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Within the eukaryotic nucleus the genomic DNA is organized into chromatin by stably
interacting with the histone proteins as well as with several other nuclear components
including non-histone proteins and non-coding RNAs. Together these interactions
distribute the genetic material into chromatin subdomains which can exhibit higher and
lower compaction levels. This organization contributes to differentially control the access
to genomic sequences encoding key regulatory genetic information. In this context,
epigenetic mechanisms play a critical role in the regulation of gene expression as they
modify the degree of chromatin compaction to facilitate both activation and repression of
transcription. Among the most studied epigenetic mechanisms we find the methylation
of DNA, ATP-dependent chromatin remodeling, and enzyme-mediated deposition and
elimination of post-translational modifications at histone and non-histone proteins. In this
mini review, we discuss evidence that supports the role of these epigenetic mechanisms
during transcriptional control of osteoblast-related genes. Special attention is dedicated
to mechanisms of epigenetic control operating at the Runx2 and Sp7 genes coding for
the two principal master regulators of the osteogenic lineage during mesenchymal stem
cell commitment.
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INTRODUCTION

Osteoblast lineage commitment is regulated by a coordinated set of extra cellular stimuli and
developmentally-regulated signaling pathways, including those mediated by bone morphogenic
proteins (BMPs), Wnt-ligands, steroid hormones, and growth factors, among others (Li et al., 1998;
Nishimura et al., 1998; Drissi et al., 2000; Yamaguchi et al., 2000; Zhang et al., 2008). Following
activation in pre-osteogenic cells, these signaling pathways modulate the expression and function
of osteoblast master transcription factors, which in turn control the expression of downstream
bone-phenotypic genes, thus establishing the osteoblastic cell component of the mammalian
skeleton (Stein et al., 2004; Long, 2012). Although the precise molecular mechanisms associated
with transcriptional control of these osteoblast-related genes are still far from being completely
understood, significant progress has been made during the last two decades.

We discuss research demonstrating the role of epigenetic mechanisms in controlling gene
transcription during mesenchymal cell commitment to the osteogenic lineage. We first overview
key components of epigenetic mechanisms that control gene expression in mammals and then
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describe how these epigenetic processes contribute to regulate
transcription of the Runx2 and Sp7 genes, two critical osteogenic
master regulators.

GENERAL OVERVIEW OF EPIGENETIC
CONTROL IN MAMMALS

Nuclear DNA is organized as chromatin. Nucleosomes are the
fundamental units of this chromatin and are composed of an
approximately 147 bp DNA segment wrapped around an octamer
of histone proteins (two each of histones H2A, H2B, H3, and H4)
(Ramakrishnan, 1997; Richmond and Davey, 2003). A portion
of these histone proteins (N-terminus tail) extends beyond the
limits of the particle core, providing additional surfaces for
interaction with nuclear proteins that regulate transcription
(Strahl and Allis, 2000; Bannister and Kouzarides, 2011; Voigt
et al., 2013). As specific residues (e.g., lysines and arginines)
within these histone tails are subject to extensive enzymatic
post-translational modifications, the potential for modifying
the chemical environment surrounding the chromatin fibers
represents a key regulatory component during gene expression
control (Bannister and Kouzarides, 2011). The genomic DNA can
be also enzymatically modified affecting the degree of compaction
of chromatin. Increased condensation reduces the possibility
that specific regulatory DNA sequence motifs are recognized by
transcription factors that control transcription (Franchini et al.,
2012; Bogdanović and Lister, 2017).

Molecular components that regulate chromatin organization
and transcription are critical players during cell differentiation.
Among them the large group of “histone post-translational
modifications” (HPTMs), which are considered a principal
“epigenetic” mechanism (Bannister and Kouzarides, 2011;
Shilatifard, 2012; Voigt et al., 2013). HPTMs may function
as docking sites on the chromatin fiber surface that can
be recognized by regulatory proteins (“epigenetic readers”)
that contain specific complementary domains (e.g., chromo-
domains interact with methylated histone lysine residues) (Voigt
et al., 2013; Venkatesh and Workman, 2015). A number of
protein complexes that are capable of mediating deposition
(“epigenetic writers”) or elimination (“epigenetic erasers”) of
HPTMs have been identified in eukaryotic cells. Importantly,
most of the core subunits of these complexes are evolutionary
conserved (Dimitrova et al., 2015; Piunti and Shilatifard, 2016;
Jambhekar et al., 2019), indicating that their functions during
gene expression control are also conserved across species.

Genetic studies allowed the identification of the Polycomb
Group (PcG) and the Trithorax Group (TrxG) complexes,
which mediate inhibition and activation of transcription,
respectively, during embryogenesis (Ringrose and Paro,
2007). One signature property of the evolutionary conserved
PcG complexes PRC1 and PRC2 (Polycomb Repressive
Complex 1 and 2) is to mediate the formation of repressed
chromatin. In mammals, PRC2 includes as main subunits
Enhancer of Zeste Homolog 2 or 1 (Ezh2/Ezh1), Suppressor
of Zeste 12 (Suz12), and Embryonic Ectoderm Development
(Eed) (Piunti and Shilatifard, 2016; Yu et al., 2019). Ezh2

(or alternatively Ezh1) is the main catalytic component of
PRC2 mediating tri-methylation of the lysine 27 residue of
histone H3 (H3K27me3), modification that is associated with
transcriptionally silent chromatin (Voigt et al., 2013; Piunti and
Shilatifard, 2016).

Several mammalian TrxG complexes, including COMPASS
(Complex of Proteins Associated with Set1a/b) and the Mixed
Lineage Leukemia (MLL1–5)-containing COMPASS-like
complexes have been reported (Shilatifard, 2012). TrxG-
mediated activity involves mono-, di-, and tri-methylation of
the lysine 4 residue of histone H3 (H3K4me1, H3K4me2,
and H3K4me3). H3K4me3 is often found enriched at
transcriptionally active chromatin (euchromatin), mainly around
the transcription start sites (TSSs) of promoters. Moreover,
H3K4me3 can be recognized by the RNA polymerase II complex,
hence facilitating transcriptional activity at H3K4me3-marked
gene promoters (Vermeulen et al., 2007). Set1-COMPASS
and MLL-COMPASS-like complexes include the Wdr5 (WD
Repeat Domain 5) subunit which has been shown necessary
for assembly, stability and optimal enzymatic activity of these
complexes (Shilatifard, 2012). Interestingly, some of these
histone-methylating complexes also include enzymatic activities
that can remove other histone marks. For instance, MLL3/4-
COMPASS-like that also contains the H3K27me3 demethylase
Utx/Kdm6a (Piunti and Shilatifard, 2016). Hence, binding of
MLL3/4-COMPASS-like to a particular genomic region can also
result in reduced H3K27me3, an epigenetic signature associated
with decreased transcription (Voigt et al., 2013; Piunti and
Shilatifard, 2016).

Set1-COMPASS mediates global genomic deposition of
H3K4me3 in most mammalian cells and therefore its function
is tightly associated with transcriptional activation of a large
number of genes. MLL2-COMPASS-like has been shown
responsible for H3K4me3 deposition at promoters in embryonic
stem cells (ESCs), contributing to transcriptional upregulation of
homeobox genes (Denissov et al., 2014). Interestingly, MLL3/4-
COMPASS-like can catalyze the deposition of H3K4me1 at
enhancer elements in mammalian cells (Hu et al., 2013; Yan
et al., 2018). Recent results from several teams, however, also
show that MLL3/4 complexes can mediate the maintenance of
the H3K4me1 mark at proximal promoter regions of repressed,
but poised for expression, genes (Cheng et al., 2014; Rojas
et al., 2015, 2019; Aguilar et al., 2016; Sepulveda et al.,
2017a; Local et al., 2018). Moreover, MLL3/4 depletion results
in transcriptional activation of some MLL3/4-target genes as
both Set1a/b-COMPASS and MLL1-COMPASS-like gain access
to these genes to mediate the transition from H3K4me1 to
H3K4me3 that accompanies transcription (Cheng et al., 2014).
Together, these studies imply that different COMPASS and
COMPASS-like complexes bind to target sequences in a highly
coordinately manner to first maintain a gene silent, but poised
for transcription, and subsequently to activate its expression.

Chromatin domains with decreased enrichment of H3K4me3
or H3K27me3 can also be maintained through the activity
of lysine demethylases (Dimitrova et al., 2015; Jambhekar
et al., 2019). In particular, demethylation of H3K4me3 in
mammals is mediated by members of the Jarid1/Kdm5 family

Frontiers in Cell and Developmental Biology | www.frontiersin.org 2 January 2021 | Volume 8 | Article 611197

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-08-611197 December 24, 2020 Time: 17:12 # 3

Montecino et al. Epigenetics of Osteoblast Differentiation

(Jarid1a, b, c, and d) (Kooistra and Helin, 2012), which
convert H3K4me3 and H3K4me2 to H3K4me1 (Christensen
et al., 2007; Iwase et al., 2007; Yamane et al., 2007). Absence
of these enzymes can result in enrichment of H3K4me3
at target genes and transcriptional activation (Albert et al.,
2013; Rojas et al., 2015). On the other hand, histone
demethylases Utx/Kdm6a and Jmjd3/Kdm6b can catalyze the
removal of methyl groups from H3K27me3 and therefore
counteract the silencing activity of PRC2 (Agger et al., 2007;
Hong et al., 2007; Lan et al., 2007; Santa et al., 2007;
Xiang et al., 2007).

Methylation at H3K9 (H3K9me1, H3K9me2, and H3K9me3)
is strongly associated with the formation of highly compacted
and transcriptionally repressed chromatin (heterochromatin)
(Saksouk et al., 2015; Nicetto and Zaret, 2019). The methyl-
transferases that deposit this modification (“H3K9me
writers”) include Suv39H1/Kmt1a, Suv39H2/Kmt1b and
Setdb1/ESET/Kmt1e, which can mediate mono-, di-, and tri-
methylation. Also, G9a/Ehmt2/Kmt1c and GLP/Ehmt1/Kmt1d,
which mediate H3K9me1 and H3K9me2 (Saksouk et al.,
2015; Nicetto et al., 2019). All of these enzymes are critical
components of several transcription repressive complexes
that operate during cell differentiation (Nicetto et al., 2019).
The H3K9 methyl-transferase activity is counteracted by
H3K9 demethylases, that remove these marks (“H3K9me1/2/3
erasers”) (Janssen et al., 2018). Among them, Lsd1/Kdm1,
Jmjd1a/Kdm3a, Jmjd1c/Kdm3c, which can eliminate
H3K9me1 or H3K9me2, and Jmjd2a/Kdm4a, Jmjd2b/Kdm4b,
Jmjd2c/Kdm4c, and Jmjd2d/Kdm4d, which erase H3K9me1,
H3K9me2, and H3K9me3.

Chromatin organization and transcriptional activity is also
mediated by ATP-dependent remodelers (Horn and Peterson,
2001; Bakshi et al., 2010; Längst and Manelyte, 2015), which
are multi-subunit complexes that include a catalytic core
(e.g., Brg1 in the mammalian SWI/SNF and INO80 in the
INO80 complex) mediating binding and hydrolysis of ATP
(ATPase activity) (Tsukiyama, 2002; Martens and Winston,
2003). These remodelers alter chromatin structure by mobilizing
nucleosomes in cis or by transferring histone octamers in
an ATP-dependent manner. This changes the exposure of
regulatory motifs thereby facilitating or preventing recognition
by cognate factors (Liu et al., 2011). The contribution of ATP-
dependent remodelers during development and differentiation
is well-established (Srivastava et al., 2010; Ruijtenberg and
van den Heuvel, 2016). Whereas these complexes can be
specifically recruited to gene promoters by tissue-specific
transcription factors (Armstrong et al., 1998; Serna et al.,
2001), several reports also indicate that their targeting is
modulated by HPTMs, including histone lysine acetylation and
histone arginine methylation (Kanno et al., 2004; Pal et al.,
2004). This regulation is due to the presence of bromo- and
chromo-domains at subunits of these complexes (e.g., SWI/SNF
and CHD3/4) that recognize these modified histone residues
(Becker and Workman, 2013).

Genomic DNA can be methylated at cytosines that are
followed by guanosines (CpG dinucleotides). The DNA
methyl-transferases that mediate this modification belong

to a well-conserved family of proteins that include both
maintenance (Dnmt1) and de novo (Dnmt3a and Dnmt3b)
activities (Franchini et al., 2012; Bogdanović and Lister, 2017).
Most reports demonstrate that methylated CpG is associated
with higher chromatin compaction and reduced transcriptional
activity (Franchini et al., 2012; Bogdanović and Lister, 2017).
DNA demethylation in mammalian cells involves the conversion
from 5-methyl-CpG (5mCpG) to 5-hydroxymethyl-CpG
(5hmCpG) by the activity of the Ten Eleven Transformation
(Tet) family of dioxygenases (Tahiliani et al., 2009; Ito et al.,
2010; Bogdanović and Lister, 2017). Importantly, Tet proteins
form regulatory complexes with chromatin remodelers like
SWI/SNF as well as with histone methyl-transferases and
histone demethylases (Williams et al., 2011; Yildirim et al., 2011;
Neri et al., 2013).

Enrichment of H3K9me3/2 at transcriptionally-inactive
chromatin can be associated with the presence of 5mCpG. This
is due to the ability of the proteins that “write” and “read” these
two epigenetic marks to form complexes (Janssen et al., 2018;
Nicetto and Zaret, 2019) thereby providing a means for both
repressive epigenetic modifications (5mCpG and H3K9me3)
to collaborate in generating a condensed chromatin structure
that reduces transcription. These findings further indicate
that different epigenetic mechanisms leading to chromatin
remodeling and transcriptional control can function in a
coordinated and complementary manner within eukaryotic cells,
allowing an effective regulation of gene expression in response to
physiological cues.

EPIGENETIC CONTROL OF THE
EXPRESSION OF MASTER
REGULATORS OF OSTEOGENESIS

Differentiation of mesenchymal stem cells (MSCs) to the
osteogenic lineage requires the expression and function of two
master transcription factors: Runx2 (Runt Related Transcription
Factor 2) and Sp7 (also known as Osterix). These factors
bind to and control the expression of numerous downstream
target genes that code for proteins that are necessary for
establishing the osteoblast phenotype (Zhang, 2010; Sinha
and Zhou, 2013; Meyer et al., 2014; Wu et al., 2014).
Runx2 and Sp7 are expressed at early embryonic stages of
the mesenchyme-osteoblast lineage commitment process and
optimal concentrations of both factors in pre-osteogenic cells
is essential for proper osteoblast differentiation (Long, 2012).
Runx2 binds to and activates the Sp7 promoter (Yoshida et al.,
2012), indicating that Runx2 is an upstream transcription factor
during osteogenesis, but that this differentiation process requires
the expression of both master regulators (Long, 2012). In
recent years, several groups have demonstrated that changes in
chromatin structure and expression of the Runx2 and Sp7 genes
are epigenetically-controlled (Yang et al., 2013, 2015; Tai et al.,
2014; Dudakovic et al., 2015; Rojas et al., 2015, 2019; Zhang
et al., 2015; Aguilar et al., 2016, 2020; Park-Min, 2016; Zhou
et al., 2016; Sepulveda et al., 2017a; Cakouros and Gronthos,
2020; Figure 1).
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FIGURE 1 | Epigenetic landscapes at the transcriptionally active and repressed Runx2 and Sp7 gene promoters during osteogenic differentiation of mesenchymal
stem cells (e.g., CD10 positive hMSCs). The arrowhead indicates the transcriptional start site (TSS). Principal epigenetic features and each enzyme associated are
included and summarized below.

Methylation at Histone H3K4 and H3K27
Residues
Active transcription of the Runx2 and Sp7 genes is accompanied
by an epigenetic landscape that includes increased H3K4me3

enrichment at both promoter regions (Figure 1). Hence,
transcription of these master genes requires binding and
activity of COMPASS and COMPASS-like complexes (Shilatifard,
2012). Studies initiated two decades ago first demonstrated
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that over-expression of Wdr5, a critical subunit of these
complexes, accelerates osteoblast and chondrocyte differentiation
programs (Gori et al., 2001, 2006; Zhu et al., 2008). Wdr5
binds to the Runx2-P1 promoter in osteoblastic cells (Rojas
et al., 2015) where it can mediate transcriptional upregulation.
It was recently found that transcription of both Runx2 and
Sp7 during osteogenesis requires that Set1-COMPASS and
MLL2-COMPASS-like complexes mediate deposition of the
H3K4me3 mark at both promoters (Rojas et al., 2015, 2019;
Sepulveda et al., 2017b).

It has been determined that an enrichment of H3K4me1
accompanies transcriptional silence at the Runx2 and Sp7 genes
in non-osteoblastic and mesenchymal uncommitted cells (Rojas
et al., 2015; Aguilar et al., 2016, 2020; Sepulveda et al., 2017a,b).
As MLL3/4-COMPASS can mediate maintenance of H3K4me1
at repressed, but poised for expression, genes (Cheng et al.,
2014; Rojas et al., 2015, 2019; Aguilar et al., 2016; Sepulveda
et al., 2017a; Local et al., 2018), one possibility is that H3K4me1
is deposited at the Runx2 and Sp7 promoters by the MLL3/4
complexes that have been found associated with both genes in
MSCs prior to engage osteogenesis (Sepulveda et al., 2017b;
Rojas et al., 2019).

Maintenance of chromatin with low H3K4me3 enrichment
(and hence elevated H3K4me1) at the Runx2 promoter can be
also achieved by binding and activity of the H3K4 demethylase
Jarid1b/Kdm5b (Figure 1; Rojas et al., 2015, 2019; Bustos et al.,
2017; Sepulveda et al., 2017a), which converts H3K4me3 to
H3K4me1 (Christensen et al., 2007; Iwase et al., 2007; Yamane
et al., 2007). Targeted depletion of Jarid1b/Kdm5b in mice
results in elevated lethality at early post-natal stages, exhibiting
these animals cranial dysmorphic parameters and skeletal
alterations (Albert et al., 2013). Moreover, silencing of Runx2
expression during myogenic cell differentiation is mediated by
Jarid1b/Kdm5b bound to the Runx2 promoter (Rojas et al., 2015,
2019). Accordingly, knockdown of Jarid1b/Kdm5b expression
is accompanied by enrichment of H3K4me3 at the Runx2
promoter and active Runx2 transcription in mouse mesenchymal
pluripotent cells differentiating to non-osteoblastic lineages
(Rojas et al., 2015; Bustos et al., 2017; Sepulveda et al., 2017a).

Findings from several teams revealed that regulating the
repressive mark H3K27me3 represents an important step
during the differentiation of MSCs toward osteoblasts. It was
demonstrated that the activity of the H3K27 demethylases
Utx/Kdm6a and Jmjd3/Kdm6b is critical for erasing this mark
from the promoter of the Runx2 and Sp7 genes (Figure 1)
and hence to induce their expression during osteogenesis (Ye
et al., 2012; Hemming et al., 2014; Rojas et al., 2015; Park-Min,
2016; Sepulveda et al., 2017b; Cakouros and Gronthos, 2020;
Sen et al., 2020). Additionally, an increased activity of the PRC2
complex that “writes” the H3K27me3 mark, can significantly
limit the ability of MSCs to engage osteogenic differentiation
(Wei et al., 2010). Moreover, forced expression of Ezh2
in pre-osteoblastic cells results in significant downregulation
of osteogenic genes, including Runx2 and its downstream
targets (Hemming et al., 2014). Accordingly, knockdown of
Ezh2 expression in MSCs and pre-osteoblastic cells results
in increased expression of the Runx2 (Rojas et al., 2015,

2019; Hemming et al., 2016) and Sp7 (Sepulveda et al.,
2017b) genes.

Methylation at the Histone H3K9 Residue
The repressive mark H3K9me3 plays an important role during
differentiation of MSCs to the osteoblastic lineage (Ye et al.,
2012, 2018; Lawson et al., 2013; Tai et al., 2014; Rojas et al.,
2015; Zhang et al., 2015; Sepulveda et al., 2017a,b). H3K9me3
is found enriched at the Runx2 and Sp7 promoters in cells that
do not express these genes (Figure 1) and binding of proteins
that can write and read this mark has been detected in non-
osseous cells (Zhang et al., 2015; Aguilar et al., 2016; Sepulveda
et al., 2017b). The H3K9 methyl transferase Setdb1/ESET/Kmt1c
binds to the Sp7 promoter and maintains a H3K9me3-enriched
transcriptionally-silent environment in mouse MSCs and other
non-osseous cells (Sepulveda et al., 2017b). Accordingly,
during BMP2-induced osteogenic differentiation of MSCs,
Setdb1/ESSET/Kmt1c is released from this promoter and
replaced by the H3K9me3 demethylase Jmjd2a/Kdm4a, an
exchange that is accompanied by decreased enrichment of
H3K9me3 and transcription of the Sp7 gene (Sepulveda et al.,
2017b). Interestingly, it was also established that a different
member of this family of demethylases, Jmjd2b/Kdm2b, plays a
critical role during formation of the mouse skeleton (Ye et al.,
2012, 2018). However, this demethylase neither directly binds
nor decreases the H3K9me3 enrichment at the Sp7 and Runx2
promoters (Ye et al., 2012, 2018).

Although most studies support the role of the H3K27me3 and
H3K9me3 marks during repression of both master osteogenic
genes, recent analyses indicate that for certain cells, this role
may have to be re-evaluated. Thus, analysis of uncommitted
human umbilical cord-derived Wharton Jelly MSCs (WJ-MSCs)
showed that the Runx2-P1 promoter region does not exhibit
significant enrichment of H3K9me3 and H3K27me3 (Bustos
et al., 2017; Sepulveda et al., 2017a). Interestingly, both marks are
detected at the Sp7 gene promoter in these cells and represent
a relevant component of the epigenetic barrier preventing the
expression of Sp7 when the cells are induced to differentiate
to the osteoblastic lineage (Bustos et al., 2017; Sepulveda
et al., 2017a). Hence additional mechanisms are preventing
the expression of Runx2-p57 in these uncommitted WJ-MSCs
in the absence of H3K27me3 and H3K9me3. One proposed
component is the H3K4 demethylase Jarid1b/Kdm5b which was
found enriched at this Runx2 P1 promoter concomitant with
elevated H3K4me1 (Bustos et al., 2017; Sepulveda et al., 2017a).
Knockdown of Jarid1b/Kdm5b expression or selective inhibition
of Jarid1b/Kdm5b activity using small molecules, is accompanied
by enrichment of H3K4me3 at the Runx2 promoter and Runx2
upregulation in these WJ-MSCs (Bustos et al., 2017; Sepulveda
et al., 2017a). Future studies need to carefully address what
alternative mechanisms control the expression of Runx2 and Sp7
in the different sources of human MSCs available.

Histone H3 and H4 Acetylation
Histone lysine acetylation also plays a relevant role during bone
formation as it supports increased expression of critical genes
for osteoblast differentiation (Schroeder and Westendorf, 2005;
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McGee-Lawrence and Westendorf, 2011). Chromatin
remodeling and transcription of the Runx2 gene is accompanied
by acetylation of histones H3 and H4 (Figure 1) in nucleosomes
associated with the P1 promoter region (Lee H. W. et al., 2006;
Hassan et al., 2007; Cruzat et al., 2009; Gordon et al., 2011).
This acetylation is correlated with decreased expression of
HDACs (HDAC1, 2, and 3) during BMP2-induced osteoblast
differentiation (McGee-Lawrence and Westendorf, 2011).
Accordingly, knockdown of HDAC1 and HDAC3 expression
facilitates osteogenic differentiation (Maroni et al., 2012) and a
number of HDAC inhibitors [Sodium Butyrate, Trichostatin A,
Valproic acid, and Suberoyl Anilide Hydroxamic Acid (SAHA)]
can promote osteogenesis in models including primary calvarial
cells and MSCs (Cho et al., 2005; Schroeder and Westendorf,
2005; Lee H. W. et al., 2006; Haberland et al., 2010; Hu et al., 2012;
Dudakovic et al., 2013; Zych et al., 2013). Moreover, the histone
acetyl transferase (HAT) p300 plays a major role in maintaining
histone acetylation at the Runx2-P1 (Rojas et al., 2015) and Sp7
(Sepulveda et al., 2017b) gene promoters (Figure 1).

DNA Methylation
DNA methylation (5mCpG) can regulate osteogenic
differentiation of MSCs. Addition of the DNA methyl-
transferase inhibitor 5-Azacytidine (5-Aza) to human and
murine mesenchymal cells enhances their ability to engage
osteogenesis by reducing 5mCpG enrichment at regulatory
regions of osseous genes (Lee J. Y. et al., 2006; Zhou et al., 2009;
Zych et al., 2013; Sepulveda et al., 2017b; Cakouros et al., 2019).
In particular, an active Sp7 gene promoter exhibits reduced
5mCpG at its proximal promoter (Figure 1), whereas this
region shows increased 5mCpG in non-osseous cells that do
not express Sp7 (Lee J. Y. et al., 2006; Sepulveda et al., 2017b).
Moreover, during BMP2-induced osteoblast differentiation DNA
demethylation of the Sp7 promoter is mediated by a Tet1/Tet2-
containing complex which transforms 5mCpG to 5hmCpG
(Sepulveda et al., 2017b). This process is tightly coordinated
with nucleosome remodeling mediated by SWI/SNF, “erasing”
of the H3K9me3 and H3K27me3 repressive marks and “writing”
of the H3ac and H3K4me3 active marks (Sepulveda et al., 2017b;
Figure 1). A recent report indicates that in mouse bone marrow-
derived MSCs (BM-MSCs), Tet1 is pre-bound to osteogenic
gene promoters in the absence of Tet2, playing an initial
repressor role. This may result from the recruitment of repressor
activities, including Sin3A, Hdacs, and PRC2 (Cakouros et al.,

2019). Interestingly, Tet1 can also play a key role during
transcriptional activation of osteogenic genes. Tet1 recruits Tet2
to mediate 5mCpG demethylation and gene transcription during
differentiation of BM-MSCs (Cakouros et al., 2019). Together
these results support a model where binding of Tet1 may initially
contribute to maintain target osteogenic genes (including Runx2)
silent but poised for expression as the MSCs engage osteoblast
lineage commitment.

CONCLUDING REMARKS

Controlling lineage commitment in MSCs represents a critical
challenge to overcome skeletal deficiencies in patients. Extensive
research during the last 20 years has shed light into potential
targeting of specific epigenetic mechanisms that control bone-
related gene expression. Future studies will need to consider the
influence of the mechanical environments at which MSCs are
maintained and differentiated ex vivo. Recent results demonstrate
that the substrate stiffness at which hMSCs are grown in culture
can induce rapid and stable changes in chromatin organization
and the associated epigenetic landscapes that permanently up- or
down-regulate genes (Killaars et al., 2019), hence modifying the
ability of these cells to engage osteogenesis. Future research also
needs to develop approaches that include safe delivery strategies
that limit undesired effects of treatments based on epidrugs
on non-target tissues and organs, thereby decreasing potential
negative secondary effects in treated patients.
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