoring other

animals. But this new data could change that. A better knowledge of these new receptors could aid

neuroscientists in better understanding the nervous system. And, using this technique to study other

families of proteins could reveal more missing links in evolution.

DOI: https://doi.org/10.7554/eLife.35774.002
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present lower rates of molecular evolution than other organisms. Our work shows that metazoan

evolution of GluRs is much more complex than previously thought. iGluRs present an overall organi-

zation into four subfamilies that were already present in the last ancestor of all metazoans. Verte-

brate species only retain members of two of these subfamilies. Furthermore, we identify many

lineage-specific gains, losses or expansions of GluR phylogenetic groups. Finally, we present experi-

mental evidence showing that unreported GluRs found in the basally divergent chordate Branchios-

toma lanceolatum (amphioxus) are highly expressed in the nervous system and that members of the

unreported Epsilon subfamily, the most phylogenetically spread among unreported groups, can

form functional ligand-gated ion channels.

Results

Phylogenetics of metazoan ionotropic glutamate receptors reveals four
subfamilies, unreported classes and lineage-specific evolutionary
dynamics
We have performed a systematic phylogenetic study of iGluR evolution across the animal kingdom.

To increase the confidence on iGluRs evolutionary history phylogenetic trees have been generated

using two independent methods (Bayesian inference and Maximum-likelihood (ML), Figure 1 and

Figure 1—figure supplement 1). Our analysis indicates that the family of iGluRs experienced key

duplication events that define its present organization into four previously unreported subfamilies,

of which two contain the extensively studied vertebrate classes. Assuming ctenophores as the sister

group to all other animals (Moroz et al., 2014; Ryan et al., 2013), our data suggest that the three

major duplication events leading to this four subfamilies occurred before the divergence of current

animal phyla (see Figure 2 for a summary scheme of iGluRs evolution). The first of these duplications

produced the separation of the Lambda subfamily, the second lead to divergence of the NMDA sub-

family and the third to the split between Epsilon and AKDF subfamilies.

The Lambda subfamily is the most phylogenetically restricted, as we could only identify it in pori-

fers. Thus, Lambda would have been lost in two occasions, in the lineage of ctenophores and in a

common ancestor of placozoans, cnidarians and bilaterals. On the other hand, the Epsilon subfamily

is the best represented among non-bilaterians, being present in all non-bilaterian phyla investigated.

Including in porifers, although we could only identify one Epsilon in sponges, GluE_Ifa from the

demosponge Ircinia fasciculata. Our data also indicate that this subfamily has been lost in multiple

occasions along metazoan evolution, as we could not find it in the protostome, echinoderm or verte-

brate species investigated. Interestingly, all ctenophore iGluRs identified, which have been previ-

ously reported (Alberstein et al., 2015), belong to the Epsilon subfamily. Thus, this phylum would

have lost NMDA, Lambda and AKDF proteins. Contrarily, ctenophores would have experienced an

important expansion of Epsilon iGluRs, as we report 17 and 10 of these proteins in the two species

with genomic information available, M. leidyi and P. bachei, respectively.

Although we have not identified NMDA receptors in ctenophores, porifers and placozoans our

analysis indicates that this subfamily was already present in the last common ancestor of metazoans.

This is because the topology of the tree shows that NMDAs appear in the phylogeny at the same

level as the Epsilon subfamily, which has representatives in all non-bilateral phyla. According to our

data, NMDA1s on the one hand and NMDA2s and NMDA3s on the other contain members of the

cnidarian phylum. Although we have only been able to identify one member more closely related to

NMDA2 and NMDA3 than NMDA1 (GluN2/3_Nve), its position in the phylogeny is very well sup-

ported by both analyses performed. This indicates that a specific duplication occurred in the ances-

tor of bilaterians originating NMDA2s and NMDA3s. Moreover, we have also identified a cnidarian-

specific NMDA class, that we have termed NMDA-Cnidaria, this class presents representative pro-

teins in 3 of the four species investigated. Among bilaterals we have observed conservation of all

NMDA classes with the exception of NMDA2s in echinoderms, which are absent from the two spe-

cies examined. Interestingly, studied cnidarian species substantially expanded their NMDA subfamily

repertoire, with at least six members in Nematostella vectensis.

In bilaterians the AKDF subfamily diversified into the known AMPA, Kainate and Delta classes,

but also into a fourth new class that we have termed Phi. The phylogenetic spread of these classes is

quite variable, as AMPA and Kainate are in all bilateral phyla investigated but Delta and Phi are
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Figure 1. Bayesian phylogeny of metazoan ionotropic glutamate receptors. Ionotropic glutamate receptor

subfamilies are indicated in colored boxes at the right. Sequences belonging to the same class are highlighted

together by dashed lines and the class name is also shown. Green circles highlight the three duplications occurred

before the divergence of the ctenophore lineage that lead to these four subfamilies. Posterior probabilities are

Figure 1 continued on next page
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more restricted. Deltas are almost completely absent from ecdysozoan species, as we could only

find a single member of this class in priapulids (P. caudatus) and none in arthropods or nematodes.

Similarly, Deltas are poorly represented in mollusks and, with the available data, absent in annelids.

Finally, we could only identify Phi proteins in cephalochordates, hemichordates and echinoderms,

indicating that this class might be lost in the lineages of protostomes and olfactores (i.e. vertebrates

and urochordates). The AKDF subfamily also includes proteins from the non-bilateral phyla of pori-

fera, placozoa and cnidarian. The exact organization of these proteins into classes is not as straight-

forward as for bilateral proteins. The Bayesian and ML analysis only agree in the position of 12

iGluRs from the sponge O. carmela, these would constitute the only clear class in non-bilaterals,

which we have termed AKDF-Oca.

Another example of a multiple lineage-specific event that occurred during animal evolution of

iGluRs can be observed in the evolution of AMPA and Kainate proteins among protostomes. The

general iGluRs phylogeny (Figure 1) suggests that ecdysozoan species have expanded their reper-

toire of Kainate subunits when compared with lophotrochozoans (e.g. mollusks, annelids), since C.

teleta and L. gigantea only presents one and two genes coding for Kainate receptors, respectively.

Contrarily, we found more AMPA subunits in lophotrochozoans than in ecdysozoan species. To

investigate whether the two protostome lineages have alternatively expanded genes coding for

AMPA or Kainate subunits we conducted a phylogenetic analysis of these two classes using eight

species of ecdysozoans and seven of lophotrochozoans with well-characterized genomes (Figure 3

Figure 1 continued

shown at tree nodes and protein names at the end of each branch. Tree branches are colored based on phylum,

as indicated in the legend. For unreported phylogenetic groups, names of proteins predicted to bind glycine or

glutamate are highlighted in yellow or orange, respectively. Protein names from non-vertebrate species are

composed of four parts: (i) ‘GluR#’, where # is a code denoting class or subfamily (A, AMPA; K, Kainate; F, Phi; D,

Delta; Akdf, AKDF; E, Epsilon; N, NMDA and L, Lambda); (ii) a number, or range of numbers, denoting

orthologous vertebrate protein(s), if any; (iii) a Greek letter to identify non-vertebrate paralogs, if any and (iv) a

three-letter species code. iGluRs from A. thaliana were used as an outgroup. All information on species and

proteins used is given in Figure 1—source data 2. Phylogenetic reconstruction was performed using Bayesian

inference. The amino acid substitution model used was Vt + G + F, number of generations: 14269000, final

standard deviation: 0.007016 and potential scale reduction factor (PSRF): 1.000. Scale bar denotes number of

amino acid substitutions per site. Although the GluAkdf2_Tad protein localizes to the Delta class in this tree, we

do not consider this molecule as a confident member of this class. This is because the statistical support provided

by the Bayesian analysis is low and because the Maximum-likelihood analysis (see Figure 1—figure supplement

1) does not position this protein in the Delta branch.

DOI: https://doi.org/10.7554/eLife.35774.003

The following source data and figure supplements are available for figure 1:

Source data 1. Conservation of protein domains in ionotropic glutamate receptors from unreported groups.

DOI: https://doi.org/10.7554/eLife.35774.009

Source data 2. Reference table of species and proteins used in the phylogenetic analysis of iGluRs.

DOI: https://doi.org/10.7554/eLife.35774.010

Source data 3. Aligned protein sequences used to construct ionotropic glutamate receptor phylogenies.

DOI: https://doi.org/10.7554/eLife.35774.011

Source data 4. Table with MolProbity scores of 3D models.

DOI: https://doi.org/10.7554/eLife.35774.012

Figure supplement 1. Maximum-likelihood phylogeny of metazoan ionotropic glutamate receptors.

DOI: https://doi.org/10.7554/eLife.35774.004

Figure supplement 2. Multiple protein alignment of transmembrane regions M1, M3 and M4 from unreported

iGluRs.

DOI: https://doi.org/10.7554/eLife.35774.005

Figure supplement 3. Three-dimensional models of Epsilon class members.

DOI: https://doi.org/10.7554/eLife.35774.006

Figure supplement 4. Multiple protein alignment of the M1-M2 intracellular loop and the Q/R and +4 sites.

DOI: https://doi.org/10.7554/eLife.35774.007

Figure supplement 5. Multiple protein alignment of iGluR residues involved in ligand-binding.

DOI: https://doi.org/10.7554/eLife.35774.008
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Figure 2. Schematic representation of iGluRs metazoan evolution. (a) Summary tree showing the evolution of iGluR subfamilies and classes in the

metazoan lineages investigated. Each branch corresponds with one lineage. Phylogenetic subfamilies are represented by yellow boxes and classes by

blue boxes. The four subfamilies present in the ancestor of all current metazoan lineages are shown at the base of the tree. Duplications of subfamilies

in ancestors of current lineages are indicated. When a class or subfamily is lost in a lineage or in an ancestor, the corresponding box is crossed out with
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and Figure 3—figure supplement 1). Nematodes were left out of the analysis as they lack Kainate

receptors (Brockie et al., 2001). This analysis retrieved 40 lophotrochozoan genes coding for AMPA

subunits but only 15 coding for Kainates. The opposite scenario was observed in the genomes of

ecdysozoan species, with 10 AMAP and 40 Kainate proteins,. Yet, among ecdysozoans the priapulid

P. caudatus has two AMPA and two Kainate subunits, indicating that the expansion of Kainate recep-

tors might be exclusive to arthropods. Overall the AMPA:Kainate ratio resulted to be around 1:4 in

ecdysozoans and 4:1 in lophotrochozoans.

Sequence conservation and ligand specificity of unreported iGluR
phylogenetic groups
All proteins from unreported groups (i.e. subfamilies and classes) present well-conserved sequences

in iGluR domains, including transmembrane domains or residues involved in receptor tetramerization

(Figure 1—figure supplement 2 and Figure 1—source data 1). Three-dimensional (3D) models of

two Epsilon subunits from amphioxus (GluE1 and GluE7) indicate that their general fold is well pre-

served (Figure 1—figure supplement 3a). The only noticeable distinction in proteins from these

groups is an insertion in the intracellular loop between the first and second transmembrane domains

in Epsilon proteins. This insertion is particularly distinct in ctenophore iGluRs, having been termed as

the cysteine-rich loop (Alberstein et al., 2015) (Figure 1—figure supplement 4). We have also iden-

tified a sequence difference among Epsilon proteins. Ctenophore iGluRs have two cysteines that

form a disulfide bond at loop 1 of the ligand binding domain (Alberstein et al., 2015), which are

also present in NMDA proteins. Nevertheless, this element is absent from the remaining members of

the Epsilon subfamily.

The ‘SYTANLAAF’ motif, essential for channel gating (Traynelis et al., 2010), is also well con-

served in most sequences, in particular the second, fourth and fifth residues (Figure 1—figure sup-

plement 2). Nevertheless, all members of the Lambda subfamily and some proteins of the Phi class

present lower levels of conservation in this sequence. Whether these changes have a functional

impact is something that will require further investigation. The Q/R site (Q586, residue numbering

according to mature rat GluA2) and the acidic residue located four positions downstream D/E590

(Figure 1—figure supplement 4) are involved in calcium permeability and polyamine block of

AMPA and Kainate receptors (Bowie and Mayer, 1995; Koh et al., 1995; Kamboj et al., 1995). Of

these two positions the latter is much better conserved, especially outside ctenophores and the

Lambda subfamily. We have identified an acidic residue at position 590 in 84 out of 122 iGluRs from

unreported groups, including cnidarian NMDAs. Yet, only 1/3 of these proteins present a glutamine

(Q) at position 586. This includes most AKDFs and Epsilon proteins from non-ctenophores, contrarily,

none of the Phi subunits presents a Q586.

The key ligand binding residues involved in fixing the amino acid backbone (a�amino and

a�carboxyl) are Arg485 and an acidic residue at position 705 (Naur et al., 2007; Armstrong and

Gouaux, 2000; Mayer, 2005; Furukawa et al., 2005; Yao et al., 2008). These two positions are

well conserved in 94 of the 122 proteins from unreported groups, suggesting that their endogenous

ligand is an amino acid (see Figure 1—figure supplement 3b for a 3D representation of ligand bind-

ing by GluE1 and Figure 1—figure supplement 5 for an alignment of iGluR residues involved in

ligand binding). The residue changes found in the remaining 28 proteins would render them unable

to bind an amino acid (Figure 1—figure supplement 5). This is are particularly common among class

Phi proteins from amphioxus and in NMDA-Cnidaria.

Figure 2 continued

a red cross. Mollusca and annelida are lophotrochozoans and priapulida and arthropoda ecdysozoans. In priapulida NMDA2s and NMDA3s were not

investigated. (b) Table indicating the presence or absence of iGluR subfamilies and classes in the metazoan lineages investigated. When a phylogenetic

group is present in a lineage it is indicated by a green tick and if it is absent by a red cross. The last column shows the total number of groups found in

each phylum. The last row shows the number of phyla where each phylogenetic group is present.

Image credit: Placozoa, author Oliver Voigt, licensed under CC BY-SA 3.0 Germany license; source https://commons.wikimedia.org/wiki/File:Trichoplax_mic.jpg; P caudatus, author Shunkina Ksenia,

licensed under CC BY 3.0 source https://commons.wikimedia.org/wiki/File:Priapulus_caudatus.jpg; Hemichordata, released under GNU Free Documentation License, source https://commons.wikimedia.

org/wiki/File:Eichelwurm.jpg; Cephalochordata, author Hans Hillewaert, licensed CC BY-SA 4.0 International license, source https://commons.wikimedia.org/wiki/File:Branchiostoma_lanceolatum.jpg.

DOI: https://doi.org/10.7554/eLife.35774.013
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Figure 3. Bayesian phylogeny of AMPA and Kainate classes in protostomes. Ionotropic glutamate receptors classes are indicated at the right. Posterior

probabilities are shown at tree nodes and protein names at the end of each branch. Tree branches are colored based on phylum, as indicated in the

legend. Protein names from non-vertebrate species are composed of four parts: (i) ‘GluR#’, where # is a one letter code denoting class (A for AMPA

and K for Kainate); (ii) a number, or range of numbers, denoting orthologous vertebrate protein(s), if any; (iii) a Greek letter to identify non-vertebrate
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Residues involved in ligand selectivity show higher variability. These are located at positions 653

and 655, and are occupied by glycine and threonine in glutamate-binding proteins and by serine

and a non-polar residue in glycine-binding iGluRs. However, a recent study of ctenophore receptors

has found that position 653 can be occupied by serine or threonine in glutamate-binding iGluRs, and

by an arginine in glycine-binding subunits (Alberstein et al., 2015). Based on this previous knowl-

edge we have predicted the ligand specificities of most previously unreported receptors. The pre-

ferred ligand could be confidently predicted for 72 out of the 94 proteins with well-conserved

residues involved in fixing the amino acid backbone.

Interestingly, all unreported groups comprise glycine- and glutamate-specific iGluRs. Gly-specific

receptors slightly outnumber those predicted to respond to glutamate (overall ratio about 3:2). The

Lambda subfamily would include three proteins specific for glutamate and one for glycine, while

seven remain with an unknown selectivity. Of note, the protein predicted to bind glycine (Glu-

L5_Oca) displays an arginine at position 653, a feature which had only been reported in ctenophores

(Alberstein et al., 2015). This residue would form a salt bridge with Glu423, which is key for glycine

selectivity in ctenophores (Alberstein et al., 2015). Most Epsilon and AKDF proteins would prefera-

bly bind glycine, although ctenophores present a similar number of Epsilon receptors predicted to

respond to glycine or glutamate (Figure 1) (Alberstein et al., 2015). In the Phi class we also found a

similar number of receptors binding glycine and glutamate. Finally, we could only predict binding

specificity for two of the 9 NMDA-Cnidaria proteins, as they present many changes in the residues

involved in either amino acid backbone binding or side chain recognition.

Interestingly, the 22 proteins for which we could not confidently predict their ligand selectivity

(Figure 1—figure supplement 5), present a limited number of residues occupying position 653 and

655, suggesting constrained evolution. Of these: (i) nine present residues with negative polarity at

both positions, being candidates to bind glutamate, (ii) six present a Gly653 and a non-polar residue

at position 655, and thus are candidates to bind glycine, (iii) five proteins, all from the Branchiostoma

genus, present a tyrosine at position 653. A structural model of one of these receptors, GluE7 (Fig-

ure 1—figure supplement 3c), shows that a Tyr653 aromatic side chain would occupy the ligand-

binding pocket, strongly suggesting that amino acid binding would be blocked. Finally, (iv) two pro-

teins present a phenylalanine in either of the two positions and remain unclassified.

Epsilon and Phi iGluR proteins are highly expressed in the nervous
system and traffic to the plasma membrane
We used quantitative PCR (qPCR) to investigate gene expression levels of all iGluR subunits identi-

fied in B. lanceolatum, including those from the Epsilon and Phi groups. All 24 B. lanceolatum iGluR

subunits identified in silico were found expressed in amphioxus, with the exception of Grie5

(Figure 4a). Furthermore, they all showed a significantly higher expression in the nerve cord as com-

pared to the whole body, suggesting tissue-enriched expression. While we observed low expression

levels for Epsilon genes coding for subunits with a tyrosine at position 653 (Grie5-8), which according

to the 3D model would block the ligand-binding pocket, the expression of Grif1-2, also presenting

the same tyrosine, reach much higher levels, comparable to those of subunits from the Kainate,

Figure 3 continued

paralogues, if any and (iv) a three-letter species code. GluN1s from chordates were used as an outgroup. All information on species and proteins used

in this phylogeny is given in Figure 3—source data 2. Phylogenetic reconstruction was performed using Bayesian inference. The amino acid

substitution model used was Vt + I + G, number of generations: 8868000, final standard deviation: 0.0072 and potential scale reduction factor (PSRF):

1.001. Scale bar denotes number of amino acid substitutions per site.

DOI: https://doi.org/10.7554/eLife.35774.014

The following source data and figure supplement are available for figure 3:

Source data 1. Aligned protein sequences used to construct AMPA and Kainate class phylogenies in protostomes.

DOI: https://doi.org/10.7554/eLife.35774.016

Source data 2. Reference table of species and proteins used in the phylogenetic analysis of AMPA and Kainate classes in protostomes.

DOI: https://doi.org/10.7554/eLife.35774.017

Figure supplement 1. Maximum-likelihood phylogeny of AMPA and Kainate classes in protostomes.

DOI: https://doi.org/10.7554/eLife.35774.015
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Figure 4. Expression and functional analysis of amphioxus iGluRs. (a) iGluRs mRNA expression (mean and standard deviation) in Branchiostoma

lanceolatum. Bars show average relative expression of B. lanceolatum (amphioxus) iGluR genes as determined by qPCR. Filled bars represent whole

body and open bars nerve cord expression levels. Note that all genes show significantly enriched expression in the nerve chord relative to the whole

body, with the exception of Grie5 (Student’s t-test, n = 3). Expression level in the nerve chord is compared across genes of the same class. Statistics:

pair comparisons were done by Student’s t-test, n = 3, multiple comparisons were done by one-way ANOVA followed by Tukey’s Post-Hoc test, n = 3.

Significance levels: ***p < 0.001, **p < 0.01 and *p < 0.05; ns, not significant. (i) AMPA class. (ii) Kainate class. (iii) Phi class. (iv) Delta class. (v) Epsilon

subfamily. (vi) NMDA classes. (b) Multiple sequence alignment of iGluRs transmembrane region M4 containing residues involved in tetramerization,

these are indicated by a black frame. Higher amino acid conservation is represented by increasing intensity of blue background and by a bar chart at

the bottom. Sequences included are GluE1 and GluE7 from amphioxus and representatives of human iGluRs. (c) Immunoblot of chimeric GluE1 and

GluE7, containing the signal peptide from rat GluA2, expressed in HEK293T cells. Proteins were detected using the immuno-tags (c-Myc and HA,

respectively) located after the rat signal peptide. Protein extracts from non-transfected cells were loaded as negative controls. (d) Immunofluorescence
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Delta or NMDA classes. Thus, the presence of a tyrosine at position 653 does not appear to be

directly correlated with low expression levels.

Amphioxus genes coding for GluE1 and GluE7 were synthesized in vitro and transiently expressed

in HEK293T cells for functional studies. Wild-type GluE1 and GluE7, which are not predicted to have

a canonical signal peptide by SignalP 4.1 (Nielsen, 2017), expressed well but were not trafficked to

the plasma membrane (Figure 4—figure supplement 1a–d), even though residues involved in tetra-

merization (Salussolia et al., 2013) are well conserved (Figure 4b). We thus synthesized new variants

of these genes with the signal peptide from rat GluA2 (Figure 1—figure supplement 1cd). These

constructs also expressed well (Figure 4c) and now were efficiently trafficked to the plasma mem-

brane, as indicated by the staining observed in non-permeabilized cells (Figure 4d). Furthermore,

analysis of receptor oligomerization, performed using non-denaturing gel electrophoresis and immu-

noblot, clearly indicates that both proteins form homotetramers in vitro (Figure 4e).

Ligand specificity and electrophysiological properties of Epsilon
proteins from amphioxus
We next investigated the gating properties of two Epsilon proteins from amphioxus, GluE1 and

GluE7. The presence of a serine and a tryptophan at positions 653 and 704, respectively, suggested

that GluE1 would bind glycine. Indeed, neither glutamate nor aspartate elicited a response in our

experimental settings. Instead, glycine application was able to elicit an inward whole-cell current at a

membrane potential of �60 mV (Figure 5a). Interestingly, the chemically related amino acids alanine

and D-serine only generated very low responses, indicating a high selectivity of the GluE1 homote-

tramer for glycine.

The Epsilon receptor displayed a strong inward rectification, even in the absence of added poly-

amines in the intracellular solution (Figure 5b,c). This behavior is characteristic of unedited AMPA

and Kainate receptors displaying a glutamine (Q) and an acidic residue at positions 586 and 590,

respectively (Bowie and Mayer, 1995; Koh et al., 1995; Kamboj et al., 1995) and GluE1 presents a

glutamine and an aspartic acid at these positions (Figure 1—figure supplement 4). Glycine-medi-

ated currents showed a slow rate of recovery from desensitization when compared with AMPA or

Kainate mammalian receptors, requiring 20–25 seconds until a complete recovery was achieved and

a full response of the same magnitude could be recorded (Figure 5d,e). Similar observations have

been made with ctenophore receptors activated by glycine in which the recovery from desensitiza-

tion has an unusually long time constant of 81 seconds (Alberstein et al., 2015).

Finally, functional studies on receptors formed by GluE7 did not retrieve any positive results.

None of the following amino acids: glutamate, aspartate, asparagine, glycine, alanine or D-serine eli-

cited a response in our experimental system. We hypothesize that, as predicted by the 3D model,

the presence of a tyrosine at position 653 renders a homomeric form of this receptor unable to func-

tion as an amino acid-gated ion channel.

Figure 4 continued

of HEK293T cells expressing rat GluA2 (top), cMyc-tagged GluE1 (middle) or HA-tagged GluE7 (bottom). Both non-permeabilized and permeabilized

conditions are shown. (e) Immunoblot of tetrameric rat GluA2, GluE1 and GluE7 expressed in HEK293T cells. Amphioxus proteins were detected using

the immuno-tags (c-Myc and HA, respectively) located at the N-terminus of each sequence. Protein extracts from non-transfected cells were loaded as

negative controls.

DOI: https://doi.org/10.7554/eLife.35774.018

The following source data and figure supplements are available for figure 4:

Source data 1. qPCR values used to generate Figure 4a.

DOI: https://doi.org/10.7554/eLife.35774.021

Figure supplement 1. Wild-type GluE1 and GluE7 expression in HEK293T cells and genetic strategy used to add a signal peptide.

DOI: https://doi.org/10.7554/eLife.35774.019

Figure supplement 2. List of primers used in qPCR experiments.

DOI: https://doi.org/10.7554/eLife.35774.020
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Phylogenetics of metazoan metabotropic glutamate receptors reveals a
sister group of classes I to III
We next performed a phylogenetic study of metabotropic glutamate receptors (Figure 6 and Fig-

ure 6—figure supplement 1). This analysis has revealed that the three historical mGluR classes (I to

III) have a sister group. Following the current nomenclature we have named this as class IV. The exis-

tence of this class had already been proposed on the bases of three insect proteins (Mitri et al.,

2004). Yet, here we show that this class is actually present in all bilateral phyla, excluding verte-

brates. Furthermore, we also show that class IV appeared together with classes I-III before radiation

of bilateral lineages. We have identified clear orthologues to class I-IV in porifers, placozoans and
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Figure 5. Glycine activates an amphioxus homomeric Epsilon receptor. (a) Representative homomeric GluE1 (from B. lanceolatum) whole-cell currents

evoked by a rapid pulse (500 ms) of different amino acids (10 mM) in HEK293T cells. Left and right glycine-mediated currents denote agonist

application before and after alanine, D-serine and glutamate applications respectively for ruling out run-down of the currents. (b) Representative GluE1

responses to 10 mM glycine at different membrane voltages (from �80 to +80 mV in 20 mV steps). Note that a strong inward rectification can be

observed even in the absence of added polyamines in the intracellular solution. Inset: currents at negative membrane voltages are shown. (c) Current-

voltage relationship for peak currents evoked by glycine (500 ms, 10 mM) applied to whole HEK293T cells containing homomeric GluE1 subunits

normalized for the current at �80 mV (n = 3) fitted to a 5th order polynomial function. Error bars represent SEM. (d) Homomeric GluE1 glycine-mediated

currents recorded at different time intervals by using a paired pulse protocol. (e) Rate of recovery of desensitization fitted to a single exponential of

time constant 10.8 s (n = 3–5). Plot shows the average ratio values (P2/P1) and SEM (error bars).

DOI: https://doi.org/10.7554/eLife.35774.022
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Figure 6. Bayesian phylogeny of metazoan metabotropic glutamate receptors. Identified metabotropic glutamate receptor classes from bilateral and

non-bilateral organisms are indicated by colored boxes at the right. Dashed boxes further highlight individual classes from bilateral organism. Posterior

probabilities are shown at tree nodes and protein names at the end of each branch. Tree branches are colored based on phylum, as indicated in the

legend. Protein names from non-vertebrate species are composed of four parts: (i) ‘mGluR’, followed by a number, or range of numbers, denoting

Figure 6 continued on next page
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cnidarians but not in ctenophores. These are organized into four classes, two from cnidarians, and

one from placozoans and porifers (Figure 6). We have also identified non-bilaterian mGluRs that fall

outside the above-mentioned classes. Unfortunately, the Bayesian and ML phylogenies do not agree

on the exact organization of these early divergent mGluRs, except for the fact that they diverge

prior to bilaterian classes. For this reason we have left these sequences unclassified. Whether these

sequences belong to one, or even multiple classes that would have been lost in bilateral organisms

is something that will require further investigation.

Although all class IV proteins show well conserved sequences overall (Figure 6—figure supple-

ment 2a, Figure 6—figure supplement 3 and Figure 6—source data 1), two residues critical for

glutamate binding, Arg78 and Lys409, are non-conservatively replaced by non-polar or acidic resi-

dues in all class IV proteins identified (Figure 6—figure supplement 2a, residue numbering corre-

sponds to human mGluR1). These changes are predicted to hamper glutamate binding and, indeed,

functional studies of a class IV receptor from fruit fly indicated that it does not respond to this amino

acid (Mitri et al., 2004). All class IV proteins would share this feature. On the other hand, residues

involved in contacts with the amino acid backbone are well conserved (Figure 6—figure supple-

ment 2a), suggesting that these proteins might bind an amino acid other than glutamate. Similarly,

mGluR residues from most non-bilaterian sequences involved in binding the amino acid backbone

are highly conserved. Among non-bilaterian proteins the residues involved in glutamate binding are

only conserved in approximately half of the proteins from classes orthologous to I-II-III-IV. Finally, we

investigated mGluRs expression in amphioxus following the same procedure described for iGluRs.

All five amphioxus mGluRs showed an enriched expression in the nerve cord, including the two class

IV genes. Noticeably, these two genes showed significantly higher expression levels than ortho-

logues of vertebrate classes (Figure 6—figure supplement 2b).

Discussion
We have performed what to our knowledge is the most comprehensive phylogenetic study of meta-

zoan glutamate receptors. This has revealed that their evolutionary history is much more complex

than what is currently acknowledged, especially for the family of iGluRs. Our study has also revealed

the existence of unreported phylogenetic groups in both ionotropic and metabotropic glutamate

Figure 6 continued

orthologous vertebrate protein(s), if any (for Class IV and group I-II-III-IV proteins, the name is followed by the name of the class/group); (ii) a Greek

letter to identify non-vertebrate paralogs, if any and (iv) a three-letter species code. GABA-B receptors from vertebrates were used as an outgroup. All

information on species and proteins used in this phylogeny is given in Figure 6—source data 2. Phylogenetic reconstruction was performed using

Bayesian inference. The amino acid substitution model used was WAG + I + G + F, number of generations: 5327000, final standard deviation: 0.004788

and potential scale reduction factor (PSRF): 1.001. Scale bar denotes number of amino acid substitutions per site.

DOI: https://doi.org/10.7554/eLife.35774.023

The following source data and figure supplements are available for figure 6:

Source data 1. Conservation of protein domains in metabotropic glutamate receptors from unreported classes.

DOI: https://doi.org/10.7554/eLife.35774.028

Source data 2. Reference table of species and proteins used in the phylogenetic analysis of mGluRs.

DOI: https://doi.org/10.7554/eLife.35774.029

Source data 3. Aligned protein sequences used to construct metabotropic glutamate receptor phylogenies.

DOI: https://doi.org/10.7554/eLife.35774.030

Source data 4. qPCR values used to generate Figure 6—figure supplement 2b.

DOI: https://doi.org/10.7554/eLife.35774.031

Figure supplement 1. Maximum-likelihood phylogeny of metazoan metabotropic glutamate receptors.

DOI: https://doi.org/10.7554/eLife.35774.024

Figure supplement 2. Multiple protein alignment of mGluR residues involved in ligand binding and expression levels of B.lanceolatum mGluR genes.

DOI: https://doi.org/10.7554/eLife.35774.025

Figure supplement 3. Multiple protein alignment of mGluR transmembrane regions.

DOI: https://doi.org/10.7554/eLife.35774.026

Figure supplement 4. List of primers used in qPCR experiments.

DOI: https://doi.org/10.7554/eLife.35774.027
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receptors. Importantly, our data indicate that the evolution of glutamate receptors has not occurred

in an unequivocal incremental manner only in those clades with more elaborated neural systems, but

it has rather followed an scattered lineage-specific evolutionary history. This means that certain line-

ages have experienced the gain, loss, expansion or reduction of specific phylogenetic groups.

Our phylogenetic analysis indicates that the family of iGluRs is actually divided into four unre-

ported subfamilies that we have termed Lambda, Epsilon, NMDA and AKDF. Interestingly, this gen-

eral organization was already present in the last common ancestor of all metazoans and later

duplications within NMDA and AKDF subfamilies resulted in the formation of well-known iGluR clas-

ses. The other two subfamilies are absent from the majority of model species used in neuroscience

research. The NMDA subfamily diversified into classes NMDA1-3 but also into the NMDA2/3 and

NMDA-Cnidaria. Similarly, the AKDF subfamily diversified into the AMPA, Kainate and Delta classes,

but also into the previously unreported Phi class. We have also identified and AKDF class exclusive

to porifers, represented by sequences form O. carmela. Most well-studied iGluR classes are the

result of duplications in ancestors of current bilateral species, >650 million years ago (mya)

(Kumar et al., 2017), only class NMDA1 originated earlier, as cnidarians present members within

this class. The Epsilon subfamily, which includes all iGluRs from ctenophores, is the only subfamily

present in all non-bilateral phyla investigated, including sponges. It is thus the subfamily presenting

a larger phylogenetic spread, as it is also present in hemichordates and in non-vertebrate chordates.

On the other hand, the unreported Phi class shows a more restricted phylogenetic spread, as it is

present only in three deuterostome phyla. Moreover, Lambda proteins seem restricted to Porifers,

which constitutes an interesting evolutionary case due to maintenance of a glutamate receptor family

in a phylum without nervous system.

The phylogenetic analysis of metabotropic glutamate receptors has allowed us to unambiguously

establish the existence of a sister group to the well-known classes I, II and III. Following the present

nomenclature we have named this as class IV. This class had been previously proposed based on the

identification of three insect mGluRs that did not cluster with members of known classes

(Mitri et al., 2004). Here we show that class IV is not restricted to insects, but is actually present in

all bilaterian phyla investigated, with the exception of vertebrates where this class has been lost.

Interestingly, as it occurs for most well-known iGluR classes, mGluR classes I-IV appeared simulta-

neously in the ancestor of bilaterals. Our phylogenetic analysis also indicates that the non-bilateral

phyla of cnidarians, placozoans and porifers present clear orthologues to classes I-IV, which are orga-

nized into four classes, while we failed to find any in the early-branching ctenophores. Finally, we

were unable to confidently classify many non-bilateral mGluRs, which might constitute one or more

classes.

We have identified many examples of lineage-specific evolutionary events. These would antago-

nize with a model in which species with less elaborated nervous systems would present GluR families

with lower complexity. The most noticeable examples are: (i) the absence of all subfamilies but Epsi-

lon in analyzed ctenophores, (ii) the loss of Delta receptors from arthropods, nematodes and annelid

species investigated, (iii) the loss of the Epsilon subfamily in vertebrates, echinoderms and proto-

stomes, (iv) the loss of the Phi class in vertebrates and studied protostomes, (v) the specific expan-

sion of Kainate receptors in arthropods, which contrasts with the expansion of AMPA receptors in its

sister lineages of mollusks and annelids, (vi) the large expansion of the Epsilon subfamily in cteno-

phores, placozoans and cephalochordates and, finally (vii) the loss of mGluR class IV in vertebrates.

Along the same line, it is interesting to note that amphioxus (B. belcheri and B. lanceolatum), with

a simple nervous system, have over 20 genes encoding iGluRs, while mammals have 18. Other non-

vertebrate species also present large numbers of iGluRs, including the 19 iGluRs identified in the

sponge O. carmela or the 17 present in the ctenophore M. leidyi, to mention a few. Similarly, the

cnidarian A. digitifera and the ctenophore M. leidyi have seven mGluRs each, while the placozoan T.

adhaerens presents eleven, three more than the eight mGluRs found in the human genome. The

large number of GluRs found in many non-vertebrate animals suggests that there has been an evolu-

tionary trend to increase their number in many metazoan lineages.

Our experimental results suggest that unreported receptors would play a role in the nervous sys-

tem, as Epsilon, Phi and mGluR class IV genes are highly expressed in the nerve cord of amphioxus.

Nevertheless, whether all these proteins are expressed at the synapse and act as neurotransmitter

receptors is an issue that will require further investigation. Their presence in other tissues, such as

sensory organs, cannot be ruled out. Those receptors showing more divergent sequences,
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particularly in residues involved in ligand binding, might respond to other molecules. For instance,

they could behave as chemoreceptors, as it is the case of antennal receptors found in insects

(Croset et al., 2010; Benton et al., 2009).

Proteins from all unreported groups generally present a good conservation of residues involved

in binding the amino acid backbone, indicating that their ligand would be an amino acid or a closely

related molecule. Interestingly, we could identify proteins predicted to bind either glycine or gluta-

mate in all unreported iGluR subfamilies and classes. If our functional predictions are correct, the

ability to recognize one or the other amino acid would have emerged repeatedly in all unreported

iGluR phylogenetic groups. Unexpectedly, the nature of the residues conferring amino acid specific-

ity indicates that only a minority of proteins from unreported GluR groups would respond to gluta-

mate. Sequence analysis and structural considerations strongly suggest that class IV mGluRs will not

bind glutamate and that among non-bilateral mGluRs only a minority, belonging to classes ortholo-

gous to I-II-III-IV, are predicted to bind to this neurotransmitter. Similarly, among unreported iGluR

groups, the number of proteins binding glycine outnumbers those binding glutamate. Interestingly,

we report a glycine-binding poriferan protein (GluL5_Oca) with a structural feature that had only

been reported in ctenophores (Alberstein et al., 2015). This is an Arg653 that through establishing

a salt bridge with Glu423 confers glycine specificity (Alberstein et al., 2015). We thus report that

this structural element is not exclusive to ctenophores. We have also identified iGluR subunits with

important changes in critical ligand binding residues, indicating that they might have evolved new

biological functions, for example, response to other, as yet unidentified small molecules.

The activation of Epsilon receptors by glycine has been experimentally corroborated by electro-

physiological analysis of homotetrameric receptors composed by GluE7 from M. leidy

(Alberstein et al., 2015) and GluE1 from amphioxus (this study). In our hands the amphioxus recep-

tor showed a very high selectivity for glycine, since ion currents could not be elicited by chemically

related amino acids such as serine or alanine. Glycine-binding Epsilon subunits from phyla other than

ctenophores present structural features similar to those from glycine-binding iGluRs in vertebrates.

The greater number of glycine receptors found in non-vertebrate species could be related to the

higher abundance of this amino acid in their nerve cord as compared with the mammalian brain

(Pascual-Anaya and D’Aniello, 2006).

Altogether, our phylogenetic analysis and experimental findings have uncovered the complex

evolution of glutamate receptors within the metazoan kingdom. Our data indicate that the classifica-

tion of iGluRs is not restricted to the six classes currently recognized. Instead, iGluRs are organized

into four subfamilies: Lambda, Epsilon, NMDA and AKDF and ten classes with varying phylogenetic

spread. With the data available, the NMDA subfamily is organized into classes NMDA1, NMDA 2,

NMDA3, NMDA-Cnidaria and NMDA2/3, while subfamily AKDF contains classes AMPA, Kainate,

Delta, Phi and AKDF-Oca. Both NMDA2/3 and AKDF-Oca are represented by sequences from only

one species, further sequencing of non-bilateral species will be required to fully demonstrate their

existence. Furthermore, the evolution of mGluRs has generated a sister group to classes I, II and III,

class IV. We have also identified classes of non-bilaterian mGluRs orthologous to I-II-III-IV. We pro-

pose that the classification of these two families of GluRs, key to the physiology of the nervous sys-

tem, has to be updated to include our findings.

Materials and methods

Key resources table

Reagent type
(species) or
resource Designation

Source or
reference Identifiers

Additional
information

Cell line
(Homo sapiens)

HEK293T American Type
Culture
Collection

Cat#: CRL-3216
RRID: CVCL_0063

Transfected
construct
(synthesize)

pIRES2_EGFP Addgene Cat. #: 6029–1

Continued on next page
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Continued

Reagent type
(species) or
resource Designation

Source or
reference Identifiers

Additional
information

Transfected
construct
(synthesize)

pICherryNeo Addgene Cat. #: 52119

Transfected
construct
(synthesize)

Grie1 in
pICherryNeo

Invitrogen
GeneArt Gene
Synthesis

Transfected
construct
(synthesize)

Grie7 in
pIRES2_EGFP

Invitrogen
GeneArt Gene
Synthesis

Biological
sample
(Branchiostoma
lanceolatum)

whole animal Collected in the
bay of
Argelès-
sur-Mer,
France (latitude
42˚ 32’ 53’ N
and longitude
3˚ 03’ 27’ E)

Biological
sample
(Branchiostoma
lanceolatum)

nerve chord Collected in the
bay of
Argelès-sur-
Mer, France
(latitude 42˚ 32’
53’ N and
longitude
3˚ 03’ 27’ E)

Antibody Mouse
anti-HA

Covance Cat. #:
MMS-101P
RRID: AB_
291259

IF (1:200),
WB (1:1000)

Antibody Rabbit
anti-c-Myc

Cell
Signalling

Cat. #: 2272S
RRID: AB
_10692100

IF (1:100),
WB (1:1000)

Antibody Mouse
anti-GluA2

Millipore Cat. #:
MAB397
RRID: AB_
2113875

IF (1:200),
WB (1:1000)

Antibody Alexa Fluor
555 donkey anti-
mouse IgG

Invitrogen Cat. #: A-31570
RRID: AB_2536180

IF (1:1000)

Antibody Alexa Fluor
647 goat anti
-rabbit IgG

Life Technologies Cat. #: A-21245
RRID: AB_2535813

IF (1:500)

Antibody Donkey
anti-mouse

Li-cor Cat. #:
926–32212
RRID: AB
_621847

WB (1:7500)

Antibody Donkey
anti-rabbit

Li-cor Cat. #:
926–68073
RRID: AB_
10954442

WB (1:7500)

Recombinant
DNA reagent

Sequence-
based reagent

Grie1 gene from
B. Lanceolatum

Sequence-
based
reagent

Grie7
gene from
B. Belcheri

Continued on next page
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Continued

Reagent type
(species) or
resource Designation

Source or
reference Identifiers

Additional
information

Sequence-based
reagent

Seqeucne
corresponding
with
rat Gria2 signal
peptide

Chemical
compound,
drug

N-dodecyl-a-
maltopyr
anoside;
DDM

Anatrace Cat. #:
D310HA

2% w/v

Software,
algorithm

pClamp10 Molecular
Devices

Software,
algorithm

IgorPro Wavemetrics

Software,
algorithm

Neuromatic doi: 10.3389/
fninf.2018.
00014

RRID: SCR_
004186

Software,
algorithm

MrBayes 3.2.6 doi: 10.1093/
sysbio/sys029

Software,
algorithm

IQTree doi: 10.1093/
molbev/msu300

Software,
algorithm

MolProbity doi: 10.1107/
S09074
44909042073

RRID:
SCR_014226

Software,
algorithm

MIFit GitHub
(Smith, 2010)

Software,
algorithm

FIJI doi: 10.1038/
nmeth.2019

RRID:
SCR_002285

Other CIPRES
Science
Gateway

doi: 10.1109/GCE
.2010.5676129

RRID:
SCR_008439

Free on-line
super computing
resource for
evolutionary
research

Identification of genes coding for members of glutamate receptor
families in metazoan genomes
Phylogenetic analysis were performed with sequences from at least two species from each of the

following metazoan phyla: Porifera, Ctenophora, Placozoa, Cnidaria, Lophotrochozoa, Ecdysozoa,

Hemichordata, Chordata and Vertebrata, with the exception of placozoans for which only one spe-

cies is available. When possible, we chose slowly evolving species. The complete lists of species

used for iGluR phylogenies are given in Figure 1—source data 2. Species used in the phylogeny of

metabotropic glutamate receptors are listed in Figure 6—source data 2. Sponge sequences were

taken from (Riesgo et al., 2014), B. lanceolatum sequences were retrieved from unpublished geno-

mic and transcriptomic databases (access was kindly provided by the Mediterranean Amphioxus

Genome Consortium), A. digitifera and P. flava sequences were obtained from the Marine Genomics

Unit (Simakov et al., 2015; Shinzato et al., 2011) and P. bachei sequences from NeuroBase

(Moroz et al., 2014).

GluR sequences were identified using homology-based searches in a two-tier approach. Mouse

glutamate receptors were used as search queries (iGluRs: Gria1-4; Grik1-5; Grid1-2, Grin1, Grin2A-D

and Grin-3A-B; mGluRs: mGluR1-8). In a first search GluR homologs were identified using the

BLASTP tool (Altschul et al., 1990) with default parameters. Subject sequences with an E-value

below 0.05 were selected as candidate homologs. These were re-blasted against the NCBI database

of ‘non-redundant protein sequences’ using the same BLAST tool. If the first hit obtained in the

reciprocal BLAST was a glutamate receptor the sequence was included in the phylogenetic analysis.

In a second stage the same mouse sequences were used to perform TBLASTN searches against
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genomic and, when available, transcriptomic databases. Subject sequences not identified in the first

tear and having an E-value below 0.05 were selected as candidate homologs. These were re-blasted

using BLASTX against the NCBI ‘non-redundant protein sequences’ database. Finally, if the first hit

of this search was a glutamate receptor the sequence was also included in the phylogenetic analysis.

Identified iGluR sequences in which less than four residues of the SYTANLAAF motif

(Traynelis et al., 2010) were conserved were not considered for the final phylogenetic analysis.

mGluR sequences lacking two or more of the seven transmembrane regions were also discarded.

The complete reference lists of all iGluRs used in the final phylogeny are given in files Figure 1—

source data 2. The reference list of metabotropic glutamate receptors is presented in Figure 6—

source data 2. The alignments used for the phylogenetic analysis of iGluRs, mGluRs and AMPAs

and Kainates from protostomes are provided in Figure 1—source data 3, Figure 3—source data 1

and Figure 6—source data 3.

Phylogenetic analyses
The iGluR tree was constructed with 224 sequences identified in 26 non-vertebrate species (Fig-

ure 1—source data 2). The tree also included 18 iGluR sequences from vertebrates and two iGluR

proteins from A. thaliana, used as an outgroup (Chiu et al., 2002). The phylogenetic analysis of

AMPA and Kainate classes in protostomes was inferred using 110 sequences from 15 protostome

species (Figure 3—source data 2) and 37 sequences from deuterostomes, of which 4 GluN1 pro-

teins were used as an outgroup. The mGluR tree was constructed with 149 proteins from 29 non-ver-

tebrate species, 38 mGluRs from vertebrate species and 10 sequences from vertebrate

metabotropic GABA receptors, used as an outgroup (Figure 6—source data 2).

Protein sequences were aligned with the MUSCLE algorithm (Edgar, 2004), included in the soft-

ware package MEGA6 (Tamura et al., 2013) with default parameters. ProtTest v3.4.2 was used to

establish the best evolutionary model (Darriba et al., 2011). Trees were constructed using MrBayes

v3.2.6 (Ronquist et al., 2012) for Bayesian inference and IQ-TREE (Nguyen et al., 2015) for Maxi-

mum-likelihood analysis. For Bayesian inference phylogenies were stopped when standard deviation

was below 0.01 and its value was fluctuating but not decreasing. Markov chain Monte Carlo (MCMC)

was used to approximate the posterior probability of the Bayesian trees. Bayesian analyses included

two independent MCMC runs, each using four parallel chains composed of three heated and one

cold chain. Twenty-five % of initial trees were discarded as burn-in. Convergence was assessed when

potential scale reduction factor (PSRF) value was between 1.002 and 1.000. In Maximum-likelihood

analysis the starting tree was estimated using a neighbor-joining method and branch support was

obtained after 1000 iterations of ultrafast bootstrapping (Hoang et al., 2018). Gene/protein names

were given based on their position in the tree. Phylogenetic trees were rendered using FigTree

(http://tree.bio.ed.ac.uk/software/figtree/). Phylogenetic calculations were performed at the IBB -

UAB heterogeneous computer cluster ‘Celler’ and at the CIPRES science gateway (RRID: SCR_

008439) (Miller et al., 2010).

Collection and housing of animals
Branchiostoma lanceolatum adults were collected in the bay of Argelès-sur-Mer, France (latitude 42˚
32’ 53’ N and longitude 3˚ 03’ 27’ E) with a specific permission delivered by the Prefect of Region

Provence Alpes Côte d’Azur. B. lanceolatum is not a protected species. Animals were kept in tanks

with seawater at 17˚C under natural photoperiod.

RNA isolation, cDNA synthesis and quantitative gene expression
(qPCR)
Adult amphioxus (B. lanceolatum) were anesthetized in 0.1% diethyl pyrocarbonate (DEPC; Sigma,

D5758) PBS buffer. Animals were sacrificed by cutting the most anterior part of the body. The nerve

chord was surgically extracted from the animal while submerged in DEPC-PBS using a magnifying

glass. Individual nerve chords were snap frozen in liquid nitrogen and stored at �80˚C until use.

RNA was extracted from whole animals or from dissected nerve chords. Ten nerve chords were used

for each RNA extraction, so that biological variability between individuals could be normalized. The

tissue was homogenized in 1 mL of TRI Reagent (Sigma, T9424) using a Polytron homogenizer.

Homogenates were transferred into an Eppendorf tube and incubated 5 min at room temperature
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(RT) before adding 100 mL of 1-bromo-3-cloropropane. Tubes were vigorously mixed by vortexing

for 10–15 s, incubated 15 min at RT and centrifuged at 13000 rpm for 15 min at 4˚C. RNA was pre-

cipitated from the aqueous phase with 500 mL of isopropanol and 20 mg of glycogen. Tubes were

frozen for 1 hr at �80˚C and then thawed, incubated at RT for 10 min and centrifuged at 13000 rpm

for 10 min at 4˚C. The RNA pellet was washed twice with 500 mL of 75% ethanol and air-dried.

cDNA was synthesized from 0.5 mg of total RNA. One mL of Oligo(dT)15 (Promega), 1 mL of 10 mM

dNTP mix (Biotools), RNA and DEPC distilled water were mixed in a PCR tube to a final volume of

14 mL. This mix was incubated at 65˚C for 5 min in a T100 Thermal Cycler (BioRad). After cooling

tubes on ice for 1 min, we added 4 mL of First Strand 5x buffer, 1 mL of 0.1 M DTT and 1 mL of Super-

Script III (Invitrogen). Tubes were placed in a T100 Thermal Cycler (BioRad) with the following pro-

gram: 60 min at 50˚C, 15 min at 70˚C. RNA expression levels were determined using qPCR and the

GAPDH gene used as a reference. Primers used for qPCR analysis of iGluRs are in Figure 4—figure

supplement 2 and those used for mGluR qPCR in Figure 6—figure supplement 4. qPCR data for

iGluRs and mGluRs are given in Figure 4—source data 1 and Figure 6—source data 4,

respectively.

cDNA from nerve chord and whole body samples was diluted 1:10 for the glutamate receptor

gene reactions, and 1:100 for the reference gene reaction. For each gene 2.5 mL of diluted cDNA

were added to 5 mL of iTaq Universal SYBR Green Supermix (Bio-Rad), along with 0.5 mL of each

primer and 1.5 mL of RNase free water. qPCR was run in a C1000 Touch thermocycler combined with

the optic module CFX96. Three technical replicates were performed for all genes analyzed. Primer

pairs were designed to detect the expression levels of each glutamate receptor (Figure 4—figure

supplement 2 and Figure 6—figure supplement 4). B. belcheri glutamate receptor sequences were

aligned with the genomic sequence of B. lanceolatum, and high identity fragments were used to

design primers. All primers were 20–25 base pair long, had GC content over 40–45% and a Tm

between 60–65˚C. Primers were designed to obtain amplicons between 140–270 base pairs. Values

of normalized expression were statistically analyzed using GraphPad Prism5. No outliers were identi-

fied and no data points were excluded. Comparisons between whole body and nerve chord expres-

sion levels were done with Student’s T-Test for unpaired samples or the Welch variant of the

Student’s T-Test for samples with different variance. For multiple comparisons between the expres-

sion levels of genes belonging to the same class one-way ANOVA analysis was performed using

Tukey’s Post-Hoc test.

Grie1 and Grie7 gene synthesis
Grie1 and Grie7 genes were selected for transient expression in the mammalian cell line HEK293T.

We prepared two constructs for each gene. We first introduced an immuno-tag in the N-terminus

before the first element of secondary structure. For Grie1 we used the c-Myc tag, which was placed

after residue 39, and for Grie7 we used the hemagglutinin (HA) tag introduced after residue 10 of

the wild-type sequence. The second set of constructs prepared substituted the wild type N-terminal

sequence for the signal peptide from rat GluA2 while maintaining the immuno-tags (Figure 4—fig-

ure supplement 1). Codon-optimized genes for expression in human cells were synthesized and

cloned into pICherryNeo (Addgene, 52119) and pIRES2_EGFP (Addgene 6029–1) by the Invitrogen

GeneArt Gene Synthesis service.

Cell line
All expression experiments were done with a mycoplasma-free HEK293T cell line kindly provided by

Prof. F. Ciruela (Universitat de Barcelona) and purchased from the American Type Culture Collection

(ATCC, CRL-3216, RRID: CVCL_0063). The ATCC has confirmed the identity of HEK293T by STR pro-

filing (STR Profile; CSF1PO: 11,12; D13S317: 12,14; D16S539: 9,13; D5S818: 8,9; D7S820: 11; TH01:

7, 9.3; TPOX: 11; vWA: 16,19; Amelogenin: X). After the purchase of the cell line, mycoplasma tests

are performed in the laboratory on every new defrosted aliquot. The kit used for mycoplasma detec-

tion is PlasmoTest (Invivogen, code: rep-pt1).
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Expression of GluE1 and GluE7 in HEK293T cells and analysis of plasma
membrane trafficking
HEK293T cells were maintained in Dulbecco’s Modified Eagle Medium (DMEM) supplemented with

10% FBS and 1% Antibotic-Antimycotic (Gibco) in a humidified incubator at 5% CO2 air and 37˚C.
The day before transfection, cells were plated onto poly-D-lysine coated coverslips in 6-well plates,

to reach 60–80% confluence. HEK293T cells were transiently transfected with the following plasmids:

empty pIRES2-EGFP, pIRES2-EGFP containing the Grie7_Bbe gene, empty pICherryNeo and pICher-

ryNeo containing Grie1_Bla. Cells were transfected using 3 mg of polyethylenimine and 1 mg of plas-

mid DNA for each ml of non-supplemented DMEM. Cells were incubated 4–5 hr with transfection

medium without supplementation, which was then removed and replaced by supplemented

medium. Twenty-four hours after transfection the medium was removed and cells were washed 3

times with PBS. For surface receptor staining, cells were blocked in 2% BSA in PBS for 10 min at

37˚C, and incubated for 25 min at 37˚C with primary antibodies against HA (Covance, MMS-101P,

RRID: AB_291259), c-Myc (Cell Signalling, 2272S, RRID: AB_10692100) or GluA2 (Millipore, MAB397,

RRID: AB_2113875). HA and GluA2 antibodies were diluted 1:200 and c-Myc 1:100 in DMEM with-

out supplementation. Cells were washed 3 times with PBS, fixed in 4% paraformaldehyde (PFA) for

15 min at RT, rinsed in PBS and incubated 1 hr at 37˚C with secondary antibodies Alexa Fluor 555

donkey anti-mouse IgG (H + L) (A-31570, Invitrogen, RRID: AB_2536180) and Alexa Fluor 647 goat

anti-rabbit IgG (H + L) highly cross-adsorbed (Life Technologies, A-21245, RRID: AB_2535813),

diluted 1:1000 and 1:500 in PBS, respectively. Finally, coverslips were washed and mounted onto

slides with Fluoroshield with DAPI (Sigma-Aldrich, F6057). For intracellular labeling cells were first

fixed in 4% PFA for 15 min at RT, permeabilized with 0.2% Triton X-100 in PBS for 10 min, and finally

blocked with PBS containing 2% BSA and 0.2% Triton X-100 for 20 min. Primary antibodies against

HA (Covance, MMS-101P, RRID: AB_291259) and GluA2 (Millipore, MAB397, RRID: AB_2113875)

were diluted 1:1000 and c-Myc (Cell Signalling, 2272S, RRID: AB_10692100) antibody was prepared

at 1:100 in PBS. Incubation lasted 25 min at 37˚C. Secondary antibody incubations and coverslip

mounting were done in the same way as for non-permeabilized cells. Cells were examined using a

confocal laser-scanning microscope (Zeiss LSM 700) with a 63x oil objective.

Western blot and native gel electrophoresis
HEK293T cells were grown in 6-well plates as described previously and transfected with plasmids

expressing amphioxus GluE1, GluE7 or GluA2. Twenty-four hours after transfection cells were rinsed

with PBS and the content of 4 wells was resuspended in solubilization buffer (PBS containing 2%

N-dodecyl-a-maltopyranoside (DDM; D310HA, Anatrace) and the protease inhibitors mix cOmplete

EDTA-free Protease Inhibitor Cocktail, Roche). Cell lysates were homogenized in a Dounce homoge-

nizer in ice with 20 strokes and kept under orbital agitation for 1 hr at 4˚C. Lysates were centrifuged

at 89000xg in a Beckman TLA120.2 rotor for 40 min at 4˚C. The supernatant containing solubilized

membrane proteins was recovered in a new tube and stored at �20˚C until used.

For native gel electrophoresis proteins were resolved in a Mini-PROTEAN TGX Gel 4–20% (Bio-

Rad). Samples were mixed with Native Sample Buffer (Bio-Rad) and run along with HiMark Pre-

Stained Protein Standard (Life Technologies). Electrophoresis was performed in ice at a constant

voltage of 100 V for 180 min. Gels were transferred at constant current (35 mA) to polyvinylidene

fluoride (PVDF) membranes overnight (16–18 hr) at 4˚C. After transfer, membranes were blocked for

1 hr with Odyssey Blocking Buffer (Li-cor) in TBS, and incubated overnight at 4˚C with primary anti-

bodies anti-HA (Covance, MMS-101P, RRID: AB_291259), anti-c-Myc (Cell Signaling, 2272S, RRID:

AB_10692100) or anti-GluA2 (Millipore, MAB397, RRID: AB_2113875) diluted 1:1000 in TTBS (TBS

containing 0.05% Tween-20). After three 15 min washes in TTBS, membranes were incubated with

donkey anti-mouse (Li-cor, 926–32212, RRID: AB_621847) and donkey anti-rabbit (Li-cor, 926–68073,

RRID: AB_10954442) diluted 1:7500 in TTBS for 1 hr. Blots were analyzed in an Odyssey scanner (Li-

cor).

For denaturing gel electrophoresis (SDS-PAGE) protein lysates were denatured by adding loading

sample buffer 10x (500 mM Tris-HCl pH 7.4, 20% SDS, 10% b-mercaptoethanol, 10% glycerol and

0.04% bromophenol blue), and incubated for 5 min at 95˚C. Protein lysates were loaded in a 10%

SDS- polyacrylamide gel and separated at a constant current (25 mA). Gels were transferred at a

constant voltage of 100 V for 90 min in ice. Membranes were blocked for 1 hr with Odyssey Blocking
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Buffer in TBS, and incubated overnight at 4˚C with the same primary antibodies at the same dilution

as for native gels in TBS containing 0.1% Tween 20. After three 15 min washes in TTBS, membranes

were incubated with secondary antibodies as above. Blots were analyzed in an Odyssey scanner.

3D modeling of GluE1 and GluE7
Models for full-length GluE1 and GluE7 were generated with RaptorX (Källberg et al., 2012) based

on deposited three-dimensional crystal structures of the full-length AMPA-subtype ionotropic gluta-

mate receptor from Rattus norvegicus, GluA2, bound to competitive antagonists (PDB codes 4U4G

(Yelshanskaya et al., 2014) and 3KG2 (Sobolevsky et al., 2009), respectively). Models of their

respective ligand binding domains were generated with SWISS-MODEL (Biasini et al., 2014) using

the atomic-resolution crystal structure of the rat GluA2 LBD bound to glutamate as template (PDB

code 4YU0). Model quality was assessed with MolProbity (http://molprobity.biochem.duke.edu/,

RRID: SCR_014226). MolProbity scores for all models are given in Figure 1—source data 4. Models

were inspected with MIFit (Smith, 2010) and figures were prepared with PyMOL (www.pymol.org).

Electrophysiology
Cells were visualized with an inverted epifluorescence microscope (AxioVert A.1, Zeiss) and were

constantly perfused at 22–25˚C with an extracellular solution containing (in mM): 145 NaCl, 2.5 KCl,

2 CaCl2, 1 MgCl2, 10 HEPES and 10 glucose (pH = 7.42 with NaOH; 305 mOsm/Kg). Microelectro-

des were filled with an intracellular solution containing (in mM): 145 CsCl, 2.5 NaCl, 1 Cs-EGTA, 4

MgATP, 10 HEPES (pH = 7.2 with CsOH; 295 mOsm/Kg). Electrodes were fabricated from borosili-

cate glass (1.5 mm o.d., 1.16 i.d., Harvard Apparatus) pulled with a P-97 horizontal puller (Sutter

Instruments) and polished with a forge (MF-830, Narishige) to a final resistance of 2–4 MW. Currents

were recorded with an Axopatch 200B amplifier filtered at 1 KHz and digitized at 5 KHz using Digi-

data 1440A interface with pClamp 10 software (Molecular Devices Corporation).

Whole-cell macroscopic currents were recorded from isolated or coupled pairs of mCherry or

EGFP positive HEK293T cells. Rapid application (<1 ms exchange) of agonists (500 ms pulses) at a

membrane potential of �60 mV was achieved by means of a theta-barrel tool (1.5 mm o.d.; Sutter

Instruments) coupled to a piezoelectric translator (P-601.30; Physik Instrumente). One barrel con-

tained extracellular solution diluted to 96% with H2O and the other barrel contained 10 mM of the

amino acid solution. For measuring current-voltage relationships, 500 ms agonist jumps were applied

at different membrane voltages (�80 mV to +80 mV in 20 mV steps) and peak currents were fitted

to a 5th order polynomial function. To study recovery from desensitization, a two-pulse protocol (500

ms each) was used in which a first pulse was applied followed by a second pulse at different time

intervals (from 2.5 s to 25 s). The paired pulses were separated 30–60 s to allow full recovery from

desensitization. To estimate the percentage of recovery, the magnitude of peak current at the sec-

ond pulse (P2) was compared with the first one (P1). Electrophysiological recordings were analyzed

using IGOR Pro (Wavemetrics Inc.) with NeuroMatic (Jason Rothman, UCL, RRID: SCR_004186).
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Tambutté, Denis Al-
lemand, Manuel
Aranda

2017 Comparative analysis of the
genomes of Stylophora pistillata
and Acropora digitifera provides
evidence for extensive differences
between species of corals

https://www.ncbi.nlm.
nih.gov/genome/?term=
Acropora+digitifera

NCBI Genome, 10
529

Luo YJ, Takeuchi T,
Koyanagi R, Yama-
da L, Kanda M,
Khalturina M, Fujie
M, Yamasaki S,

2015 The Lingula genome provides
insights into brachiopod evolution
and the origin of phosphate
biomineralization

https://www.ncbi.nlm.
nih.gov/genome/?term=
Lingula+anatina

NCBI Genome,
38582

Ramos-Vicente et al. eLife 2018;7:e35774. DOI: https://doi.org/10.7554/eLife.35774 32 of 36

Research article Evolutionary Biology Neuroscience

https://www.ncbi.nlm.nih.gov/genome/?term=orbicella+faveola
https://www.ncbi.nlm.nih.gov/genome/?term=orbicella+faveola
https://www.ncbi.nlm.nih.gov/genome/?term=orbicella+faveola
https://neurobase.rc.ufl.edu/pleurobrachia
https://neurobase.rc.ufl.edu/pleurobrachia
https://www.ncbi.nlm.nih.gov/genome/?term=exaiptasia
https://www.ncbi.nlm.nih.gov/genome/?term=exaiptasia
https://www.ncbi.nlm.nih.gov/genome/?term=exaiptasia
https://www.ncbi.nlm.nih.gov/genome/?term=Acropora+digitifera
https://www.ncbi.nlm.nih.gov/genome/?term=Acropora+digitifera
https://www.ncbi.nlm.nih.gov/genome/?term=Acropora+digitifera
https://www.ncbi.nlm.nih.gov/genome/?term=Lingula+anatina
https://www.ncbi.nlm.nih.gov/genome/?term=Lingula+anatina
https://www.ncbi.nlm.nih.gov/genome/?term=Lingula+anatina
https://doi.org/10.7554/eLife.35774


Endo K, Satoh N

Simakov O, Marle-
taz F, Cho SJ, Ed-
singer-Gonzales E,
Havlak P, Hellsten
U, Kuo DH, Larsson
T, Lv J, Arendt D,
Savage R, Osoega-
wa K, de Jong P,
Grimwood J,
Chapman JA, Sha-
piro H, Aerts A,
Otillar RP, Terry AY,
Boore JL, Grigoriev
IV, Lindberg DR,
Seaver EC, Weis-
blat DA, Putnam
NH, Rokhsar DS

2013 Insights into bilaterian evolution
from three spiralian genomes

https://www.ncbi.nlm.
nih.gov/genome/?term=
Helobdella+robusta

NCBI Genome,
15112

Flot JF 2013 Genomic evidence for ameiotic
evolution in the bdelloid rotifer
Adineta vaga

https://www.ncbi.nlm.
nih.gov/genome/?term=
Adineta+vaga

NCBI Genome,
17312

Terrapon N 2014 Molecular traces of alternative
social organization in a termite
genome

https://www.ncbi.nlm.
nih.gov/genome/?term=
Zootermopsis+nevaden-
nsis

NCBI Genome,
17755

Sanggaard KW 2014 Stegodyphus mimosarum genome https://www.ncbi.nlm.
nih.gov/genome/?term=
Stegodyphus+mimosar-
rum

NCBI Genome,
12925

Mesquita R 2015 Rhodnius prolixus genome https://www.ncbi.nlm.
nih.gov/genome/?term=
Rhodnius+prolixus

NCBI Genome,
447

Vicoso B, Bachtrog
D

2015 Numerous transitions of sex
chromosomes in Diptera

https://www.ncbi.nlm.
nih.gov/genome/2619

NCBI Genome,
2619

McKenna DD 2016 Anoplophora glabripennis genome https://www.ncbi.nlm.
nih.gov/genome/?term=
Anoplophora+glabripen-
nnis

NCBI Genome, 140
33

Albertin CB, Sima-
kov O, Mitros T,
Wang ZY, Pungor
JR, Edsinger-Gon-
zales E, Brenner S,
Ragsdale CW,
Rokhsar DS

2015 The octopus genome and the
evolution of cephalopod neural and
morphological novelties

https://metazoa.en-
sembl.org/Octopus_bi-
maculoides/Info/Index

Ensembl Metazoa,
PRJNA270931

References
Alberstein R, Grey R, Zimmet A, Simmons DK, Mayer ML. 2015. Glycine activated ion channel subunits encoded
by ctenophore glutamate receptor genes. PNAS 112:E6048–E6057. DOI: https://doi.org/10.1073/pnas.
1513771112, PMID: 26460032

Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. 1990. Basic local alignment search tool. Journal of
Molecular Biology 215:403–410. DOI: https://doi.org/10.1016/S0022-2836(05)80360-2, PMID: 2231712

Armstrong N, Gouaux E. 2000. Mechanisms for activation and antagonism of an AMPA-sensitive glutamate
receptor: crystal structures of the GluR2 ligand binding core. Neuron 28:165–181. DOI: https://doi.org/10.
1016/S0896-6273(00)00094-5, PMID: 11086992

Benton R, Vannice KS, Gomez-Diaz C, Vosshall LB. 2009. Variant ionotropic glutamate receptors as
chemosensory receptors in Drosophila. Cell 136:149–162. DOI: https://doi.org/10.1016/j.cell.2008.12.001,
PMID: 19135896

Biasini M, Bienert S, Waterhouse A, Arnold K, Studer G, Schmidt T, Kiefer F, Gallo Cassarino T, Bertoni M,
Bordoli L, Schwede T. 2014. SWISS-MODEL: modelling protein tertiary and quaternary structure using
evolutionary information. Nucleic Acids Research 42:W252–W258. DOI: https://doi.org/10.1093/nar/gku340,
PMID: 24782522

Bowie D, Mayer ML. 1995. Inward rectification of both AMPA and kainate subtype glutamate receptors
generated by polyamine-mediated ion channel block. Neuron 15:453–462. DOI: https://doi.org/10.1016/0896-
6273(95)90049-7, PMID: 7646897

Ramos-Vicente et al. eLife 2018;7:e35774. DOI: https://doi.org/10.7554/eLife.35774 33 of 36

Research article Evolutionary Biology Neuroscience

https://www.ncbi.nlm.nih.gov/genome/?term=Helobdella+robusta
https://www.ncbi.nlm.nih.gov/genome/?term=Helobdella+robusta
https://www.ncbi.nlm.nih.gov/genome/?term=Helobdella+robusta
https://www.ncbi.nlm.nih.gov/genome/?term=Adineta+vaga
https://www.ncbi.nlm.nih.gov/genome/?term=Adineta+vaga
https://www.ncbi.nlm.nih.gov/genome/?term=Adineta+vaga
https://www.ncbi.nlm.nih.gov/genome/?term=Zootermopsis+nevadensis
https://www.ncbi.nlm.nih.gov/genome/?term=Zootermopsis+nevadensis
https://www.ncbi.nlm.nih.gov/genome/?term=Zootermopsis+nevadensis
https://www.ncbi.nlm.nih.gov/genome/?term=Zootermopsis+nevadensis
https://www.ncbi.nlm.nih.gov/genome/?term=Stegodyphus+mimosarum
https://www.ncbi.nlm.nih.gov/genome/?term=Stegodyphus+mimosarum
https://www.ncbi.nlm.nih.gov/genome/?term=Stegodyphus+mimosarum
https://www.ncbi.nlm.nih.gov/genome/?term=Stegodyphus+mimosarum
https://www.ncbi.nlm.nih.gov/genome/?term=Rhodnius+prolixus
https://www.ncbi.nlm.nih.gov/genome/?term=Rhodnius+prolixus
https://www.ncbi.nlm.nih.gov/genome/?term=Rhodnius+prolixus
https://www.ncbi.nlm.nih.gov/genome/2619
https://www.ncbi.nlm.nih.gov/genome/2619
https://www.ncbi.nlm.nih.gov/genome/?term=Anoplophora+glabripennis
https://www.ncbi.nlm.nih.gov/genome/?term=Anoplophora+glabripennis
https://www.ncbi.nlm.nih.gov/genome/?term=Anoplophora+glabripennis
https://www.ncbi.nlm.nih.gov/genome/?term=Anoplophora+glabripennis
https://metazoa.ensembl.org/Octopus_bimaculoides/Info/Index
https://metazoa.ensembl.org/Octopus_bimaculoides/Info/Index
https://metazoa.ensembl.org/Octopus_bimaculoides/Info/Index
https://doi.org/10.1073/pnas.1513771112
https://doi.org/10.1073/pnas.1513771112
http://www.ncbi.nlm.nih.gov/pubmed/26460032
https://doi.org/10.1016/S0022-2836(05)80360-2
http://www.ncbi.nlm.nih.gov/pubmed/2231712
https://doi.org/10.1016/S0896-6273(00)00094-5
https://doi.org/10.1016/S0896-6273(00)00094-5
http://www.ncbi.nlm.nih.gov/pubmed/11086992
https://doi.org/10.1016/j.cell.2008.12.001
http://www.ncbi.nlm.nih.gov/pubmed/19135896
https://doi.org/10.1093/nar/gku340
http://www.ncbi.nlm.nih.gov/pubmed/24782522
https://doi.org/10.1016/0896-6273(95)90049-7
https://doi.org/10.1016/0896-6273(95)90049-7
http://www.ncbi.nlm.nih.gov/pubmed/7646897
https://doi.org/10.7554/eLife.35774


Brockie PJ, Madsen DM, Zheng Y, Mellem J, Maricq AV. 2001. Differential expression of glutamate receptor
subunits in the nervous system of Caenorhabditis elegans and their regulation by the homeodomain protein
UNC-42. The Journal of Neuroscience 21:1510–1522. DOI: https://doi.org/10.1523/JNEUROSCI.21-05-01510.
2001, PMID: 11222641

Chiu JC, Brenner ED, DeSalle R, Nitabach MN, Holmes TC, Coruzzi GM. 2002. Phylogenetic and expression
analysis of the glutamate-receptor-like gene family in Arabidopsis thaliana. Molecular Biology and Evolution 19:
1066–1082. DOI: https://doi.org/10.1093/oxfordjournals.molbev.a004165, PMID: 12082126

Conn PJ, Pin JP. 1997. Pharmacology and functions of metabotropic glutamate receptors. Annual Review of
Pharmacology and Toxicology 37:205–237. DOI: https://doi.org/10.1146/annurev.pharmtox.37.1.205, PMID:
9131252

Croset V, Rytz R, Cummins SF, Budd A, Brawand D, Kaessmann H, Gibson TJ, Benton R. 2010. Ancient
protostome origin of chemosensory ionotropic glutamate receptors and the evolution of insect taste and
olfaction. PLoS Genetics 6:e1001064. DOI: https://doi.org/10.1371/journal.pgen.1001064, PMID: 20808886

Danbolt NC. 2001. Glutamate uptake. Progress in Neurobiology 65:1–105. DOI: https://doi.org/10.1016/S0301-
0082(00)00067-8, PMID: 11369436

Darriba D, Taboada GL, Doallo R, Posada D. 2011. ProtTest 3: fast selection of best-fit models of protein
evolution. Bioinformatics 27:1164–1165. DOI: https://doi.org/10.1093/bioinformatics/btr088, PMID: 21335321

Dillon J, Hopper NA, Holden-Dye L, O’Connor V. 2006. Molecular characterization of the metabotropic
glutamate receptor family in Caenorhabditis elegans. Biochemical Society Transactions 34:942–948.
DOI: https://doi.org/10.1042/BST0340942, PMID: 17052233

Edgar RC. 2004. MUSCLE: a multiple sequence alignment method with reduced time and space complexity.
BMC Bioinformatics 5:113. DOI: https://doi.org/10.1186/1471-2105-5-113, PMID: 15318951

Fonnum F. 1984. Glutamate: a neurotransmitter in mammalian brain. Journal of Neurochemistry 42:1–11.
DOI: https://doi.org/10.1111/j.1471-4159.1984.tb09689.x, PMID: 6139418

Furukawa H, Singh SK, Mancusso R, Gouaux E. 2005. Subunit arrangement and function in NMDA receptors.
Nature 438:185–192. DOI: https://doi.org/10.1038/nature04089, PMID: 16281028

Greer JB, Khuri S, Fieber LA. 2017. Phylogenetic analysis of ionotropic L-glutamate receptor genes in the
Bilateria, with special notes on Aplysia californica. BMC Evolutionary Biology 17:11. DOI: https://doi.org/10.
1186/s12862-016-0871-1, PMID: 28077092

Hoang DT, Chernomor O, von Haeseler A, Minh BQ, Vinh LS. 2018. UFBoot2: Improving the Ultrafast Bootstrap
Approximation. Molecular Biology and Evolution 35:518–522. DOI: https://doi.org/10.1093/molbev/msx281,
PMID: 29077904

Janovjak H, Sandoz G, Isacoff EY. 2011. A modern ionotropic glutamate receptor with a K(+) selectivity signature
sequence. Nature Communications 2:232–235. DOI: https://doi.org/10.1038/ncomms1231, PMID: 21407198

Källberg M, Wang H, Wang S, Peng J, Wang Z, Lu H, Xu J. 2012. Template-based protein structure modeling
using the RaptorX web server. Nature Protocols 7:1511–1522. DOI: https://doi.org/10.1038/nprot.2012.085,
PMID: 22814390

Kamboj SK, Swanson GT, Cull-Candy SG. 1995. Intracellular spermine confers rectification on rat calcium-
permeable AMPA and kainate receptors. The Journal of Physiology 486 ( Pt 2:297–303. DOI: https://doi.org/
10.1113/jphysiol.1995.sp020812, PMID: 7473197

Karakas E, Furukawa H. 2014. Crystal structure of a heterotetrameric NMDA receptor ion channel. Science 344:
992–997. DOI: https://doi.org/10.1126/science.1251915, PMID: 24876489

Kenny NJ, Dearden PK. 2013. NMDA receptor expression and C terminus structure in the rotifer Brachionus
plicatilis and long-term potentiation across the Metazoa. Invertebrate Neuroscience 13:125–134. DOI: https://
doi.org/10.1007/s10158-013-0154-0, PMID: 23546643

Koh DS, Burnashev N, Jonas P. 1995. Block of native Ca(2+)-permeable AMPA receptors in rat brain by
intracellular polyamines generates double rectification. The Journal of Physiology 486 ( Pt 2:305–312.
DOI: https://doi.org/10.1113/jphysiol.1995.sp020813, PMID: 7473198
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