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  Reperfusion after myocardial ischemia can induce cardiomyocyte death, known as myocardial reperfusion inju-
ry. The pathophysiology of the process of reperfusion suggests the confluence multiple pathways. Recent stud-
ies have focused on the inflammatory response, which is considered to be the main mechanism during the 
process of myocardial ischemia-reperfusion injury and can cause cardiomyocyte apoptosis. Peroxisome prolif-
erator-activated receptors gamma activated by endogenous ligands and exogenous ligand can decrease the 
inflammatory response in cardiomyocytes. Thiazolidinediones are synthetic, high-affinity, selective ligands for 
peroxisome proliferator-activated receptors gamma, and can inhibit the inflammatory response, decrease myo-
cardial infarct size, and protect cardiac function. However, thiazolidinediones, including rosiglitazone and piogl-
itazone, can also contribute to adverse cardiovascular events such as congestive heart failure. Therefore, there 
are some limitations to the use of thiazolidinediones. Most endogenous ligands were of low affinity until hexa-
decyl azelaoyl phosphatidylcholine was identified as a high-affinity ligand and agonist for peroxisome prolifer-
ator-activated receptors gamma. Hexadecyl azelaoyl phosphatidylcholine binds recombinant peroxisome pro-
liferator-activated receptors with an affinity (Kd(app) ≈40 nM) which is equivalent to rosiglitazone. Therefore, 
hexadecyl azelaoyl phosphatidylcholine is a specific peroxisome proliferator-activated receptors gamma ago-
nist. Given these findings, we hypothesized that the use of hexadecyl azelaoyl phosphatidylcholine can acti-
vate the peroxisome proliferator-activated receptors gamma signal pathways and prevent the inflammatory 
response process of myocardial ischemia-reperfusion injury, with reduced cardiomyocyte apoptosis and death.
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Background

Acute myocardial infarction (MI) remains a main public health 
problem worldwide, with high mortality and morbidity [1,2]. 
The Global Health Observatory data from the World Health 
Organization show that more than 7 million people each year 
are estimated to die due to ischemia heart disease, especial-
ly acute myocardial infarction [3].

Acute ischemia leading to infarction is associated with a rapid 
sequence of pathologic changes that can result in irreversible 
cardiomyocytes damage, apoptosis, and necrosis [4], with sub-
sequent segmental ventricular remodeling and expansion [5]. 
If the pathologic changes are not prevented, AMI may cause 
heart failure, arrhythmias, ventricular aneurysm formation, 
ventricular rupture, cardiogenic shock, and cardiac arrest [6,7]. 
Researchers have found many cardioprotective methods to re-
duce cardiomyocyte apoptosis caused by AMI [8]. Immediate 
and prompt reperfusion therapy by percutaneous coronary 
intervention (PCI) or thrombolysis can reduce acute myocar-
dial ischemia injury, decrease in-hospital mortality, and im-
prove the long-term outlook in survivors of the acute phase. 
However, reperfusion following ischemia increases the infarct 
size and induces further cardiomyocyte death, a phenomenon 
known as myocardial reperfusion injury. Irreversible cell inju-
ry leading to necrosis and apoptosis may be precipitated by 
reperfusion [9,10].

Over the past 2 decades, researchers have found cardiopro-
tective methods to prevent reperfusion injury by ischemia pre-
conditioning and postconditioning, as well as remote precon-
ditioning and postconditioning. Although the effectiveness of 
ischemia preconditioning and postconditioning for protecting 
ischemia myocardium has been demonstrated [11–13], there 
are at present no preconditioning and postconditioning-based 
therapies routinely used in clinical medicine [14].

Moreover, there is still no effective drug to prevent myocar-
dial reperfusion injury. In this respect, myocardial reperfusion 
injury remains a neglected therapeutic target for cardiopro-
tection in PCI patients. With significant research advances in 
the pathophysiology of myocardial ischemia-reperfusion inju-
ry (myocardial I/R injury), the possibility of pharmacological 
interventions against reperfusion injury have been proposed. 
Studies on the pathophysiology of myocardial I/R injury impli-
cate multiple pathways, including ion channels, reactive oxy-
gen species, inflammation, and endothelial dysfunction [15]. 
Many recent studies have focused on inflammatory response, 
which is considered to be the main mechanism during the pro-
cess of myocardial ischemia/reperfusion (I/R) injury, and which 
can cause cardiomyocyte apoptosis [16,17].

Drug treatment options for preventing myocardial ischemia-
reperfusion injury are therefore urgently needed. Our under-
standing of the underlying inflammatory mechanisms that can 
lead to cardiomyocyte apoptosis and myocardial necrosis en-
abled us to propose a novel therapeutic strategy that may help 
break the link between myocardial ischemia-reperfusion and its 
inflammatory response resulting in cardiomyocyte apoptosis.

The Hypothesis

We hypothesized that interfering with the inflammatory cas-
cade, which is a process secondary to myocardial ischemia-
reperfusion, will reduce cardiomyocyte apoptosis. By activat-
ing the peroxisome proliferator-activated receptors gamma 
(PPARg), which play a key role in preventing the inflammato-
ry process cascade, the use of hexadecyl azelaoyl phosphati-
dylcholine as the endogenous ligands of PPARg and a specific 
PPARg agonist in myocardial I/R injury will reduce cardiomyo-
cyte apoptosis caused by reperfusion, and could prevent com-
plications such as heart failure, arrhythmias, ventricular rup-
ture, aneurysm formation, cardiogenic shock, and cardiac arrest.

Evaluation of Hypothesis

Inflammation is associated with myocardial ischemia-
reperfusion injury

Myocardial ischemia-reperfusion can lead to cardiomyocyte 
apoptosis and necrosis, consequently reducing cardiac func-
tion and influencing the effects of therapeutics and progno-
sis. Although reperfusion injury is one of the main causes 
of cardiomyocytes death and heart failure, the exact patho-
physiological mechanism underlying myocardial ischemia-re-
perfusion injury is not fully understood. The underlying path-
ological mechanisms are triggered when reperfusion injury 
occurs, and the pathophysiology mechanism is also complicat-
ed. A growing number of studies show that myocardial injury 
due to ischemia-reperfusion can be controlled and prevent-
ed, which has stimulated in-depth study of the mechanisms 
of cardioprotection. Accumulating evidence suggests that the 
underlying mechanisms responsible for ischemia-reperfusion 
injury include intracellular calcium overload [18,19], produc-
tion of free oxygen radicals [20–22], oxidative stress [23,24], 
excessive reactive oxygen species (ROS) generation, immune 
cells [25,26], release of cytokines, inflammation [27], neutro-
phil infiltration and adhesion, and endothelial cell dysfunc-
tion [28]. All of these pathological processes finally contribute 
to cardiomyocyte apoptosis and death, as well as myocardi-
al necrosis, leading to decreased cardiac contractility and car-
diac function [29,30].
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Recently, a number of studies supported that the inflamma-
tory response is one of the major mechanisms involved and 
plays a pivotal role in the pathogenesis of myocardial I/R in-
jury [31,32]. It has also been demonstrated that the inhibi-
tion of targeting inflammation significantly reduced myo-
cardial I/R injury [33,34]. It was reported that the pathologic 
process of myocardial I/R injury was an acute inflammatory 
reaction, which can then cause multiple pathological chang-
es, including acute inflammatory cascade response, cell apop-
tosis, and death. The inflammatory response in the process 
of myocardial I/R is closely linked with neutrophil infiltration 
and cytokine release. When reperfusion injury occurs, the ex-
pression of pro-inflammatory factors, adhesive molecules, cy-
tokines, and chemokines can also be up-regulated and then 
induce cell apoptosis. Many researches showed that neutro-
phil infiltration and the release of inflammatory cytokines are 
2 key contributors to myocardial I/R injury [35,36]. The ear-
ly reperfusion period is characterized by a burst of infiltration 
of larger populations of neutrophils and monocytes/macro-
phages [37,38]. The accumulation of neutrophils is mediat-
ed by special adhesion molecules released from the vascular 
endothelium. The interaction between neutrophils and adhe-
sion molecules begins in the early period of reperfusion and 
it may continue for hours and days after reperfusion [32,39]. 
Following the accumulation of neutrophils, numerous patho-
logical processes of inflammatory chain reaction are triggered. 
These activated neutrophils and monocytes/macrophages pro-
mote the release of multiple pro-inflammatory cytokines such 
as interleukin (IL)-1b, IL-6, IL-8, IL-23 [40–42], tumor necrosis 
factor alpha (TNF-a) [43,44], PAF, and complement and leu-
kotrienes in myocardial tissue [45]. These inflammatory cyto-
kines may accelerate the inflammatory cascade by increasing 
the releases of other pro-inflammatory cytokines such as che-
mokines and adhesion molecules, recruiting neutrophils and 
monocytes/macrophages [46], and amplifying the inflamma-
tory response [47–49]. The triggered inflammatory signaling 
after reperfusion also simultaneously activates key transcrip-
tion factors such as NF-kB [50], JAK-STAT [51]. These activated 
transcription factors conversely enhance the overexpression 
of many important inflammatory cytokines, including TNF-a, 
IL-1b, IL-6, and IL-8 [52–54]. Excessive generation of inflam-
matory cytokines injures the myocardial tissue, not only by 
triggering harmful responses, but also by magnifying respons-
es to establish a chain of injury [55]. This chain response can 
also result in vascular endothelial cell injury, exacerbate vas-
cular permeability, and further activate inflammatory cells, re-
sulting in further inflammatory response [55]. Many studies 
have suggested that inhibition of the inflammatory response 
decreases myocardial injury caused by I/R in various animal 
trials [56–58]. Therefore, inhibition of the inflammatory re-
sponse may be a promising therapeutic strategy for attenuat-
ing myocardial I/R injury.

Inflammation is one of major causes of cardiomyocyte 
apoptosis

As we discussed above, inflammation is the major mechanism 
of myocardial I/R injury, and the release of inflammatory cy-
tokines and the transcription factors are 2 key contributors 
to the inflammatory response, which could cause apoptosis 
in myocardial I/R injury. Apoptosis can be induced by activat-
ing death receptors, including Fas, TNF receptors (TNFR), DR3, 
DR4, and DR5, by their specific ligands. TNF receptors, includ-
ing TNF receptor 1(TNFR1) and TNF receptor 2 (TNFR2), as a 
member of TNF receptor superfamily that contains a cell death 
domain, is one of the classic pathways which initiate a death 
signal. Tumor necrosis factor alpha (TNF-a) is not only an in-
flammatory cytokine, but also is a ligand that can bind with 
TNF receptors. Tumor necrosis factor alpha (TNF-a), as a death 
receptor ligand, characteristically triggers signaling by recep-
tor recruitment, which conversely leads to the recruitment of 
specific adaptor proteins and activation of the caspase chain. 
TNFR1, after ligation with TNFa, induces TNF trimerization, 
which can activate initiator caspase-8 through the adaptor pro-
tein TRADD and initiate an apoptotic signaling cascade [59,60]. 
TNF-a is chiefly produced by activated macrophages. During 
the early myocardial reperfusion period, large populations of 
macrophages appear, producing large amounts of TNF-a. The 
release of TNF-a may accelerate the inflammatory cascade by 
increasing chemokines, adhesion molecules, NF-kB, and JAK-
STAT, and recruiting neutrophil and monocytes/macrophages, 
and amplify the inflammatory response [46–49]. Many stud-
ies have shown that inhibition of the inflammatory response 
can reduce cardiomyocyte apoptosis in the pathological pro-
cess of myocardial I/R injury.

PPARg plays an important role in inflammatory response

Previous studies have demonstrated that the inflammatory 
response is one of the major mechanisms and plays a pivotal 
role in cardiomyocyte apoptosis in the pathogenesis of myo-
cardial I/R injury. Therefore, the most effective treatments for 
myocardial ischemia-reperfusion (I/R) injury should be inhib-
iting of inflammatory response. With the in-depth study of 
the molecular mechanism of myocardial I/R injury, PPARg has 
been recognized as an important regulator of the anti-inflam-
matory response. PPARg is a member of the nuclear receptors 
superfamily and is also a ligand-activated transcription fac-
tor. Although PPARg is highly expressed in adipose tissue, it is 
also detected in vascular smooth muscle cells [61,62], cardio-
myocytes [63,64], endothelial cells [65], and monocytes and 
macrophages [66,67]. According to published studies, PPARg 
has been involved in widespread pathological alterations of 
many diseases, including metabolic disorders, inflammation, 
the balance of immune cells, apoptosis and oxidative stress, 
and endothelial dysfunction [68–72]. Recently, based on the 
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above-mentioned biological functions, PPARg has been re-
ported to be a promising therapeutic target against myocar-
dial I/R injury [73].

More recent studies have demonstrated that PPARg plays an 
anti-inflammatory role by inhibiting inflammatory cell recruit-
ment and infiltration of neutrophils and monocytes/macro-
phages [74]. The upregulation of PPARg gene expression could 
also reduce the gene expression of pro-inflammatory cyto-
kines (such as IL-1b, IL-6, IL-8, IL-23, TNF-a, adhesive mole-
cules, chemokines, and leukotrienes) by negatively regulating 
the NF-kB, STAT, and AP-1 signaling pathways [75], inhibiting 
inflammatory response and cardiomyocyte apoptosis in myo-
cardial I/R injury.

The NF-kB and JAK-STAT signaling pathways play a central role 
in myocardial I/R injury. There are 2 key transcription factors 
that can regulate expression of many genes of pro-inflamma-
tory cytokines, such as TNF-a, IL-1b, IL-6, and IL-8. These fac-
tors can also be activated by pro-inflammatory cytokines and 
inflammatory cells. This may form a vicious cycle, and the in-
flammatory response is endlessly amplified and further induces 
myocardial injury and cell death. Many studies have suggest-
ed that inhibition of the NF-kB and JAK-STAT signaling path-
ways in cardiomyocytes has a cardioprotective effect on myo-
cardial ischemia-reperfusion injury [76,77]. In addition, PPARg 
can negatively regulate NF-kB and JAK-STAT signaling path-
ways in various pathological processes [78,79].

Many studies in animal models have demonstrated that the 
distinct agonists of PPARg can attenuate inflammation of myo-
cardial I/R injure, reduce cardiomyocyte apoptosis, and then 
improve myocardial function [80]. A rodent model of myocar-
dial ischemia and reperfusion injury showed that treatment 
with the 15-deoxy-[DELTA]12, 14-prostaglandin J2, which is 
an endogenous ligand of PPARg, can reduce neutrophil infil-
tration, pro-inflammatory cytokine production, NF-kB activa-
tion, and myocardial injury by increasing PPARg DNA bind-
ing [81,82]. Wayman et al. found that 15D-PGJ2 also reduces 
expression of adhesion molecules ICAM-1, P-selectin, chemo-
kine macrophage chemotactic protein 1, and inducible isoform 
of nitric oxide synthase [83]. Another study using a mouse 
model of myocardial ischemia and reperfusion injury showed 
that quercetin via PPARg activation reduces myocardium ox-
idative damage and apoptosis, and also inhibited the activa-
tion of the NF-kB pathway [84]. Rosiglitazone, as the chemical 
synthetic agonist of PPARg, which is commonly used in treat-
ment of diabetes, can reduce the accumulation of neutrophils 
and macrophages in myocardial I/R injury. Rosiglitazone can 
also markedly attenuate intercellular adhesion molecule-1 ex-
pression in myocardial I/R injury, and improve contractile dys-
function caused by ischemia/reperfusion injury in a rat mod-
el [84]. In a hypercholesteremic rabbit model of myocardial 

ischemia-reperfusion injury, rosiglitazone enhanced the acti-
vation of ERK1/2, decreased the activation of a pro-apoptot-
ic MAPK, p38, restored a beneficial balance between pro- and 
anti-apoptotic MAPK signaling, and further reduced myocar-
dial apoptosis [85].

Hexadecyl azelaoyl phosphatidylcholine can inhibit the 
inflammatory response by activating PPARg

PPARg belonged to the nuclear receptor family of ligand-ac-
tivated transcription factors that exert important roles in 
various pathological processes, especially in inflammatory 
response in myocardial I/R injury. As we discussed above, li-
gand-activated PPARg can inhibit the inflammatory response 
and protect cardiac function, particularly during the process 
of myocardial I/R injury. PPAR-g can be activated by a variety 
of ligands and activators, mainly endogenous ligands and ex-
ogenous ligands. There are various potential endogenous li-
gands for PPARg, including long-chain polyunsaturated fatty 
acids (e.g., linoleic acid, gamolenic acid, docosahexanoic acid, 
eicosapentaenoic acid, and arachidonic acid) [86,87], 15-de-
oxy D12 [88], 14-and eicosanoids (e.g., modified oxidized lip-
ids [9-and 13-hydroxyoctadecadienoic acid (9- and -HODE) and 
12- and 15-hydroxyeicosatetraenoic acid (12- and 15- HETE)]) 
[88]. Among all endogenous ligands, 15d-PGJ2 has received the 
most research attention [89]. However, none of these endoge-
nous ligands have particularly effective agonists. Most endog-
enous ligands are of low affinity, and about 100 micromolar 
concentrations of those ligands are often required to activate 
PPARg [90]. For example, as the PPARg agonist, 15-deoxy-PGJ2 
(2, 3) is unlikely to accumulate in vivo, and it has been report-
ed scant 15-deoxy-PGJ2 actually exists in commercial sources 
of this reactive and unstable lipid [91].

In addition to natural ligands, PPARg also has a number of 
synthetic high-affinity ligands that could easily be used to 
trigger the transcriptional activities of the PPARg in cells. 
Thiazolidinediones (TZDs), or the glitazone class as the PPARg 
agonists, are widely prescribed as an insulin sensitizer in the 
treatment of type II diabetes. The TZDs include pioglitazone, 
ciglitazone, rosiglitazone, and troglitazone. Troglitazone is the 
first drug developed for treating diabetes, followed by rosigl-
itazone and pioglitazone. The mechanism of action by which 
TZDs activate PPARg as the high-affinity ligand was first found 
by Lehmann in 1995, and TZDs were also proved that the most 
effective of these agents (BRL49653) bound with PPAR gam-
ma with a Kd of approximately 40 nM [92,93]. Animal exper-
iments on the pharmacological effects of TZDs have shown 
that TZDs have high affinity when binding with PPARg, and 
that pioglitazone can reduce the mRNA expression of mono-
cyte chemoattractant protein-1 (MCP-1) and intercellular ad-
hesion molecule-1 in the ischemia region, and the number of 
infiltrating macrophages in the ischemia region. Pioglitazone 
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can significantly inhibit the inflammatory response, decrease 
the myocardial infarct size by activating PPARg, and further 
protect cardiac function [84,94].

Although TZDs are full agonists of PPARg, which have antidi-
abetic efficacy, they have been associated with adverse ef-
fects, including weight gain [95], edema, hemodilution, bone 
fractures [96], plasma-volume expansion [97,98], congestive 
heart failure [97], and increased risk of adverse cardiovascu-
lar events. Troglitazone was withdrawn from the market due 
to the emergence of serious hepatotoxicity in some patients 
[99]. Rosiglitazone was later withdrawn in Europe and its ap-
plication was limited in the United States because of an in-
creased risk of myocardial infarction [101–103].

As we discussed above, although there are many endogenous 
ligands that can activate PPARg, because of low affinity and 
difficulty accumulating them in vivo, they are not effective and 
specific agonists for PPARg in myocardial ischemia reperfusion 
injury at the current time. TZDs are synthetic high-affinity ag-
onists of PPARg, and can inhibit the inflammatory response by 
activating PPARg, as demonstrated in a variety of animal mod-
els; however, the use of TZDs in treating the myocardial isch-
emia-reperfusion injury is restricted due to the adverse effect 
of increasing risk of cardiovascular disease. Thus, it is urgent 
to find novel, high-affinity, safe, effective agonists of PPARg 
to interfering with myocardial ischemia-reperfusion injury.

Researchers at the University of Utah recently identified 
hexadecyl azelaoyl phosphatidylcholine the small pool of al-
kyl phosphatidylcholines in oxLDL, which was recognized as a 
high-affinity ligand and agonist for PPARg. Using the synthetic 
hexadecyl azelaoyl phosphatidylcholine, the researchers fur-
ther studied its ability to bind with PPARg, and found that the 

binding ability was dependent on concentration, with appar-
ent affinity ≈40 nM. Hexadecyl azelaoyl phosphatidylcholine 
bound recombinant PPARg with an affinity(Kd(app) ≈40 nM), 
which was equivalent to that of rosiglitazone. The study also 
verified that hexadecyl azelaoyl phosphatidylcholine efficient-
ly accumulates in human monocytes and then exerts its ef-
fects intracellularly [104].

Studies have demonstrated that using hexadecyl azelaoyl phos-
phatidylcholine can reduce the cardiomyocytes apoptosis in 
myocardial I/R injure. Davies et al. found that hexadecyl az-
elaoyl phosphatidylcholine can enhance CD36 expression in 
CV-1 cells through endogenous receptors by nearly 3-fold [104]. 
Huynh et al. found that activating CD36 signaling, which can 
lead to activation of PPARg, reduced infarct size by 54% and 
preserved hemodynamics in C57BL/6 mice subjected to 30-
min coronary ligation and reperfusion [105].

Conclusions

The purpose of the study was to develop an effective ther-
apeutic approach and a new cardioprotective drug for myo-
cardial ischemia-reperfusion injury in order to reduce cardio-
myocyte apoptosis. Hexadecyl azelaoyl phosphatidylcholine 
can inhibit inflammation of myocardial ischemia-reperfusion 
injury by activating PPARg, reduce the cardiomyocytes apop-
tosis, and further improve the cardiac function. Therefore, it 
could be a potentially beneficial treatment drug for individu-
als with myocardial ischemia-reperfusion injury.
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