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Abstract: Mendelian neurodevelopmental disorders customarily present with complex and
overlapping symptoms, complicating the clinical diagnosis. Individuals with a growing number of
the so-called rare disorders exhibit unique, disorder-specific DNA methylation patterns, consequent
to the underlying gene defects. Besides providing insights to the pathophysiology and molecular
biology of these disorders, we can use these epigenetic patterns as functional biomarkers for the
screening and diagnosis of these conditions. This review summarizes our current understanding
of DNA methylation episignatures in rare disorders and describes the underlying technology and
analytical approaches. We discuss the computational parameters, including statistical and machine
learning methods, used for the screening and classification of genetic variants of uncertain clinical
significance. Describing the rationale and principles applied to the specific computational models that
are used to develop and adapt the DNA methylation episignatures for the diagnosis of rare disorders,
we highlight the opportunities and challenges in this emerging branch of diagnostic medicine.

Keywords: epigenetics; DNA methylation; episignature; neurodevelopmental disorders; overgrowth
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1. Chronology of Diagnostic Approaches for Neurodevelopmental Disorders

Rare genetic disorders, though individually rare, collectively constitute a large and heterogeneous
group of diseases with a total estimated global prevalence of approximately 3.5–5.9% [1]. Rare genetic
conditions pose a major health priority due to their chronic nature with long-term complications,
often resulting in fatal outcomes with no genetic cause known for one-third of these conditions.
Diagnosing a patient with a suspected rare genetic disorder is a challenging, long, and expensive
process with a high failure rate. Neurodevelopmental disorders (NDDs) are a well-recognized class
of rare genetic disorders, characterized by abnormal brain and central nervous system development
because of genetic defects in genes controlling essential neurodevelopmental processes. Another
well-studied group of rare genetic diseases is overgrowth/intellectual disability syndromes (OGIDs),
with characteristic features including increased growth, macrocephaly, distinctive facial features,
various degrees of learning difficulties and intellectual disability (ID), and increased susceptibility to
cancer [2].
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NDDs are a major health concern, as they affect >3% of children worldwide [3]. An accurate and
timely diagnosis is critical to provide the best possible management and, sometimes, improve the overall
disease outcome. Despite the current technical progress in sequencing technologies, the evaluation
of the genetic causes of NDDs remains challenging because of genetic and phenotypic heterogeneity.
For instance, patients with CHARGE and Kabuki syndromes have similar clinical features and are
difficult to differentiate [4]. There is also an overlap between the characteristic features of Floating-Harbor
syndrome (FLHS) and Rubinstein-Taybi syndrome 1 (RSTS1) because of the molecular interactions
between their associated genes [4,5]. An additional challenge is phenotypic expressivity, where patients
with the same genetic defects present with varying degrees of symptoms and phenotypes [6–9].

1.1. Conventional Genetic Testing Methods

Previously, G-banded karyotyping and FMR1 trinucleotide repeat analysis were the first-tier tests
for patients with unexplained NDDs. However, the diagnostic yield in patients was low. The expected
yield of FMR1 trinucleotide repeat analysis was 1%–5% in males [10], and the diagnostic yield of
G-banded karyotype for patients with NDD developmental delay, intellectual disability, and autism
spectrum disorder (ASD) was 5% [10,11]. With technological advancements and the growing need
to make an accurate diagnosis in more patients, the implementation of chromosome microarray
analysis (CMA) as part of the first-line evaluation for children with NDD achieved a diagnostic yield
of 10–15% [12,13]. Gene panel, whole-exome, and whole-genome sequencing technologies (WES and
WGS, respectively) have enhanced the ability to diagnose the NDDs. Of these, WES achieves a
diagnostic rate of 30–53% for NDDs when used as a first-tier test, which more than doubles the rates
achieved by CMA [13]. WGS is a comprehensive genetic test that improves the diagnostic rates
even further (42-62%). It can offer a broader range of variant detection, including noncoding and
regulatory regions, and has the ability to discover novel disease-associated genes, especially in cases
with an ambiguous diagnosis [14–18]. Although WGS seems promising, its adoption as a clinical test is
hampered by technical complexities, a high cost, and a lack of standardized clinical practice guidelines.
The diagnostic flowchart of NDDs increased the percentage of patients receiving a confirmed molecular
diagnosis [13,19]. Despite comprehensive genomic analyses, approximately half of NDD patients are
left with an indefinite or inconclusive genetic diagnosis. Variants of uncertain significance (VUSs)
in genes known to be associated with the disease often leave these patients and their families more
confused and uncertain about the diagnosis. Sometimes, variant co-segregation studies within the
family, in silico pathogenicity prediction tools, and experimental functional studies may guide the
assessment of a VUS as being pathogenic or benign, but for most cases, this remains challenging in
the clinic, leaving the diagnosis and management of these patients unclear. Other ambiguous genetic
findings involve the identification of variants in noncoding parts of the genome, which further adds
to the complexity. These existing gaps in achieving a successful diagnosis in unresolved cases led
researchers to look for alternative diagnostic methods.

1.2. Epigenetics and Its Diagnostic Utility in NDDs

Epigenetics underlines heritable changes in gene expression without altering the underlying DNA
sequence [20]. It has become increasingly clear that genes controlling epigenetic functions are significant
contributors towards the underlying genetic basis of NDDs and OGIDs [2,21]. DNA methylation
is the most common and well-understood epigenetic mechanism, which involves the addition of a
methyl group to cytosine residues, and rare genetic variants have been reported in patients with
unexplained NDDs in genes controlling the DNA methylation pattern [22–24]. Another well-studied
epigenetic process is posttranslational modification of the histone tails [25,26]. DNA methylation
and histone modification affect differential chromatin packaging, and they regulate access to specific
areas of the genome. This, in turn, influences the ability of protein complexes of the transcriptional
machinery to bind and interact with the underlying DNA sequence and regulate the gene expression.
These processes, which are collectively called the “epigenetic machinery” [22], play a critical role in the
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cellular lineage determination during development, enabling phenotypic differentiation across the
tissue types, despite sharing an identical germline DNA sequence.

In recent years, various methods have been developed to study genome-wide DNA methylation
changes, which can be broadly classified as either next-generation sequencing (NGS)-based or array-
based technologies. A plethora of genome-wide DNA methylation analysis methods like enzyme
digestion, affinity enrichment, and sodium bisulfite conversion-based methods have been developed,
but each one has its own advantages and limitations, which is beyond the scope of this article [27].
NGS platforms, however, allow a genome-wide investigation of DNA methylation profiles at a single
base resolution level, but implementing it in a clinical setting is not yet feasible due to the increased
cost required for the special infrastructure, data storage capacity, and bioinformatics support required
to analyze and interpret the extensive amount of data generated by NGS. Microarray hybridization has
become one of the most frequently used technologies for DNA methylation studies at the genome-wide
level, as it allows a high-throughput DNA methylation analysis in a cost-effective manner, but has
variable coverage based on the array design [28].

Unique genomic DNA methylation patterns, called “episignatures”, are promising alternatives
to diagnose NDDs and OGIDs [20]. If the methylation change is observed at a large number of
loci across the genome of patients with a confirmed diagnosis of the disorder compared to controls,
the methylation data at the differentially methylated sites is called the episignature of that syndrome [29].
These episignatures are highly reliable, reproducible, and unique, and the evidence of their utility
in diagnosing many rare genetic disorders is growing significantly. The computational process of
establishing an episignature contains two principal sections: first, probe selection, which is the detection
of CpG sites that are differentially methylated in patients compared to healthy controls, and second,
the construction of a classifier using statistical and machine learning methods that can distinguish cases
from controls using the selected probes (Figure 1). In Section 3, we will discuss different techniques and
computational procedures used in developing classifiers. These recent developments paved the way
for using epigenomics from a mere research concept to a clinical laboratory test, impacting diagnostic
and therapeutic decisions in the clinic.

1.3. Syndromes with a Known Episignature

DNA methylation patterns in the mammalian genome are established at specific time points,
mostly in early development. Errors in methylation due to a mutation in one of the genes
involved in methylation regulation can lead to rare genetic syndromes, including NDDs [30–32].
Using episignatures in hereditary conditions was under investigation for many years, with reports
describing differentially methylated regions in individuals with Down syndrome and Cornelia de
Lange syndrome (CdLS) [33,34]. Since then, many other NDDs/OGIDs have been associated with
episignatures. Our recent work on detecting syndrome-specific episignatures for 34 constitutional
conditions enabled the use of the EpiSign analysis in clinical diagnostics [35] (Table 1). Many of these
syndromes are associated with genes regulating the epigenetic machinery. An episignature for mental
retardation, X-linked syndromic, Claes-Jensen-type (MRXSCJ) is associated with a histone H3 lysine
4 demethylase gene KDM5C [36]. Additionally, Sotos syndrome 1 (Sotos1), Tatton-Brown–Rahman
syndrome (TBRS), and Weaver syndrome (WVS) are OGIDs associated with epigenetic regulatory
genes [2,37–39]. Although many studies are focused on the study of syndromes resulting from mutations
in chromatin regulatory genes, DNA methylation signatures are also being mapped in genetic conditions
involving genes with functions unrelated to the epigenetic mechanisms, such as SMS and UBE2A,
associated with mental retardation, X-linked, syndromic, Snyder-Robinson-type (MRXSSR) and mental
retardation, and X-linked, syndromic, Nascimento-type (MRXSN), respectively [35]. Table 1 shows a
current list of NDD syndromes for which a DNA methylation signature has been discovered.
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Figure 1. Summary of a DNA methylation analysis and constructing the classification model.

Table 1. List of neurodevelopmental syndromes with a detected episignature.

Neurodevelopmental Disorder Abbreviation Underlying
Gene(s)/Locus

Phenotype
MIM Number

Episignature
Published

Alpha-thalassemia mental retardation
syndrome ATRX ATRX 301040 Yes [4,35,40,41]

Arboleda-Tham syndrome (formerly
MRD32) MRD32 KAT6A 616268 No

Autism, susceptibility to, 18 AUTS18 CHD8 615032 Yes [35,42]

BAFopathies

Coffin-Siris 1–4
(CSS1–4)

BAFopathy

ARID1A,
ARID1B,

SMARCB1,
SMARCA4

135900, 614607,
614608, 614609

Yes [35,41,43]

Nicolaides-Baraitser
(NCBRS) syndromes

SMARCA2,
SMARCC2 601358

Beck-Fahrner syndrome BEFAHRS TET3 618798 No

Blepharophimosis intellectual disability
SMARCA2 syndrome BISS SMARCA2 N/A Yes [44]

Börjeson-Forssman-Lehmann syndrome BFLS PHF6 301900 Yes [35]

Cerebellar ataxia, deafness, and narcolepsy,
autosomal dominant ADCADN DNMT1 604121 Yes [4,35,41,45]

CHARGE syndrome CHARGE CHD7 214800 Yes [4,35,41,46]

Chr16p11.2 deletion syndrome Chr16p11.2del Chr16p11.2del 611913 Yes

Cohen-Gibson syndrome (PRC2 complex,
shares signature with Weaver syndrome) COGIS EED 617561 No
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Table 1. Cont.

Neurodevelopmental Disorder Abbreviation Underlying
Gene(s)/Locus

Phenotype
MIM Number

Episignature
Published

Cornelia de Lange syndrome 1–4 CdLS1–4 NIPBL, RAD21,
SMC3, SMC1A

122470, 300590,
610759, 614701 Yes [35,41]

Down syndrome Down Chr21 trisomy 190685 Yes [35,41,47]

Dystonia-28, childhood-onset DYT28 KMT2B 617284 No

Epileptic encephalopathy, childhood-onset EEOC CHD2 615369 Yes [35]

Floating Harbor syndrome FLHS SRCAP 136140 Yes [4,35,41,48]

Genitopatellar syndrome GTPTS KAT6B 606170 Yes [4,35,41]

Helsmoortel-Van Der Aa syndrome (ADNP
syndrome (Central)) HVDAS_C

ADNP 615873 Yes [35,41]
Helsmoortel-Van Der Aa syndrome (ADNP

syndrome (Terminal)) HVDAS_T

Hunter McAlpine syndrome HMA

Chr5q35-qter
duplication
involving

NSD1

601379 Yes [35]

Immunodeficiency-centromeric
instability-facial anomalies syndrome 1–4 ICF_1–4

DNMT3B,
ZBTB24,

CDCA7, HELLS

242860, 614069,
616910, 616911 Yes [35]

Intellectual developmental disorder,
X-linked, syndromic, Armfield-type MRXSA FAM50A 300261 No

Kabuki syndrome 1 and 2 Kabuki KMT2D,
KDM6A 147920, 300867 Yes

[4,35,41,46,49]

Kleefstra syndrome 1 Kleefstra EHMT1 610253 Yes [35]

Koolen-de Vries syndrome KDVS KANSL1 610443 Yes [35]

Mental retardation, autosomal dominant 23 MRD23 SETD5 615761 No

Mental retardation, autosomal dominant 51 MRD51 KMT5B 617788 Yes [35]

Mental retardation, X-linked 93 MRX93 BRWD3 300659 Yes [35]

Mental retardation, X-linked 97 MRX97 ZNF711 300803 Yes [35]

Mental retardation, X-linked syndromic,
Claes-Jensen-type MRXSCJ KDM5C 300534 Yes [4,35,41,50]

Mental retardation, X-linked syndromic,
Nascimento-type MRXSN UBE2A 300860 Yes [35]

Mental retardation, X-linked,
Snyder-Robinson-type MRXSSR SMS 309583 Yes [35]

Ohdo syndrome, SBBYS variant SBBYS KAT6B 603736 Yes [4,35]

Phelan-McDermid syndrome PHMDS SHANK3 606232 No

Rahman syndrome RMNS HIST1H1E 617537 Yes [35,51]

Rubinstein-Taybi syndrome RSTS CREBBP, EP300 180849, 613684 Yes [35]

SETD1B-related syndrome SETD1B SETD1B N/A Yes [52]

Sotos syndrome 1 Sotos1 NSD1 117550 Yes [4,35,39,41]

Tatton-Brown-Rahman syndrome TBRS DNMT3A 615879 Yes [35]

Weaver syndrome (PRC2 complex, shares
signature with Cohen-Gibson syndrome) WVS EZH2 277590 No

Wiedemann-Steiner syndrome WDSTS KMT2A 605130 Yes [35]

Williams-Beuren region duplication
syndrome (Chr7q11.23 duplication

syndrome)
Dup7 Chr7q11.23

duplication 609757 Yes [35,41,53]

Williams-Beuren syndrome (Chr7q11.23
deletion syndrome) Williams Chr7q11.23

deletion 194050 Yes [35,41,53]

Wolf-Hirschhorn syndrome WHS Chr4p16.3
deletion 194190 No
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2. DNA Methylation Signatures, Concepts, and Principles

2.1. Comparison of Blood Tissue with Other Tissues for Detecting an Episignature

The most commonly used tissue for a DNA methylation analysis is peripheral blood, since samples
from neural tissues, which are directly related to NDDs, are not easily accessible. Methylation alterations
initiated at embryonic and fetal stages of pattern formation and development are typically consistent
throughout development and are detectable in many tissues, including peripheral blood [54]. However,
if methylation alterations evolve later in development, they might cause mosaicism and, therefore,
may not appear in blood but may appear in other tissues. For instance, in three patients with
Beckwith-Wiedemann syndrome (BWS), the methylation levels in blood were normal, while tongue
tissue samples showed an episignature [55].

2.2. Requirement for Large Study Cohorts and Reference Databases

The utility of episignatures as a reliable diagnostic tool in clinical settings requires access to large
reference databases and large study cohorts of the constitutional condition under study with individuals
that are clinically and genetically diagnosed with the syndrome. Larger cohorts of patients increase
the accuracy in machine learning algorithms and, therefore, result in more definitive predictions.
Due to the rarity of NDDs/OGIDs, and the challenges in their clinical and genetic diagnosis, the related
databases are typically very small. This sometimes contributes to the failure of the signature detection
process, such as in the case of Weaver syndrome (WVS) [4]. However, combining the WVS and
Cohen-Gibson syndrome (COGIS), which share a common genetic etiology, and thereby increasing the
size of the reference cohort, has now enabled the discovery of a unique episignature (unpublished
results). In another study, increasing the size of the patient cohort helped identify a signature specific
to WVS [56]. Similarly, no episignature was observed previously for Coffin-Siris syndrome (CSS) [4],
but increasing the number of cases and adding patients with Nicolaides-Baraitser syndrome (NCBRS)
resulted in the identification of a DNA methylation pattern shared between the two disorders [43].

2.3. Various Types of Episignatures

Most syndromes caused by variants in a single gene are associated with one episignature
specific to that disorder [4,39,40,46,48,50,57–60]. Sometimes, however, there is an overlap between
the episignatures of two syndromes. For example, CHARGE and Kabuki syndromes have
overlapping clinical presentations and show similar hypermethylation levels at probes on HOXA5 [46].
Bjornsson et al. attributed the significant phenotypic overlap in these disorders to the overlapping
functional roles of genes involved in epigenetic regulatory machinery [61]. On one extreme, identical
DNA methylation signatures are observed throughout multiple genes of the same protein complexes.
Coffin-Siris syndrome (CSS), Nicolaides–Baraitser syndrome (NCBRS), and Chr6q25 microdeletion
syndrome, for instance, belong to BAFopathies or SWI/SNF remodeling complex disorders and share
an episignature [43]. Notably, some subtypes of CSS and NCBRS have a higher overlap between
methylation alterations than within CSS [43]. CdLS types 1–4, as well as Kabuki syndrome types 1 and
2, are other syndromes that present an identical episignature, despite different causal genes [35].

On the other extreme, some single-gene syndromes are associated with distinct episignatures,
based on the location of the mutation on the underlying gene. For instance, ADNP patients with variants
inside c. 2000–2340 (ADNP central—ADNP_C) present a different DNA methylation pattern compared
to those with variants outside that region (ADNP terminal—ADNP_T) because of the difference in the
associated protein domains, while manifesting similar clinical features [62]. In contrast, mutations
in KAT6B result in two distinct episignatures associated with two different syndromes—namely,
Genitopatellar (GTPTS) and Say-Barber-Biesecker-Young-Simpson syndromes (SBBYSS) [35].

Another interesting reported fact is that a linear relationship is seen between the dosage of
the defective protein and the intensity of DNA methylation alterations in some syndromes, such as
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immunodeficiency-centromeric instability-facial anomalies syndrome types 2–4 (ICF2–4) associated
with mutations in the zinc finger and BTB domains [35,63].

3. DNA Methylation Analysis and Classification Models

For a summary of this section, see Figure 1.

3.1. Methylation Assessment

In order to assess the methylated and unmethylated signal intensities, DNA samples typically
collected from peripheral blood are applied to Illumina Infinium Human Methylation27 BeadChip [33,36],
Illumina Infinium HumanMethylation450 BeadChip [4,35,36,39–41,43,45,46,48–51,57,62,64], or an Illumina
Infinium MethylationEPIC kit [4,35,41,43,51,52,62] after bisulfite conversion. Methylation levels at each
probe, or β-values, are measured as the ratio of the methylated probe signal to the sum of the methylated
and unmethylated probe signal intensities. Probes overlapping single-nucleotide polymorphisms (SNP)
and X or Y chromosomes are normally excluded [41].

3.2. Probe Selection

Our previous studies have shown that this method functions best while using ~150 markers [35].
The DNA methylation profile at the selected CpG sites is called the episignature, which is then
implemented for the construction of the classification model. If the methylation data for all CpG
sites are used for building the model, it increases the chance of model overfitting—a condition
in which the model performs perfectly on the training set but cannot classify samples in the test
set correctly [65]. Therefore, dimension reduction or a selection of the subset of probes is done
to avoid overfitting. The other reason behind probe selection is to ensure that the model is as
simple as possible, using only the probes that make the most contribution to the disease under
investigation [65]. Typically, a CpG site is considered differentially methylated if there is a minimum
of a 5–20 percent difference in the average methylation level of that site between the case subjects and
controls, with a corrected p-value < 0.01. In the absence of a sufficiently large number of differentially
methylated CpGs, we identify the syndrome as not bearing an episignature or having a milder
signature below a sensitive detection capacity. Probe selection is done by implementing multivariable
linear regression (MLR) modeling [4,35,41,43,46,49–51,62], analysis of variance (ANOVA) [40,45,48,57],
and/or a Mann-Whitney U test [36,39,46]. We should remark that both ANOVA and linear regression
should be performed on M-values, derived by applying logit transformation on the β-values in order
to obtain a normal distribution and homoscedasticity (equal variance across all probes), which are the
requirements of these statistical tests [66]. A Mann-Whitney U test, in contrast, does not assume a
normal distribution of the data and is more robust against heteroscedasticity [67]. Nevertheless, the use
of M-values is recommended for performing a differential methylation analysis, since it guarantees
a higher true positive rate (TPR) [66,67]. In some studies, probe selection has involved two more
steps—namely, a receiver operating characteristic (ROC) curve analysis and elimination of highly
correlated probes [35,41].

3.3. Unsupervised Methods and Signature Assessment

An unsupervised machine learning model is usually used to test the strength of probes in
differentiating cases from either controls or other syndromes. An unsupervised model is a model utilized
for clustering and/or dimension reduction in which the subjects’ labels, i.e., case and control, are either
not available or ignored, and the model divides the subjects into clusters based only on their methylation
data. Researchers usually perform a few various techniques, including k-means clustering [36,43],
k-median clustering [36], hierarchical clustering [4,35,36,39–41,43,46,48–52,62], principal component
analysis (PCA) [36], multiple dimensional scaling (MDS) [35,51,52,62], and t-distributed stochastic
neighbor embedding (t-SNE) [35,41], followed by creating a graph based on the model to visualize the
resulting clusters in order to verify the robustness of the signature.
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3.4. Supervised Classification Models

Unsupervised models often create diagrams with some overlap between patients and healthy
controls or between cases of different diseases. In order to separate cases and controls with a high level
of confidence, usually a supervised classification model is also constructed. The most popular classifiers
implemented for the purpose of differentiating cases and controls based on methylation data are
support vector machines (SVM) and random forests (RF) [4,35,41,43,46,49,50,62,68–70]. The rationale
behind the selection of these methods is their capability in processing data with low numbers of data
points (samples) and high dimensionality, i.e., a large number of probes (CpGs), which are the typical
characteristics of genomic datasets and DNA methylation datasets in particular.

SVM are supervised algorithms suitable for two-group classification problems. Conceptually,
SVM separates the two groups by constructing a hyperplane with one dimension less than the number
of probes [71]. For instance, if the data has two probes, the two groups are separated with a line, and if
there are three probes, the partition is performed by a two-dimensional plane. This hyperplane is
called a linear kernel. The hyperplane defines an optimal margin keeping a maximal distance from
the data points, ensuring an explicit partition between the groups. If the two groups are not linearly
separable, the data is transformed to a higher dimension by applying another kernel function, such as
a polynomial kernel and radial basis function (RBF) [71].

There are two main problems when handling microarray data—namely, computational complexity
and overfitting [72]. SVM can resolve both issues. They reduce the computational complexity by a
method called the kernel trick. This allows computations in a lower dimension, negating the need
to transform the data to a higher dimension [71]. SVM are robust against overfitting, since they do
not learn based on the whole training set, but they only use those data points that fall within the
margin, called the support vectors [72]. Therefore, the hyperplane does not move on the addition of
new data points unless they are detected as support vectors. Modifications in the model allowed for a
few misclassifications in the training set, as far as they fall within the margin, which further helped the
algorithm to avoid overfitting [72].

In their classic form, SVM are nonprobabilistic models classifying new data points with one of the
two groups without providing the probability that the data point belongs to a group. Platt modified the
method, enabling it to perform as a probabilistic one whenever required, using the distance between
each point to the hyperplane to compute the point’s score. This score is a number between 0 and 1 and
it is the probability of that point belonging to a group [73]. Regarding the problem of classifying cases
and controls based on their methylation data, this score is called the methylation variant pathogenicity
(MVP) score, and it is the probability of a patient belonging to the disease class [73]. Subjects with
scores normally above 0.5 are classified as having a methylation profile related to the syndrome under
investigation. SVM has been applied as a classifier in many genome-wide DNA methylation-based
diagnoses of Mendelian neurodevelopmental disorders [4,35,41,43,46,49,50,62].

Random forest (RF) is another convenient model applied as a classifier [51]. Random forest is an
ensemble machine learning model comprised of many decision trees. Each tree is built by a random
selection of samples and probes. The randomness in the construction of decision trees maximizes the
model’s accuracy. Moreover, random forests do not overfit, since they provide the result by averaging
over numerous decision trees [74]. By considering the number of decision trees voting for each class,
the model computes a confidence score between 0 and 1 for each case subject, with a score higher
than 0.5 meaning the subject is classified with the case group [51]. RF are not as popular as SVM for
the classification of patients with various neurodevelopmental disorders; however, their performance
on DNA methylation data appears to be promising, since they have been utilized in several studies
investigating the relationship between DNA methylation and other diseases, including various types
of cancers [68–70]. One reason for the lower popularity of RF in comparison with SVM may be the
fact that RF is more prone to the choice of the hyperparameters, while SVM demonstrates negligible
changes when different hyperparameters are utilized [75].
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4. Resolving the Unresolved

Variants of unknown significance are a common result of gene, whole-exome, and genome
sequencing. This becomes more challenging in rare genetic conditions with ambiguous clinical
presentations. With the implication of the supervised machine learning classifier, trained for the
classification of subjects of many syndromes simultaneously, we can provide a diagnosis for many
unresolved cases, thereby enabling clinical reclassification of VUSs [4,35,41,43,46,49,51,52,62]. Besides
classifying patients with VUSs, this multi-class model has further been utilized to reclassify patients
with an incorrect diagnosis. For instance, Figure 2A illustrates the MVP scores generated by a multi-class
SVM (a collection of many two-class SVMs), i.e., a combination of several SVMs, each trained by
comparing the methylation data of individuals with one syndrome against individuals from controls
and 14 other syndromes. Six unresolved cases suspected of having MRXSCJ were supplied into the
model. It can be observed that four of them were classified as MRXSCJ cases, one as not having
any of the 15 syndromes, and one with a Sotos1 syndrome episignature [41]. Figure 2B depicts the
corresponding MDS plot, where MRXSCJ samples, Sotos1 samples, and healthy control samples are
perfectly separated from each other. Four of the suspected MRXSCJ cases are clustered with the other
MRXSCJ samples, one with controls—hence, remaining unresolved—and one with Sotos1 samples.Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 10 of 15 
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Figure 2. Classification of unresolved cases. (A) Six individuals suspected of having mental
retardation, X-linked syndromic, Claes-Jensen-type (MRXSCJ) were supplied to the multi-class
support vector machine (SVM) classifier. The methylation variant pathogenicity (MVP) scores
generated by the model illustrate that 4 individuals are classified as cases of MRXSCJ, one as not
having any of the 15 syndromes, and one (the red one) is classified as a Sotos syndrome 1 (Sotos1) case.
(B) The multiple dimensional scaling (MDS) plot with MRXSCJ samples (purple circles), healthy control
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samples (green circles), and Sotos1 samples (red circles). This plot illustrates the clustering of four of
the individuals described in panel A with the MRXSCJ case samples (blue circles) and two individuals
separate from the MRXSCJ case samples. The grey circle represents the patient classified as not having
any of the 15 syndromes, and the pink circle depicts the individual classified as a Sotos1 case.

5. Future Perspectives

5.1. Implementation of Other Probe Selection and Classification Models

The choice of probe selection and classification models plays an essential role in the correct detection of
the episignature and definitive classification of the patients. Therefore, it is extremely important to ensure
that the selected models are the most appropriate for our data. The common practice in detecting the DNA
methylation signature of Mendelian neurodevelopmental syndromes has been to apply various probe
selection methods in several steps, eliminating a portion of nondifferentially methylated CpG sites at a time,
and to construct a supervised classification model based on the selected probes. Although this method has
proven successful in classifying the unresolved cases for numerous congenital anomalies, there are other
approaches that can be explored, possibly creating more promising results. SVM is the classification model
that has been utilized the most for diagnosing developmental disorders. There is a probe selection method
called recursive feature elimination (RFE) that utilizes SVM and has been established as a powerful probe
selection tool, together with an SVM classifier for microarray data [65]. Moreover, the radial basis kernel
has been suggested as the kernel that provides the highest performance with expression data [76].

5.2. Evolving Episignatures—EpiSign Knowledge Database (EKD)

Future use of epigenomics in the screening and classification of rare disorders highly depends on the
availability of a large reference DNA methylation episignatures database. Establishing a robust database
with epigenetic profiles from thousands of patients and control individuals can guide us to uncover
episignatures in many rare genetic conditions that are currently categorized as episignature-negative
conditions. Our initial understanding about known gene/disease-specific peripheral blood episignatures
came from small case-control analyses, but the subsequent implementation of a genomic DNA
methylation analysis for the clinical screening of patients with DD/ID has helped us create an EpiSign
Knowledge Database (EKD). The expansion of this database is underway, with the implementation
of large-scale clinical trials of this technology, like the recently announced Canadian national
trial EpiSign-CAN (https://www.genomecanada.ca/en/beyond-genomics-assessing-improvement-
diagnosis-rare-diseases-using-clinical-epigenomics-canada).

The continued development of computational models we described in this review, coupled
with advancements in technology and an increasing understanding of disease-specific episignatures,
will expand the breadth of diseases, including NDDs, that can be diagnosed by epigenetic assays.
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