
Quantum-based machine
learning and AI models to
generate force field parameters
for drug-like small molecules

Sathish Kumar Mudedla1, Abdennour Braka1 and
Sangwook Wu1,2*
1R&D Center, PharmCADD, Busan, South Korea, 2Department of Physics, Pukyong National University,
Busan, South Korea

Force fields for drug-like small molecules play an essential role in molecular

dynamics simulations and binding free energy calculations. In particular, the

accurate generation of partial charges on small molecules is critical to

understanding the interactions between proteins and drug-like molecules.

However, it is a time-consuming process. Thus, we generated a force field

for small molecules and employed a machine learning (ML) model to rapidly

predict partial charges on molecules in less than a minute of time. We

performed density functional theory (DFT) calculation for 31770 small

molecules that covered the chemical space of drug-like molecules. The

partial charges for the atoms in a molecule were predicted using an ML

model trained on DFT-based atomic charges. The predicted values were

comparable to the charges obtained from DFT calculations. The ML model

showed high accuracy in the prediction of atomic charges for external test data

sets. We also developed neural network (NN) models to assign atom types,

phase angles and periodicities. All the models performed with high accuracy on

test data sets. Our code calculated all the descriptors that were needed for the

prediction of force field parameters and produced topologies for small

molecules by combining results from ML and NN models. To assess the

accuracy of the predicted force field parameters, we calculated solvation

free energies for small molecules, and the results were in close agreement

with experimental free energies. The AI-generated force field was effective in

the fast and accurate generation of partial charges and other force field

parameters for small drug-like molecules.
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1 Introduction

Molecular dynamics (MD) simulations play an important

role in rational drug design, (Marco De, et al., 2016), which is

useful in the analysis of dynamical interactions between a target

protein and drug molecules (Allinger, 1977; Lifson, et al., 1979;

Burkert and Allinger, 1982; Brooks, et al., 1983; Jorgensen and

Tirado-Rives, 1988; Allinger, et al., 1989; Clark, et al., 1989;

Mayo, et al., 1990; Momany and Rone, 1992; Rappé et al., 1992;

Hwang, et al., 1994; Cornell, et al., 1995; Halgren, 1996; Wang,

et al., 2000; Wang, et al., 2005). MD simulations are less accurate

than first principles approaches. However, a well-parameterized

force field can be used to produce results comparable to those of

quantum mechanical (QM) calculations (Weiner, et al., 1984).

The dynamical properties of proteins, and DNA and RNA

molecules can be described by performing MD simulations

using well-established traditional force fields such as AMBER,

CHARMM, GROMOS and OPLS-AA (Jorgensen, et al., 1996;

Mackerell, et al., 1998; Ponder and Case, 2003; Oostenbrink,

et al., 2004; Zgarbova, et al., 2011; Bergonzo and Cheatham, 2015;

Maier, et al., 2015; Vanommeslaeghe and MacKerell, 2015;

Galindo-Murillo, et al., 2016; Tian, et al., 2019). The

generation of parameters for fundamental units for biological

macromolecules is sufficient to describe the properties of

proteins, DNA and RNA. However, the force field for small

organic molecules should cover a large chemical space because

each drug-like molecule contains different chemical fragments.

In general, a force field consists of bonded and nonbonded

parameters (Jorgensen, et al., 1996; Mackerell, et al., 1998; Ponder

and Case, 2003; Oostenbrink, et al., 2004; Zgarbova, et al., 2011;

Bergonzo and Cheatham, 2015; Maier, et al., 2015;

Vanommeslaeghe and MacKerell, 2015; Galindo-Murillo,

et al., 2016; Tian, et al., 2019). Nonbonded parameters are van

der Waals and electrostatic atomic charges. In molecular

simulations, electrostatics are calculated using atom-centered

point charges with the aid of a simple Coulombic model. The

electrostatic energy component is the dominant one in

nonbonded interactions such as ligand binding to a receptor,

therefore, the generation of qualitative atomic charges plays a key

role in studying the binding of ligands to receptors using

simulations (Honig and Nicholls, 1995). An atomic charge

should include the influence of the corresponding atom and

its bonded atoms. Additionally, the point charge must account

for the electronic effects from nearby electron-donating or

electron-withdrawing functional groups and formal charges in

the molecule (Jakalian, et al., 2002). Hence, charge models should

take into account all these effects.

To generate electrostatics for a molecule, it is necessary to

perform QM calculations. Several software packages, such as

antechamber (Wang, et al., 2006) and CGenff (Vanommeslaeghe,

et al., 2010) generate force field parameters for small organic

molecules using quantum mechanical calculations at different

levels. Charge methods, including AM1-BCC, CGenFF, CM1A,

CM3P and CM5, are used in conjunction with AMBER,

CHARMM and OPLS force fields to generate force field

parameters for drug-like molecules (Storer, et al., 1995;

Jakalian, et al., 2000; Jakalian, et al., 2002; Thompson, et al.,

2003; Marenich, et al., 2012). The charge methods CM1A (Storer,

et al., 1995), CM3P (Thompson, et al., 2003) and AM1-BCC

(Jakalian, et al., 2000; Jakalian, et al., 2002) and produce atomic

charges by applying different empirical corrections to charges

derived from semiempirical quantum methods such as AM1 and

PM3. CM5 produces charges using Hirshfeld population analysis

with the aid of density functional theory (DFT) methods

(Marenich, et al., 2012). To consider the polarization effect by

the environment, these methods increase the magnitude of

charges by using scaling factors such as 1.14 for CM1A3 and

1.20 for CM5 (Udier-Blagovic, et al., 2004; Vilseck, et al., 2014).

AM1-BCC utilizes bond-based incremental corrections to the

charges obtained byMulliken population analysis (Jakalian, et al.,

2000). Bond charge corrections are parametrized by fitting to HF/

6-31G* ESP of molecules in the training set (Jakalian, et al., 2000).

These models have both pros and cons. For instance, AM1-BCC

successfully describes electrostatics for nonpolar molecules such

as saturated and aromatic hydrocarbons. However, it fails in the

case of polar molecules such as pyridines, alkyl amines, alkyl and

aryl halides, sulfides, and nitriles (Jakalian, et al., 2000; Jakalian,

et al., 2002). The DFT-derived CM5 model suffers from a lack of

a fixed scale factor to account for internal electron delocalization

and external polarization effects (Marenich, et al., 2012).

Recently, the 1.14*CM1A charge model with localized bond

charge corrections showed high accuracy in reproducing

experimental solvation free energies and heat of vaporization

and densities with relatively small errors (Dodda, et al., 2017). In

addition to AM1-BCC charge method, antechamber produces

RESP charges using the ESP charges from user provided QM

calculations for the molecule. CGenff program initially estimates

ESP charges from the optimization calculations at MP2/6-31G*

level which is computationally expansive to perform. Then it

further optimizes the charges based on the QM data for the

molecule which is interacting with water molecules in various

orientations. Thus, the popular Antechamber and CGenff

methods use ESP charges from different levels of theory and

then introduces corrections to further improve the quality of

charges. Despite the success in charge models, it is necessary to

develop charge models which are optimized for efficiency and

accuracy for small molecules to the accurate estimation of

electrostatics in MD simulations.

Machine learning algorithms have been successfully applied

to the generation of new scaffolds of small drug-like molecules

(Lavecchia, 2015; Lipinski, et al., 2019; Patel, et al., 2020;

Carracedo-Reboredo Jose et al., 2021), toxicity prediction (Wu

and Wang, 2018), and omics pattern recognition (Stanke and

Morgenstern, 2005). Machine learning algorithms have also been

applied to predict partial charges and forces on atoms of small

molecules in the field of quantum chemistry (Roman and
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Dominik, 2019; Pattnaik, et al., 2020). The calculated force on the

atom in a molecule is used to perform ab initioMD simulations.

The contribution of electrostatic interactions is prominent in

force field-based MD simulations (Jorgensen, 2005). The atomic

charges of molecules alter the interaction with water thus

sensitive to condensed phase properties including free energies

of hydration and heats of vaporization (Jorgensen and Tirado-

Rives, 2005). The accurate estimation of electrostatic interactions

between proteins and ligands is important in calculating binding

free energies, which are useful for screening small molecules in

computer-aided drug design (Jorgensen 2009). Despite the

progress in the polarizable force fields, the point charge

models are still essential owing to their low computational

cost and accuracy (Swope, et al., 2010). Hence, in this study,

we have developed machine learning and DFT charge-based

artificial intelligence (AI) models to predict atomic charges

and to generate force fields for small molecules in less than a

minute of time.

2 Computational methods

2.1 Force field parameters

The potential energy is the sum of the nonbonded (van der

Waals and electrostatic) and bonded (bonds, angles and

dihedrals) interactions in a molecule. The general functional

form of potential energy in force fields is as follows in eqn. 1.

(Jorgensen, et al., 1996; Mackerell, et al., 1998; Ponder and Case,

2003; Oostenbrink, et al., 2004; Zgarbova, et al., 2011; Bergonzo

and Cheatham, 2015; Maier, et al., 2015; Vanommeslaeghe and

MacKerell, 2015; Galindo-Murillo, et al., 2016; Tian, et al., 2019).

V � ∑
bonds

Kb(r − r0)2 + ∑
angles

Kθ(θ − θ0)2 + ∑
dihedrals

Kϕ[1

+ cos(nϕ − γ)] + ∑
i, j pairs

(Aij

r12ij
− Bij

r6ij
) + ∑

i, j pairs

qiqj
εrij

(1)

where Kb = force constant of bond, Kθ = force constant of angle,

Kϕ = force constant of dihedral angle, r = bond length, r0 =

equilibrium bond length, θ0 = equilibrium angle, θ = angle, ϕ =

dihedral angle, ϕ0 = equilibrium dihedral angle, qi, qj = partial

charges, Aij, Bij = well depth and rij = distance.

All the above-mentioned force field parameters are necessary

to calculate the potential energy inMD simulations. In this study,

we aimed to generate all these force field parameters except van

der Waals potentials for drug molecules using machine learning

tools. The existing van der Waals parameters for the atom types

of organic molecules were developed with great care by matching

the densities and enthalpies of vaporization (Cornell, et al., 1995;

Jorgensen, et al., 1996). The van der Waals parameters also

developed using QM methodologies and they were refined by

fitting experimental properties including heat of vaporization,

molecular volume and hydration free energy (Rupakheti et al.,

2018) and it needs an extensive of work to achieve. Also, the small

changes in van der Waals potentials cause significant changes in

the properties of molecules in the solution (Rupakheti et al., 2018;

Boulanger et al., 2021). Therefore, in this study, we have not

focused on the development of new van der Waals parameters

using machine learning algorithms.

2.2 Generation of the training data set

To generate a training data set for machine learning, we

collected 100,000 small molecules to represent the entire

druggable chemical space of small molecules from the

CHEMBEL-2.5 database (Davies, et al., 2015) after careful

removal of salts, ions and small fragments. We considered to

perform quantum mechanical calculations for all

100,000 molecules and the collected data would be used for

machine learning training. However, it needs 2 years of time to

complete all these calculations with our existing computational

resources. Thus, the calculations were subjected to three batches.

The 31,770 molecules used in this work represent the first batch.

To select molecules of this batch, we divided the

100,000 molecules into 10 parts based on their index. Then

we selected the third part of each 10,000 molecules by random

choice function on the index. To check the trainability of this

batch, we have verified by principal component analysis (PCA)

that the projection of this batch covers the chemical space of

100,000 molecules. The calculations for the other two batches are

in progress. Figure 1 clearly shows that the selected

31770 molecules covered the entire chemical space of

100,000 molecules. This shows that the selected molecules can

cover the whole chemical space.

2.3 Density functional theory calculations

The 2D structures in Simulation Description Format (SDF)

were converted to 3D format using OpenBabel (O’Boyle, et al.,

2011) software, and hydrogen atoms were added to all molecules.

The 3D geometries of the collected small molecules were

optimized using DFT at the B3LYP/6-31G** level of theory

with the Gaussian16 package (Frisch, et al., 2016). The

optimized geometries were subjected to frequency calculations

to confirm that structures were stable on a potential energy

surface (PES) at the same level of theory. The frequencies showed

that there were no imaginary values, implying that the geometries

corresponded to stationary points on the PES. Atomic charges

are not observable in experiments or in quantum chemical

calculations. Several methods have been suggested to estimate

atomic charges. Here, we calculated electrostatic potential (ESP)

charges for all atoms in a molecule using the Merz-Kollman

method (Chandra Singh and Kollman, 1984) at the B3LYP/6-

31G** level. The DFT functional is good in accuracy and
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predicting ground state properties of molecules compared

AM1 method. DFT methods are computationally expensive

than AM1 whereas cheaper than MP2 method to perform

calculations on large number of molecules.

2.4 Machine learning and deep learning

The local environment of an atom in a molecule was

described using atomic features. Bonding and neighbor atom

information for the atoms in a molecule were extracted with the

help of molecular graphs implemented in the MolMod package

(Verstraelen, 2019). From the optimized geometries of ESP

charges for atoms, bond lengths, bond angles and dihedral

angles values were extracted for each molecule in the data set.

The local environment around an atom in a molecule strongly

influences its atomic charge. Therefore, to train the atomic charge

for an atom in a molecule, the atomic features such as atomic

number, electronegativity, atomic size, valence, hybridization,

aromatic nature, chiral, axial, hydrogen donor or acceptor are

first extracted for each atom in a molecule.

Next, we included the features of bonding (first shell around

the reference atom) information for each atom in amolecule. The

local bonded atom information, such as neighboring atoms,

number of bonds, bond orders and bond lengths for each

atom in a molecule, was extracted from the optimized

geometries. The properties of the atoms in the first shell were

included using features such as aromaticity, hybridization and

the presence or absence of rings, fused rings, and double bonds

obtained from structures. We also added information about the

FIGURE 1
A principal component analysis (PCA) plot, showing the comparison of the chemical space defined by our dataset (purple) and the chemical
space represented by CHEMBL25 databases (red).
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atoms present in the second and third shells around the reference

atom in a molecule. Overall, the chemical environment was

described around one atom in the molecule using the

properties of the reference atom and atoms in the first, second

and third shells. A schematic of the chemical environment

around a reference atom is shown in Figure 2. The

information was collected for 1.53 million atoms from

31770 molecules. Accessing such information was not

straightforward, and it is not readily available in packages at

present. For this purpose, in-house scripts were used to extract all

this information.

We applied classification and regression algorithms to train the

derived data for small molecules selected from CHEMBEL-2.5. A

neural network classifier model was used for training to classify the

data. Random forest and neural network regressors were employed

to predict numbers for unknown data. We used the Python-based

scikit-learn package to construct, train and validate the classification

and regressor models (Pedregosa, et al., 2011).

FIGURE 2
An example to show the chemical environment around a reference atom using the first, second and third shells. Red indicates the first shell, sky
blue is the second shell, and Aztec blue represents the third shell around the reference atom.

FIGURE 3
Architecture of the neural network model with the numbers of neurons and atomic descriptors for the prediction of atom types.
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2.4.1 Deep learning
The neural network classification model in the scikit-learn

package was used for atom types, phase angles and periodicity

classification. The architecture of these models is shown in

Figure 3; Supplementary Figure S1. The data set had

31,770 molecules resulting in 1.53 million atoms and

4.8 million torsional terms for training atom types and phase

angles and periodicities, respectively. The models were trained

with a learning rate of 0.001, which controlled the step size in

updating the weights, and a default batch size. The default log-

loss was used as a loss function. Relu was used as the activation

function for the hidden layers, and Adam (Diederik and Jimmy,

2015) a stochastic gradient-based optimizer, was used to update

the weights. Similar parameters were used in the prediction of

partial charges with the neural network regressor except for the

loss function. Mean square error (MSE) was used as the loss

function and to validate the model.

2.4.2 Machine learning
The random forest regressor estimator fits trees on various

subsamples of a data set and uses averaging to improve the

prediction. The random forest regressor model (shown in

Figure 4) was used to train and predict the partial charges of

atoms in molecules. The model was constructed with 800 trees,

and the maximum depth was 100 for each tree. Mean square

error was used to validate the regression model. All other

parameters were used as default values in the scikit package.

In all models, 80% of the data were used for training, and the

remaining 20% were used for validation. The parameters of the

random forest regressor model were determined by employing

k-fold cross validation with k = 5. The mean square error (MSE)

was calculated for the predictions in each fold and then averaged.

2.5 Molecular dynamics simulations

Free energy calculation methods are generally implemented

using the so-called lamination strategy or multistage sampling

along a suitably defined chemical coordinate, λ, whereby the

system is simulated in an appropriate number, n, of intermediate

states corresponding to values of λ between 0 and 1. In this study,

small molecules (33 compounds) were selected for solvation free

energy calculations. Small molecules were solvated in a cubic box

using the TIP3P water model (Jorgensen, et al., 1983). These

systems were subjected to energy minimization using the steepest

descent method and subsequently equilibrated for 1 ns at 298 K

and 1 bar pressure. Velocity rescaling and Parrinello−Rahman

algorithms were used to control temperature and pressure in the

NPT ensemble (Parrinello and Rahman, 1981; Nose and Klein,

1983; Bussi, et al., 2007). Furthermore, equilibrated solvated

structures were simulated for a production run of 1 ns in the

NPT ensemble using a 2 fs time step (Berendsen, et al., 1995;

Lindahl, et al., 2001; Hess, et al., 2008). The particle mesh Ewald

method was used to calculate the electrostatic interactions with

FIGURE 4
Architecture of the random forest regression model used to predict partial charges for atoms in drug-like small molecules.
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an interpolation order of 4 and a grid spacing of 1.6 Å (Essmann,

et al., 1995). Bonds between hydrogen and heavy atoms were

constrained at equilibrium bond lengths using the LINCS

algorithm (Hess, et al., 1997). All simulations were performed

using the GROMACS-2020 package.

All solvation free energy calculations were performed by

decoupling the ligand from the solvent environment. The

initial conformation of the ligand in solvent was taken

from the final snapshot of the 1 ns simulation. Decoupling

of the ligand from solution was performed by turning off

Coulombic interactions and subsequently van der Waals

interactions. The approach of solvation free energy

calculation is shown in Figure 5.

The Coulombic interactions were turned off by changing λ from
0 to 1 with a step size of Δλ = 0.25, and the van derWaals interactions

were unperturbed. Then, the van der Waals interactions were turned

off with nonuniformly distributed values of λ (0.05, 0.1, 0.2, 0.3, 0.4,

0.5, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, and 1.0). Therefore, a total of

20 windows, each 1 ns, were employed for decoupling of the ligand

from solution. The free energy difference between two end states was

calculated using the Bennett Acceptance Ratio (BAR) method

(Bennett, 1976) and the following equation:

〈 1

1 + exp{β(ΔUijᅳΔG)}〉i �〈 1

1 + exp{β(ᅳΔUij + ΔG)}〉j

(2)

where β is the reciprocal of the thermodynamic temperature, ΔG
is the free energy difference between states i and j, and ΔUij = Uj -

Ui is the potential energy difference.

2.6 Protein–ligand simulations

The crystal structure of the protein kinase, covid19 (main

protease) and factor-IX with cocrystal ligand were taken from

the protein data bank (PDB id: 4XUF, 7L10 and 5TNT).

Protein structures were prepared by correcting the bond

orders, adding missing hydrogens and optimizing

H-bonding with protonation states of residues at

pH 7.0 using protein preparation wizard (Sastry et al.,

2013). The complex was solvated in a cubic box with a

TIP3P water model. The total charge of the proteins was

neutralized by inclusion of Na+ and Cl− ions. The

AMBER99SB-ILDN force field was used for the proteins.

The force field parameters for the cocrystal ligands were

generated using generalized amber force fields (GAFF) and

machine learning force field for the comparison. All solvated

the protein and ligand complexes were subjected to energy

minimization using steepest decent method. Temperature and

pressure controls were imposed using the V-rescale and

Parrinello-Rahman algorithms with 298 K and 1 bar,

respectively (Parrinello and Rahman, 1981; Nose and Klein,

1983; Bussi, et al., 2007). The simulations were carried out

with a time step of 2 fs for 1 ns to equilibrate the systems in the

NPT ensemble. The production run was performed for 250 ns

for each complex using a time step of 2 fs in NPT ensemble.

The interpolation order of 4 and a grid spacing of 1.6 Å were

used in the electrostatic calculations using particle mesh

Ewald method (Essmann, et al., 1995). LINCS algorithm

have used to constrain the bonds of hydrogens with heavy

atoms (Hess, et al., 1997).

FIGURE 5
Decoupling of a ligand from solvation. Water molecules are shown in sticks and ligand as spheres.
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3 Results and discussion

3.1 Prediction of partial charges

The number of samples per element presented in the data set

is shown in Figure 6. Each atom has its local chemical

environments and reference partial charge in the data. The

calculated MSE in Supplementary Table S1 shows that the

random forest regressor is slightly better than the neural

network regressor. Therefore, a random forest regression

model was adopted for further validation. The MSE was

optimized by increasing the number of descriptors for each

atom in the data set. The descriptors were atoms and their

properties in the first, second and third shells around a

reference atom. The MSE with respect to the number of

descriptors is shown in Figure 6. The addition of the chemical

environment reduced the MSE value for the random forest

regression model. The performance of the random forest

regression model was best when all atoms and their properties

were included in the three shells. In previous study also, it was

shown that random forest regression produces reliable results

compared to other machine learning algorithms. Previous study

randomly collected the data for 10000 and 7,000 molecules from

ATB (automated topology builder) and PRODRG servers. ATB

applies symmetry-based averaging of atomic charges based on

the ESP charges from B3LYP/6-31G* calculations for small

molecules with the number of atoms less than 40 otherwise it

carried out semiempirical calculations to generate the charges.

Whereas in this study, we have performed calculations at B3LYP/

6-31G* for all the molecules which are having more than

40 number atoms in addition smaller size molecules. The

considered data for the training of random forest regression

model has the molecules with atoms range from 10 to 120. The

number of data points and features are used in the training of our

charge model (241 features) is higher than the previous study

(61 features). The features include the bond orders, bond lengths,

hybridizations and electronegativities for neighbor atoms to

provide the chemical environment around an atom whereas

the previous study does not consider them.

In Figure 7, the predicted charges were fitted to reference

charges for elements including carbon, hydrogen, nitrogen and

oxygen. The same plots for other elements, such as sulfur,

fluorine, chlorine, bromine and phosphorous, are given in

Supplementary Figure S2 of the Supplementary Information.

Notably, the majority of the predicted charges were similar to

the reference values. The calculated coefficient of determination

(R2) and MSE values for carbon, hydrogen, oxygen, nitrogen,

sulfur, fluorine, chlorine, bromine and phosphorous are

presented in Supplementary Table S2. The calculated

coefficient of determination (R2) values for carbon, hydrogen,

oxygen, nitrogen, sulphur, fluorine, chlorine, bromine and

phosphorous are 0.871, 0.847, 0.852, 0.880, 0.977, 0.632, 0.805,

0.714 and 0.664, respectively. MSE values are 0.0148, 0.001,

0.002, 0.013, 0.004, 0.0003, 0.004, 0.001 and 0.027 for carbon,

hydrogen, oxygen, nitrogen, sulphur, fluorine, chlorine, bromine

and phosphorous, respectively. The prediction accuracy was less

for fluorine, bromine and phosphorous than for other elements.

This may have been due to a smaller number of samples in the

data. The prediction accuracy for atoms such as C, H, O, N, S, P,

F, Cl and Br is low when compared to previous study. Because the

number of date points and data for each atom is different and it

increases variance in the atomic charges thus makes difficulty in

the prediction. It is difficult to compare the charges from our

charge model with other methods because the atomic charges for

a molecule using QM calculations are often sensitive to

functional and fitting method which are used to generate ESP

FIGURE 6
(A)Number of samples per element in the data set. Numbers for phosphorous atoms are not visible in the graph as very few phosphorus atoms
were present in the data. (B) The calculated MSE vs. number of atomic features for a reference atom.
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charges. The charges from different fitting methods are not same

for a molecule. However, we have provided the comparison of

our charge predictions with ESP charges of ATB, QM and AM1-

BCC methods for one molecule in Supplementary Table S3. It

can be clearly noted that charges in all these methods are not

same. The quantity of atomic charges is different in each method

whereas the sign (+ or -) is same in the case of all atoms. In order

to understand the atomic charges produced from random

regression model, the calculated solvation free energies for

molecules using different charge methods are compared with

experimental values in the validation section.

To validate, the performance of the trained random forest

regression model was tested on two external test sets. Test set-1

consisted of 100 molecules that were randomly selected from the

drug-induced liver injury database. This database consists of

FDA approved drugs that are shown to be toxic to the liver. Test

set-2 considered 33 molecules that had experimental solvation

free energies in the literature. We have tested the charge model

on two different datasets (i) first dataset is having molecules

which contains atom numbers range from 20 to 87 (ii) second

dataset contains molecules with atom number range from 9 to 24.

The small molecules in test set-2 consisted of various electron-

donating and electron-withdrawing functional groups. Eight

small molecules from test set-2 are shown in Figure 8. The

predicted charges are plotted against DFT charges for both

test sets and displayed in Figure 9. The R2 and MSE values

reveal that the prediction accuracy for the test sets was high. The

predicted values for a few molecules are compared with ESP

charges obtained from DFT calculations in Table 1 and

Supplementary Table S4. Table 1 shows that the predicted

values were close to the DFT charges. The random forest

regressor gave the correct sign (+ or -) and values similar to

the ESP charges. It was evident that the random forest regressor

model produced can work for small molecules as well as for large

size molecules.

However, it is noted that machine learning charge model can

assigns wrong sign (+ or -) for aliphatic carbon atoms compared

to DFT ESP charges. For example, we considered the charges for

FIGURE 7
Prediction of partial charges for (A) carbon (B) hydrogen, (C) oxygen and (D) nitrogen atoms in the test data set using a random forest regression
model.
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aliphatic molecule (1-Octanol) which are generated using

random forest model and DFT calculation Supplementary

Table S5. It can be seen that C3, C4, C5, C6 and C7 have

positive atomic charge in random forest prediction. Whereas

the atoms C3, C5 and C6 are negative and C4 and C7 are having

positive partial charge in the case of ESP from DFT calculations.

Because all C3, C4, C5, C6 and C7 are sharing similar kind of

bonding environment thus random forest predicts positive

charges for them. The prediction of charges can be improved

by adding a greater number of diverse aliphatic molecules into

the data set to reproduce the ESP of DFT.

Existing small molecule force field generate programs such as

antechamber, CGenFF, ATB and PRODRG produces charges

based on ESP. Antechamber program uses ESP charges from

FIGURE. 8
A few small molecules were selected from test set-2 for the validation of the random forest regression model.

FIGURE 9
Predicted charges vs. DFT charges for (A) test set-1 from the drug-induced liver injury database and (B) test set-2 for known small molecules.
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quantum calculation and produces restrained electrostatic

potential (RESP) using least square fitting method. We have

used antechamber to generate RESP charges for small dataset of

2,700 molecules to train using random forest regression model.

The obtained charge model shows the MSE of 0.027 on the test

set. We have predicted the RESP charges for testset-1 and testset-

2 datasets. The calculated coefficient of determinations are

0.71 and 0.61 Supplementary Figure S3. The model shows

promising result though the trained on a smaller number of

atoms. The model can be improved a lot by incorporating a

greater number of atoms into training set. We will develop a

RESP charge prediction model using greater number of

molecules in the near future.

3.2 Atom type prediction

Categorizing the atoms in a molecule into atom types is

useful to assign the force field parameters. Antechamber

programs were used to generate atom type data for atoms in

the molecules. The trained neural network classifier model

performed well with 98% accuracy on the test data set. The

model identified the atom types based on the provided local

chemical environment around a reference atom. The calculated

confusion matrix produced precision, recall, F1-score and

accuracy for each atom-type prediction. The model could

identify only the following atom types: C, H, O, N, S, P, F, Cl,

and Br. The prediction accuracy for each atom type is given in

Table 2. In Table 2, from c to cy, from h1 to hx, from n to nq,

from o to os, from p3 to py, from s to sy, f, cl and br are atom

types for C, H, N, O, P, S, F, Cl, and Br, respectively. The

definition for each atom type is similar to the generalized amber

force field (GAFF). The model clearly identifies all types of H, O,

F, Cl, and Br atoms with 100% accuracy. Additionally, the sulfur

and phosphorus atom type prediction accuracy was 100%. The

most common aliphatic, cyclic and aromatic atom types of

carbon (c, c1, c2, c3 and ca) and nitrogen (n, n1, n2, n3, na

and nb) were predicted with accuracy above 95%. The

predictions were the least accurate for atom types cf and nf.

However, the model assigns incorrect atom type in the case of sp2

carbons such as cc, cd, ce, cp and cf only with another sp2 carbon

type (cc, cd, ce, cp and cf). All sp2 carbons (nitrogen’s) have the

same van der Waals parameters in GAFF. The same is true in the

case of sp3 carbons and nitrogens. In our force field, atom type

prediction is used to assign van der Waals parameters for the

atoms in a molecule. Therefore, even the incorrect prediction of

atom types would not effect the force field parameters.

To assess the accuracy, the model was used to predict the atom

types for a few small molecules, as shown in Figure 8. The predicted

atom types were comparedwith antechamber-produced atom types;

the results are presented in Table 3 and Supplementary Table S6.

Table 3 and Supplementary Table S6 show that the atom types

predicted by the neural networkmodel were in good agreement with

the predictions of the antechamber program. The neural network

classifier accurately identified the atom types and their chemical

environments. This ensured that the model successfully assigned

atom types for small drug-like molecules.

3.3 Prediction of phase shift angles for
dihedral terms

The phase shift angle is involved in the dihedral energy term,

and it is important to calculate the energy contribution from the

dihedral energy term to the total potential energy. Each dihedral

term had a specific phase angle value and was restricted to the

range between 0° and 180°. The 4.8 million dihedral terms in

31770 molecules were extracted along with their phase angles.

Atomic descriptors were generated for the atoms involved in each

dihedral angle. The calculated dihedral angle values were also

included to train the neural network classifier to predict phase

angles of 0° and 180°. The trained model classified the test data set

as 0° and 180° with 94% accuracy. The predicted values were well

correlated with the parameters generated by the antechamber

program. The incorrect prediction of phase shift angle for

dihedral angle can produces the unwanted angle rotations or

restrictions thus causes changes in the conformation of ligand

compared to GAFF. The phase shift angle is important to retain

the planarity of aromatic ring and conjugated groups in the

molecules. Our phase angle model predicts accurately for these

kinds of molecules and retained the planarity of molecules.

However, phase shift angle model (accuracy 94%) has to be

improved further to avoid the unfavorable conformational

TABLE 1 Comparison of predicted partial charges from the random
forest regression model with DFT charges.

Cyclopentanone Aniline

Atom Random forest DFT Atom Random DFT

O -0.56910 -0.49271 N -0.84978 -0.78174

C -0.06156 -0.04073 C 0.18780 0.35203

C -0.05696 -0.04086 C -0.29226 -0.25455

C -0.15291 -0.19790 C -0.25365 -0.25456

C -0.23938 -0.19782 C -0.06735 -0.10162

C 0.59172 0.54435 C -0.08070 -0.10157

H 0.02416 0.03785 C -0.08311 -0.15603

H 0.04566 0.02639 H 0.16222 0.14008

H 0.04022 0.03786 H 0.14058 0.14009

H 0.05218 0.02643 H 0.13362 0.11626

H 0.08876 0.06753 H 0.13362 0.11625

H 0.08969 0.08105 H 0.13362 0.11343

H 0.07499 0.06753 H 0.36227 0.33594

H 0.07256 0.08101 H 0.37313 0.33595
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changes in the molecules by increasing the number of data points

and feature incorporation in the training dataset.

Neural network model training was conducted with the same

atom features for the inclusion of phase angles for the prediction

of periodicity for dihedral terms. The model performed the

prediction with 93% accuracy. The accuracy for classification

of terms with periodicity 2 and 3 was 96% and 95%, respectively.

The predicted periodicities were retained the structures of

aromatic and other types of molecules. The predicted phase

angles and periodicities were compared with the antechamber-

generated values; they are shown in Supplementary Table S7.

3.4 Generation of topology for a molecule

The concept of using AI algorithms was to generate

parameters and topology for small molecules that generally

did not have parameters in conventional force fields. Few

commercial and noncommercial software packages, such as

ATB (Stroet, et al., 2018), antechamber, CGenFF and PRODG

(Schüttelkopf and Van Aalten, 2004), are available to generate

force field parameters for small molecules. We generated

topologies for small drug-like molecules using machine

learning models to predict atom types, DFT-based partial

charges, phase angles, periodicity and force constants for

bonds, angles and dihedrals. The work flow is shown in

Figure 10. In this study, flow, data collected from a molecule

were used to perform predictions by employing machine learning

and deep learning models. The collected information and

predicted data were used to generate topologies in the format

of used in most MD simulation programs, such as GROMACS

and NAMD.

Topology generation started with the prediction of atom

types for a given molecule. The small molecule force fields like

TABLE 2 Accuracy of the prediction of atom types using a neural network model.

Atomtype Precision Recall f1-score Atomtype Precision Recall f1-score

br 1 1 1 n 1 0.99 0.99

c 1 1 1 n1 0.99 0.99 0.99

c1 0.99 0.97 0.98 n2 0.99 0.96 0.97

c2 0.96 0.98 0.97 n3 1 0.98 0.99

c3 1 1 1 n4 1 0.67 0.8

ca 0.96 0.99 0.98 na 0.99 0.98 0.98

cc 0.82 0.66 0.73 nb 0.92 0.97 0.95

cd 0.72 0.67 0.69 nc 0.75 0.44 0.56

ce 0.72 0.8 0.76 nd 0.74 0.87 0.8

cf 0.58 0.45 0.51 ne 0.66 0.8 0.72

cg 0.7 0.93 0.8 nf 0.17 0.05 0.08

ch 0.43 0.1 0.16 nh 0.96 0.99 0.98

cl 1 1 1 nj 1 1 1

cp 0.57 0.79 0.66 nm 1 1 1

cq 0 0 0 no 1 1 1

cv 0.5 0.5 0.5 np 1 1 1

cx 1 1 1 nq 1 1 1

cy 1 1 1 o 1 1 1

f 1 1 1 oh 1 1 1

h1 1 1 1 op 1 0.83 0.91

h2 1 0.93 0.96 os 1 1 1

h3 1 1 1 p5 1 1 1

h4 1 1 1 py 1 1 1

h5 1 1 1 s 1 1 1

ha 1 1 1 s4 1 1 1

hc 1 1 1 s6 1 1 1

hn 1 1 1 sh 1 1 1

ho 1 1 1 ss 1 1 1

hs 0.97 1 0.98 sx 1 1 1

hx 1 0.25 0.4 sy 1 1 1
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TABLE 3 Comparison of the atom types predicted by the neural network model and antechamber program.

Cyclopentanone Aniline

Atom NN model atom type Antechamber atom type Atom NN model atom type Antechamber atom type

O o o N nh nh

C c3 c3 C ca ca

C c3 c3 C ca ca

C c3 c3 C ca ca

C c3 c3 C ca ca

C c c C ca ca

H hc hc C ca ca

H hc hc H ha ha

H hc hc H ha ha

H hc hc H ha ha

H hc hc H ha ha

H hc hc H ha ha

H hc hc H hn hn

H hc hc H hn hn

FIGURE 10
Workflow of the generation of the topology for small drug-like molecules using machine learning and deep learning models.
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GAFF have limited number of atom types. Each atom type has

corresponding Lennard jones parameters. These parameters

assignment depends on the atom type. The atom type

prediction was done by our model with 98% accuracy with

respect to GAFF. Based on atom types, Lennard jones

parameters were assigned accordingly. Lennard jones

parameters were taken from the GAFF force field. This gives

the correct assignment of Lennard jones parameters to the atoms

in a molecule. Next, the partial charge model predicted atomic

charges for all the atoms in a molecule. The sum of the predicted

atomic charges was not equal to the formal charge of the

molecule. Therefore, charge correction was applied in such a

way that the sum of the predicted charges was subtracted from

the formal charge of the molecule, and the difference was

distributed among all the atoms to make the total charge of

the molecule equal to the sum of the predicted atomic charges.

Furthermore, a list of the bonded atoms and bond lengths was

calculated, and the bond force constants were predicted with the

aid of a trained model. Here, bond lengths from the structure

were used as equilibrium distances for bonds. Subsequently, the

angles and dihedral terms were added to the topology in the

respective sections. Then, the nonbonded 1, 4 pairs for the

molecule were generated by taking the first and fourth atoms

in dihedral angle terms.

Next, we generated improper dihedral angle terms for the

topology file. No tool was used to identify the improper dihedral

angles in small molecules other than current force field

generation programs. In general, improper angles are intended

to maintain the planarity of aromatic and conjugated molecules.

Aromatic and conjugated molecules are predominantly involved

with carbon atoms. Three atoms are bonded to carbon atom that

is involved in a double bond. We generated a list of improper

dihedral angles based on the number of atoms bonded to carbon

atoms and with the extraction of their neighboring atoms.

Eventually, we generated force field parameters for drug-like

molecules within a minute of CPU time. The correct assignment

of partial charges and van der Waals parameters to the atoms

enables the molecules to interact with environment such as water

and protein through nonbonded interactions. The atomic

features are the important in order to understand the

chemical environment which effects partial charges, atom type

and phase angle predictions. The user has to provide proper

molecule structure by adding all hydrogens to heavy atoms

otherwise user may end up with assigning of incorrect

parameters which can collapses molecule structure.

3.5 Validation of the force field

3.5.1 Solvation free energies
To verify the predicted partial charges and other force field

parameters, solvation free energies were calculated for 33 selected

small molecules using the λ-coupling method. This method is

reliable and accurate in the calculation of solvation free energies

and has been used to calculate protein–ligand absolute binding

free energies. The selected 33 molecules contained various

functional groups, including alcohol, thiol, amide, amine,

aldehyde, ketone, nitro, nitrile, and methyl groups and

halogens. Aliphatic chains, aromatic rings and cyclic rings

were also present in the chosen molecules. The calculated free

energies were compared with the experimental free energies; the

results are shown in Supplementary Table S8. The calculated

values were in close agreement with the experimental free

energies. The calculated values were within 2 kcal/mol error

from experimental free energies except for several molecules.

To obtain reasonable free energy values, we introduced charge

corrections to the atoms involved in specific bonds. This was

done based on previous studies where localized bond charge

corrections were added to improve the solvation free energies of

small molecules (Dodda, et al., 2017). Localized bond charge

corrections for few bonds were taken from the literature (Dodda,

et al., 2017), and others were calculated based on a trial and error

approach. The charge corrections for specified bonds are shown

in Supplementary Table S9. Charge corrections were performed

for aliphatic, cyclic and aromatic bonds. The introduction of

charge corrections significantly improved the free energy values,

which were similar to the experimental numbers. The calculated

values are shown in Supplementary Table S8, and they reveal that

the calculated values were similar to the experimental values. It

can be seen that though the incorrect assignment of atomic

charges for carbon atoms in 1-Octanol produces solvation free

energy close to experimental value. Figure 11 shows that the R2

value reached 0.960. Thus, the corrected charges accurately

described the interaction of molecules with the water

environment. We have also compared the calculated solvation

free energies from AI force field, AM1-BCC/GAFF and RESP/

GAFF with experimental values. The calculated solvation free

energies for AM1-BCC/GAFF and RESP/GAFF were taken from

the literature (Shivakumar, et al., 2009) and given in

Supplementary Table S8. The calculated coefficient of

determination for AI force field, AM1-BCC/GAFF and RESP/

GAFF are 0.960, 0.867 and 0.868, respectively. The results shows

that AI force field outperforms the other methods in reproducing

the experimental values. However, further AI force field has to be

tested on large number of molecules and compare with

experimental values. Overall, the machine learning force field

successfully reproduced the experimental free energies, revealing

that the force field was accurate and reliable.

3.5.2 Protein–ligand interactions
To validate the force field parameters generated by the

machine learning force field, MD simulations were performed

for protein and ligand complexes and then compared with the

results of simulations with the GAFF. The complexes were

stable throughout the simulations, and the final snapshots at

250 ns are shown in Figure 12. The ligand was composed of
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aromatic and nonaromatic rings. There were no distortions in

the ligand structure, and it was stable in the pocket. The

surrounding interacting residues for the ligand were the same

in the cases of the machine learning and amber force fields.

However, the atoms involved in hydrogen bond formation

were different in the final snapshots from both force fields.

Additionally, the ligand conformation was slightly different in

the case of the machine learning force field compared to the

GAFF (Figure 12). The calculated root mean square deviations

(RMSDs) for the ligand throughout the simulations are

presented in the Figure 12. Notably, structural changes in

the ligand were not significant in either force field. The

FIGURE 11
Comparison of experimental solvation free energies of small molecules in test set-1 with random forest regression, AM1-BCC and RESP
charges.

FIGURE 12
Simulated structures of proteins related to kinase, covid19 and factor-IX at 250 ns are compared between machine learning force field and
GAFF. The calculated RMSD for the ligands in protein-ligand complex throughout the simulation. Ligand represent in green and red color
corresponds to machine learning and GAFF, respectively.
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average RMSDs of the ligand with respect to the starting

conformation were 1.57 and 1.67 Å for the machine

learning and GAFF force fields, respectively. In addition to

protein kinase, we have performed simulations of 250 ns for

the proteins such as covid 19 (main protease) (pdb id:7L10)

and factor-IX (pdb id: 5TNT). In 5TNT, the ligand binds at the

surface of protein, however, it is stable at the binding site

throughout the simulation. We compared the snapshots of AI

force field and GAFF and it is shown in Figure 12. The

structure of ligand at the binding is not same in both force

field, however the difference is marginal. The ligands are

stable at binding site through interactions with the residues

of protein. The plots show that the there is no significant

structural changes in the ligand with respect to RMSD values.

The stability of complexes derived from the interaction

energy was calculated and shown in the supporting

information. The interaction energy was clearly less for

the machine learning force field than the GAFF.

Furthermore, the electrostatic and van der Waals energy

contributions to the total interaction energy were

calculated, and the results showed that electrostatic

interactions were responsible for the difference in the

interaction energies. The average electrostatic

interaction energies between the protein and ligand were

-17.4 and -30.5 kcal/mol for the machine learning and

GAFF force fields, respectively. The electrostatic

interaction energy was different due to variations in

atomic charges between the machine learning force field

and GAFF. The difference clearly shows that the machine

learning force field should be improved to minimize the

differences in the energies and conformations of the ligand

compared to those obtained using the GAFF. We expect to

study ways to improve the force field by including more

data in the training data set to maximize interactions

between proteins and ligands and enhance the

prediction of phase angles.

4 Conclusion

A force field for small drug-like molecules was generated

using machine learning and deep learning techniques. The

random forest regression based charge model generates

quality atomic charges comparable to DFT based ESP

charges which are suitable for molecular dynamics

simulations. In addition to the charge model, we developed

AI-based models to predict atom types, force constants, phase

angles and periodicities for dihedral terms. The classifications

of atom types, phase angles and periodicity were achieved

successfully with accuracies of 98, 94 and 93%, respectively.

The AI models could able to predict charges and atom types

with high accuracy based on the provided atomic chemical

environment through features around a reference atom. Using

all these models, we developed a module in the pharmulator™
platform that generated topology files for small molecules in

GROMACS and NAMD formats to perform molecular

dynamics simulations. The code generates quality atomic

charges and other compatible force field parameters within

a minute of time. The generated force field parameters for

small molecules reproduces the experimental solvation free

energies with coefficient of determination value of 0.96. The

calculated free energies are better reproduced than AM1-BCC

and RESP charges. Further, the calculated structural changes

in ligand molecules at protein binding sites are comparable

with GAFF results. Overall, the results clearly revealed that the

force field generated by machine and deep learning techniques

was accurate and reliable for use in molecular dynamics

simulations of small molecules as well as for complexes of

proteins and ligands. The machine learning charge model

differs from AM1-BCC and CGenff methods in terms of

methodology and level of theory used to generate atomic

charges. This method could optimize the efficiency and

accuracy of calculations to produce reasonable ESP charges.

Also, DFT calculations to obtain ESP charges were included at

additional computational cost, which increased with the size

of the molecule. Therefore, the rapid prediction of accurate

ESP partial charges, within a minute of time and without

quantum mechanical calculations, would be very helpful in

the drug discovery process.

However, AI based force field models may have certain

limitations that it assigns incorrect sign (+ or -) for aliphatic

carbon atoms compared to ESP charges from DFT. In some

cases, the prediction phase angle for dihedral angle can be

incorrect that may introduce flexibility or rigidity in the

molecules. These limitations can be overcome by adding large

number of diverse aliphatic molecules into training data set. The

increasing of data points and number of features for training of

phase angle model would improve the accuracy to overcome the

limitations.

Generation of force field parameters for ligand molecules

is useful to perform molecular dynamics simulations to

analyzes the interactions and to estimate binding free

energy in implicit and explicit water environment. The

estimation of atomic partial charges of the small molecules

to calculate molecular interaction fields (MIFs) is an

important process in field-based quantitative structure-

activity relationship (QSAR) (Mittal et al., 2009; Gadhe

et al., 2011). The predicted DFT based charges could also

be useful to incorporate in docking calculations to perform

virtual screening (Cho et al., 2005).
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