
Research Article
A Novel Hybrid Clonal Selection Algorithm with
Combinatorial Recombination and Modified Hypermutation
Operators for Global Optimization

Weiwei Zhang, Jingjing Lin, Honglei Jing, and Qiuwen Zhang

School of Computer and Communication Engineering, Zhengzhou University of Light Industry, Zhengzhou 450000, China

Correspondence should be addressed to Weiwei Zhang; anqikeli@163.com

Received 12 May 2016; Accepted 31 July 2016

Academic Editor: Jens Christian Claussen

Copyright © 2016 Weiwei Zhang et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Artificial immune system is one of the most recently introduced intelligence methods which was inspired by biological immune
system. Most immune system inspired algorithms are based on the clonal selection principle, known as clonal selection algorithms
(CSAs). When coping with complex optimization problems with the characteristics of multimodality, high dimension, rotation,
and composition, the traditional CSAs often suffer from the premature convergence and unsatisfied accuracy. To address these
concerning issues, a recombination operator inspired by the biological combinatorial recombination is proposed at first. The
recombination operator could generate the promising candidate solution to enhance search ability of the CSA by fusing the
information from random chosen parents. Furthermore, a modified hypermutation operator is introduced to construct more
promising and efficient candidate solutions. A set of 16 common used benchmark functions are adopted to test the effectiveness
and efficiency of the recombination and hypermutation operators. The comparisons with classic CSA, CSA with recombination
operator (RCSA), and CSA with recombination and modified hypermutation operator (RHCSA) demonstrate that the proposed
algorithm significantly improves the performance of classic CSA.Moreover, comparison with the state-of-the-art algorithms shows
that the proposed algorithm is quite competitive.

1. Introduction

Optimization techniques play a very important role in engi-
neering design, commercial manufacture, financial market,
information science, and related areas. An optimization
problem can be expressed as

Optimize 𝑓 (𝑋) ,

subject to 𝑋 ∈ Ω,
(1)

where 𝑋 = [𝑥
1
, 𝑥
2
, . . . , 𝑥

𝐷
] is a D-dimensional vector of

decision variables in the feasible region Ω. The optimization
could be either a minimization problem or a maximization
problem. Traditional optimization algorithms often fail to
deal with multimodal, nonconvex, nondifferentiable prob-
lems since most of them rely on the gradient information
[1]. In the past few decades, inspired by nature, people
have developed many optimization computation methods
to solve the complicated optimization problems, including

genetic algorithm (GA), differential evolution (DE), particle
swarm optimization (PSO) artificial immune system (AIS),
and some new nature-inspired algorithms [2–7].

Among them, artificial immune system (AIS) is a newly
emerging computational paradigm inspired by the funda-
mentals of immune system. It abstracts the structure and
function of the biological immune system and exploits the
applications to solve computational problems. In the area of
optimization, numerical comparisons demonstrated that the
performance of AIS is competitive compared to that of the
other nature-inspired algorithms [8]. Among them, clonal
selection algorithm is one of well-known AIS and has been
applied to solve many practical optimization problems [9–
11]. The clonal selection algorithm is inspired from behavior
of B cells in secreting antibody to bind with the invading
antigen. In view of the good performance of clonal selection
algorithms (CSAs) in computational optimization area [12],
in this paper, our work concentrates on CSA.

Hindawi Publishing Corporation
Computational Intelligence and Neuroscience
Volume 2016, Article ID 6204728, 14 pages
http://dx.doi.org/10.1155/2016/6204728

http://dx.doi.org/10.1155/2016/6204728

2 Computational Intelligence and Neuroscience

CSAs have attracted a lot of attention since they were
developed [13–15]. However, with the increase of the com-
plexity of the optimization problems, the deficiency of CSA is
gradually exposed. One of the main shortages is that hyper-
mutation is the main operator to modify the construction of
the candidate solution in the traditional CSAs, and generally
both global search and local search are based on adjusting
the step size of the hypermutation. It would be barely
unsatisfactory on balancing the diversity and convergence. In
some improved versions, new randomly generated solutions
are introduced by receptor editing or other mechanisms to
increase diversity. However, the mechanism of randomly
introduced solutions, along with the step-size controlled
hypermutation leads to a blind optima searching process.
Thereafter, premature convergence and diversity loss happen
when dealing with the high-dimensional, multimodal opti-
mization problems.

In view of the above analysis, we are motivated to
explore the undeveloped potential of clonal selection theory
in this paper. Inspired by the immune response of B cells, a
combinatorial recombination operator is introduced to share
the responsibility with hypermutation. In the proposed
algorithm, recombination operator is proposed to enhance
the search ability of the CSA. Moreover, the hypermutation
operator is modified to generate more promising candidate
solutions.

The rest of this paper is organized as follows. In Section 2,
the general framework of CSA algorithm is presented,
and the research works on improved CSAs in the field
of numerical optimization are reviewed. In Section 3, the
RHCSA algorithm is proposed based on the new introduced
recombination and the modified hypermutation operators.
Section 4 presents and discusses the experimental results.
Finally, the conclusion is drawn in Section 5.

2. CSA Framework

The AIS has become popular from the late 1990s. Several
books, journals, and conference papers have been published
in the past few years. de Castro and Timmis [16] depict
the main models in AIS such as clonal selection, immune
networks, and negative selection theories. More detailed
review of AIS and their applications can be found in [15, 17–
19]. Here we will give a brief literature review of the contem-
porary research efforts in clonal selection based algorithms in
handling the numerical optimization.

2.1. Clonal Selection Algorithms (CSAs). The main idea of
clonal selection theory lies in the phenomenon where B cell
reacts to invaded antigen through modifying the receptor
called antibody. The general one, named CLOGNALG [20],
is one of the representatives for clonal selection algorithms.
There are mainly three operations involved, which are
cloning, hypermutation, and selection.

The general framework of clonal selection algorithm for
optimization is presented as follows.
Framework of CSA
Step 1 (initialization). Randomly initialize antibody popula-
tion.

Step 2 (evaluation). Evaluate the objective values of the
antibody population as their fitness.

Step 3 (cloning). Generate copies of the antibodies.

Step 4 (hypermutation). Mutate all the generated copies.

Step 5 (selection). Select the one with highest fitness to
survive.

Step 6. Repeat Steps 2–5 until a termination criterion is met.

Themain features of the CSA framework are (i) the clone
number, usually proportionally to the affinity of antibody
with respect to the antigens; (ii) the mutation rate, normally
inversely proportional to the affinity; and (iii) the absence of
recombination operators (such as crossover in GAs). Those
characteristics expose deficiencies when facing the high-
dimensional, nonconvex multimodal, and multiobjective
optimization problems. First, it is obvious that the cloning
operator consumes high computational resource. Second,
hypermutation is insufficient to bear the burden of balancing
both the global search and the local search, which will lead to
the premature convergence and unsatisfied accuracy. Third,
the lack of consideration on interaction among individuals
in the population may lead to the search missing global
awareness, that is, overly searching one or some areas of the
search space while leaving the others unvisited.

2.2. Improved CSAs. To overcome the abovementioned
shortcomings, a bunch of improved algorithms based onCSA
are proposed. The research works can be briefly classified as
three categories.

2.2.1. Modification of the Operators or Introduction of New
Operators within the CSA Framework. Cutello et al. intro-
duced a real-coded clonal selection algorithm for global
optimization, involving the cloning operator, inversely pro-
portional hypermutation, and aging operator [21]. Three ver-
sions of somatic contiguous hypermutation operator are ana-
lyzed and proven to have better performance than standard
bit mutation to some types of optimization problem [22].
Khilwani et al. [23] proposed a fast clonal algorithm (FCA)
which designs a parallel mutation operator comprising Gaus-
sian and Cauchy mutation strategies. Lu and Yang [24] intro-
duce the Cauchy mutation for the improved CSA (IMCSA).
Two versions of immune algorithm namedOPT-IMMALG01
and OPT-IMMALG combined with the clonal operator, M
hypermutation operator, aging operator, and (𝜇+𝜆) selection
operator based on binary-code and real-code representation,
respectively, are discussed. The experimental results approve
the effectiveness of the algorithms in handing the high-
dimensional global numerical optimization problem [12].
Randomized clonal expansion strategy is proposed to solve
high-dimensional global optimization problem in [25].

2.2.2. Combine CSA with Immune Network Theory. Immune
network theory considers that the immune cells have rela-
tions with each other and hereafter the cells, molecules, and

Computational Intelligence and Neuroscience 3

other related substances construct a network. CAS combing
with immune network theory is more suitable for handling
multimodal function optimization.

The opt-AINet algorithm is an earlier version of CSA
with artificial immune networks, which is proposed to
solve multimodal continuous function optimization [26].
Uniform cloning operator, affinity-based Gaussian mutation,
and similarity-based suppressor are proposed. To enhance
the parameter adaptation, an improved adaptive Artificial
Immune Network called IA-AIS is proposed, where affinity-
based cloning operator, controlled affinity-based Gaussian
mutation, and dynamic suppressor are introduced [27]. By
imitating the social behaviors of animals, social leaning
mechanism is introduced to the immune network; an algo-
rithm called AINet-SL is proposed. The population is sepa-
rated into elitist swarm (ES) and the common swarm (CS).
Nonlinear affinity-based cloning, self-learningmutation, and
social learning mutation are employed [28]. Based on the
affinity measure, the candidate solution space is divided into
the elitist space, the common space, and the poor space, and
different hypermutation strategies are applied, respectively,
in MPAINet [29]. Concentration-Based Artificial Immune
Network, where the concentration of antibody is introduced
to stimulate and maintain the diversity of the population,
is applied to continuous optimization [30], combinatorial
optimization [31], and multiobjective optimization [32].

2.2.3. Hybrid CSA. CSA is also hybrid with PSO, DE, and
other evolutionary strategies.Hill-climbing local search oper-
ator is combined with immune algorithm in [33]. Differential
immune clonal selection algorithm (DICSA) is put forward
by Gong et al. [34], where the differential mutation and
differential crossover operators are introduced. Orthogonal
initialization and neighborhood orthogonal cloning operator
are proposed in an orthogonal immune algorithm (OIA) [35].
CSA with nondominated neighborhood selection strategy
(NNIA) [36] was proposed for multiobjective optimization.
Shang et al. [37] proposed an immune clonal algorithm
(NICA) for multiobjective optimization problems, which
makes improvements on four aspects in comparison with the
traditional clonal selection computing model.

Baldwin effect is introduced into CSA and formulated
the Baldwinian clonal selection algorithm (BCSA), which
guides the evolution of each antibody by the differential
information of other antibodies in the population [38]. Gong
et al. [39] substitute the mutation in CSA with the local
search technique in Lamarckian Clonal Selection Algorithm
(LCSA) and adopt recombination operator and tournament
selection operator for numerical optimization. An enhanced
CSA, hybrid learning CSA (HLCSA) [40], is proposed by
introducing two learning mechanisms: Baldwinian learning
and orthogonal learning.

Althoughmany improvements on immune inspired algo-
rithm have been realized, the abovementioned shortcoming
of artificial immune algorithm, such as premature conver-
gence, high computational cost, and unsatisfied accuracy that
can negatively affect the application of immune algorithm,
remains a problem. The search ability of immune algorithm
is limited when dealing with high-dimensional complex

optimization with different characteristics. In this paper, we
propose an improved CSA, by introducing a recombination
operator and modifying the hypermutation operator to cope
with the complex optimization problems with the character-
istic high-dimensional, nonconvex, rotated, and composed
optimization problems.

3. CSA with Combinatorial Recombination
and Modified Hypermutation

3.1. Combinatorial Recombination. In immunology, the pres-
ence of both recombination and somatic mutation takes the
responsibility for the diversification of antibody genes. The
recombination of the immunoglobulin gene segments is the
first stepwhen the cells are first exposed to antigen. In the past
few decades, recombination is mentioned more as crossover
in GA. However, as depicted in [41], the recombination of
immunoglobulin genes involved in the production of anti-
bodies differs from the recombination (crossover) of parental
genes in sexual reproduction. In the former, nucleotides can
be inserted and deleted randomly from the recombined gene
segments, while in the latter the genetic mixture is generated
from parental chromosomes.

The basic unit of antibody molecule has a Y-shape
structure, which contains two identical light chains and
two identical heavy chains as shown in Figure 1(a). Variable
regions located at the tips of the Y are primarily responsible
for antigen recognition. Within these variable regions, some
polypeptide segments show exceptional variability. The anti-
body molecules can be synthesized by an individual lying
in the way of encoding the amino acid sequences of the
variable domains into DNA chains as well as the random
selection and recombination of gene segments as shown
in Figure 1(b). During the development of B cell, the gene
segments in the libraries are combined and rearranged at the
level of the DNA. With the recombination of gene segments,
recombination creates a population of cells that varywidely in
their specificity. In this way, few immune cells are compatible
with various antigens. After altering the base of antibody, the
mutations fine-tune the lymphocyte receptor to better match
the antigen [41, 42].

In the perspective of optimization, recombination func-
tions as the coarse-grained exploration while hypermutation
works the same way as fine-grained exploitation. Inspired by
this, a combinatorial recombination operator is proposed as
follows.

To avoid the truncation error and the complexity of
the coding, our algorithm is coded in real number and
each dimension of a solution is viewed as a gene segment.
The whole population forms the gene fragments library.
According to the recombination in immunology, any orderly
rearrangement of gene segments would generate a new B
cell. As presented in Figure 2, the recombination could be (a)
between two individuals as crossover or (b) among several
individuals as the combination of randomly selected gene
segments. With the help of normalization, the combination
of gene segments could be in the specific order, such as
in Figure 2(a) or can be randomly arranged as shown in
Figure 2(b) in the computational respective.

4 Computational Intelligence and Neuroscience

Variable region on
heavy chain

Antigen binding
sites

Variable region
on light chain

Constant region
on light chain

Constant region
on heavy chain

· · ·· · ·

(a)

Rearranged DNA

Gene library

(b)

Figure 1: Structure of antibody (a) and recombination (b) in the variable region.

k

k

Xi
1

Xi
1

Xi
m

Xi
m

Xi
n

Xi
n

Xi
D

Xi
D

X
j
1

X
j
1

X
j
m

X
j
m

X
j
n

X
j
n

X
j
D

X
j
D

· · ·

· · ·

· · ·

· · ·

· · ·· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

(a)

Xa
1 Xa

m Xa
m Xa

D

Xb
1 Xb

m Xb
m Xb

D

Xd
1 Xd

m Xd
m Xd

D

· · ·

· · ·

· · · · · · · · ·

· · · · · · · · ·

Xa
1 Xa

2 Xb
3 Xt

D

Xa
2 Xa

3 Xd
1 Xt

K

· · · · · · · · ·

...
...

...
...

(b)

Figure 2: The way of rearrangement of gene segments (a) between two individuals (b) among several individuals.

The former one is similar to the SBX recombination
in GA [42], where the crossover of parents could swap
gene segments on one site or many sites. To better simulate
the arrangement of gene segments, line recombination, DE
inspired recombination [43], and intelligent recombination
[44] are proposed. There would be a lot of ways to do the
combinations with optional joined gene segments. With the
randomness of the arrangements and combination, diversity
is introduced. However, as is known to all, too much intro-
duced diversity would be harmful for the performance. Based
on the experimental experience, our work focuses on the
way to process recombination between two parents. A new
combinatorial recombination operator combining with line
recombination is proposed as follows.

Randomly choose two individuals from the population,
denoted by𝑋

𝐴
and𝑋

𝐵
, and then randomly choose𝑚 dimen-

sions,𝑚 ∈ [1,𝐷], fromeach of them,where dimensions index

could be recorded as vectors𝑉
𝐴
and𝑉

𝐵
, respectively.The new

individuals are generated by

𝑋
󸀠𝑉𝐴

𝐴
= 𝛼𝑋
𝑉𝐴

𝐴
+ (1 − 𝛼)𝑋

𝑉𝐵

𝐵

𝑋
󸀠𝑉𝐵

𝐵
= 𝛼𝑋
𝑉𝐵

𝐵
+ (1 − 𝛼)𝑋

𝑉𝐴

𝐴
,

(2)

where 𝛼 is a randomly produced number between 0 and 1. It
should be noted that the range of each dimension of decision
variable should be normalized at first. The new proposed
recombination operator is represented in Figure 3.

As shown in Figure 3, two new individuals are generated
through the combinational recombination. In the example,
𝑚 equals 3. It needs to be known that 𝑖

1
could be different

from 𝑗
1
, the same as in 𝑖

2
and 𝑗
2
and 𝑖
3
and 𝑗
3
as long as the

normalization has been done.
Then, the fitness of the new generated individuals is

evaluated. Together with the original individuals, two with

Computational Intelligence and Neuroscience 5

XA X1
A X

i1
A X

i2
A X

i3
A XD

A VA = {i1, i2, i3}

XB X1
B X

j1
B X

j2
B X

j3
B XD

B
VB = {j1, j2, j3}

Recombination

X
󳰀i1
A = 𝛼X

i1
A + (1 − 𝛼)X

j1
B X

󳰀j1
B = 𝛼X

j1
B + (1 − 𝛼)X

i1
A

X
󳰀i2
A = 𝛼X

i2
A + (1 − 𝛼)X

j2
B X

󳰀j2
B = 𝛼X

j2
B + (1 − 𝛼)X

i2
A

X
󳰀i3
A = 𝛼X

i3
A + (1 − 𝛼)X

j3
B X

󳰀j3
B = 𝛼X

j3
B + (1 − 𝛼)X

i3
A

X󳰀
A

XD
B

X1
A XD

A

X󳰀
B X1

B

X
󳰀i1
A

X
󳰀j1
B

X
󳰀i2
A

X
󳰀j2
B

X
󳰀i3
A

X
󳰀j3
B

· · · · · · · · · · · ·

· · · · · · · · · · · ·

· · · · · · · · · · · ·

· · · · · · · · · · · ·

Figure 3: Recombination process.

the higher fitness will survive, and the other two individuals
are deleted; that is, choose two individuals with high fitness
from the set {𝑋

𝐴
, 𝑋
𝐵
, 𝑋󸀠
𝐴
, 𝑋󸀠
𝐵
}. Instead of comparing with the

whole population and reserving the elite, a better diversity
will be maintained this way.

3.2. Modified Hypermutation. Hypermutation operator
brings diversity for the population by introducing
perturbation for each clone. Although there are several
ways to implement this operator [22], inversely proportional
strategy is always the main basis. The concept of the
operator proposed in [12] is adopted in this research work,
where each candidate solution is subject to M mutations
without explicitly using a mutation probability. The inversely
proportional law is used to determine the number of the
mutationsM:

𝛼 = exp (−𝜌𝑓∗ (𝑋
𝑖
))

𝑀 = ⌊(𝛼 × 𝑛) + 1⌋ ,
(3)

where 𝑓∗(𝑋
𝑖
) ∈ [0, 1] is the normalized fitness of 𝑋

𝑖
, 𝜌

is the decay constant which determines the shape of the
mutation rate, and ⌊⋅⌋ returns the lower bound integer. Then,
𝑀mutation is performed on each candidate solution:

𝑋
󸀠𝑗

𝑖
=
{
{
{

𝑋
𝑗

𝑟1
+ 𝜆 (𝑋

𝑗

𝑟1
− 𝑋
𝑗

𝑟2
) if 𝑗 ∈ rand 𝑀(𝑛)

𝑋
𝑗

𝑖
otherwise.

(4)

𝑋
𝑖
(𝑗) is the 𝑗th dimension of the 𝑖th individual, rand

𝑀(𝑛) ∈ {1, . . . , 𝑛} is randomly chosen 𝑀 indexes without
repetition, and 𝜆 is a random number in the range of
[−1, 1]. 𝑟1, 𝑟2 ∈ {1, 2, . . . , 𝑁} are randomly selected numbers;
hereafter, the amplitude of the hypermutation is controlled
automatically by the difference of randomly selected indi-
viduals in the population. The mutation equation (4) could

be considered as the variant of differential evolution and
is introduced by [45] to modify the original updating food
source of artificial bee colony algorithm (ABC), where it
is improved to benefit for enhancing the search ability of
ABC. In our proposed algorithm, the equation is combined
with the hypermutation inversely proportionalM strategy as
depicted above. The M strategy controls the direction, that
is, along how many dimensions, while the equation controls
the distance of the mutated clones with their parents. With
combination of both, the amplitude of the hypermutation is
automatically controlled according to the distribution of the
population.

3.3. Framework of the Proposed Algorithm. Combined with
the proposed combinatorial recombination and hypermuta-
tion operator, the framework of the proposed algorithm is as
follows.

Step 1 (initialization). Randomly initialize a population𝐴𝑏 of
𝑁 individuals, where 𝑁 denotes the size of the initial pop-
ulation. Each initial solution 𝑋

𝑖
= {𝑋
𝑖
(1), 𝑋

𝑖
(2), . . . , 𝑋

𝑖
(𝐷)}

is produced randomly within the range of boundaries of the
decision space:

𝑋
𝑗

𝑖
= 𝑋
𝑗

min + rand (0, 1) (𝑋
𝑗

max − 𝑋
𝑗

min) , (5)

where 𝑖 = 1, 2, . . . , 𝑁, 𝑗 = 1, 2, . . . , 𝐷, where 𝐷 is the
dimension of the decision variables, and 𝑋𝑗min and 𝑋𝑗max are
the lower and upper bounds for the dimension 𝑗, respectively.

Step 2 (evaluation). Evaluate the objective value of each
solution as its fitness.

Step 3 (recombination). Randomly choose two individu-
als from the population and implement the combinatorial

6 Computational Intelligence and Neuroscience

recombination as described in Section 3.1.The recombination
rate is set to𝑁

𝑟
.

Step 4 (clonal selection). (i) Cloning: each individual 𝑋
𝑖

generates𝑁
𝑐
copies {𝑋1

𝑖
, 𝑋2
𝑖
, . . . , 𝑋

𝑁𝑐

𝑖
}, where𝑁

𝑐
is the clone

number, which is a user defined constant.
(ii) Hypermutation: each clone 𝑋𝑗

𝑖
, 𝑗 = 1, . . . , 𝑁

𝑐
, goes

through the hypermutation as described in Section 3.2 and
generates the hypermutated clones𝑋󸀠𝑗

𝑖
.

(iii) Selection: select the individual with highest fitness
among𝑋

𝑖
and hypermutated clones {𝑋󸀠1

𝑖
, 𝑋󸀠2
𝑖
, . . . , 𝑋

󸀠𝑁𝑐

𝑖
}.

Step 5. If stopping condition is not met go to Step 3.
Otherwise, output the best one of the feasible group.

It could be observed that instead of being proportional to
the fitness, the clone number is a constant, which not only
saves computational source but also avoids individuals being
concentrated in some decision area and leaving the others
unvisited when handling the multimodal problems.

4. Experimental Studies on Function
Optimization Problems

In this section, experiments are conducted to evaluate the
performance of RHCSA by using 16 commonly used global
optimization benchmark problems. These functions contain
the characteristics of being unimodal as 𝑓

1
∼𝑓
2
, unrotated

multimodal as 𝑓
3
∼𝑓
8
, rotated multimodal as 𝑓

9
∼𝑓
14
, and

composite functions as 𝑓
15
∼𝑓
16
. Table 1 gives the expression

of the benchmark function. The detailed characteristics of
these functions can be found in [1, 46].

The introduced parameters are analyzed at first, and then
the proposed algorithm is compared with traditional CSA
in the benchmark functions. Finally, comparisons between
the proposed algorithm and the state-of-the-art evolutionary
computing models are represented. Some discussions on the
performance analysis of RHCSA are also included. It needs to
be noted that the same setup for the experiments is used for
all the involved peers algorithms; that is, the comparison of all
the algorithms is under the same configuration of experiment
setup in this paper.

4.1. Experimental Parameters Settings. The experiments were
conducted on 16 benchmark functions. The maximum num-
ber of function evaluations (mFES) is set as 10,000∗D for
10-D and 30-D situations, respectively. Each test is run 30
independent times.

There are quite few parameters introduced in the pro-
posed algorithm. For a fair comparison among CSAs, they
are tested using the same setting of the parameters, that is,
the population size𝑁 is set to 30 and clone number𝑁

𝑐
is set

to 4 as in [40]. Furthermore, there are two new parameters
introduced. One is𝑚 which controls the direction of combi-
natorial recombination, and the other is recombination rate.
Tables 2 and 3 give the experimental results of varying 𝑚 in
the 16 benchmark functions with 10-D and 30-D. For conve-
nience, the experiment sets 4 proportions to the dimension as
the value to𝑚, which are [⌈(1/10)𝐷⌉, ⌈(1/5)𝐷⌉, ⌈(1/3)𝐷⌉,𝐷].

The recombination operator could introduce diversity
to the population through fusing information between ran-
domly chosen parents. When 𝑚 is small, the generated
offspring is much similar to one of the chosen parents, and
only little dimension obtains information from both parents.
When𝑚 is large, the generated offspring tend to be the fusion
of chosen parents. That is to say, m controls the offspring
being much like one of the chosen parents or the fusion of
both of them. From Tables 2 and 3, we can find that the dif-
ference among the varying setup ofm is quite small. In amore
careful observation, ⌈(1/5)𝐷⌉ and ⌈(1/3)𝐷⌉ are more appro-
priate to compare with the other situations for both D = 10
and D = 30, and ⌈(1/3)𝐷⌉ is even better. It could be observed
that experimental results are not sensitive to the parameter
𝑚, and a slightly larger𝑚may be beneficial for the algorithm.
In view of the observation, m = ⌈(1/3)𝐷⌉ is chosen in our
experiments.

There is another parameter named recombination rate
𝑁
𝑟
, which controls the rate of recombination process, which

will be implemented. The higher the 𝑁
𝑟
, the more recom-

bination processes that will be executed. In the early stage,
the population is uniformly distributed in the search space,
and recombination of randomly chosen individuals will bring
diversity to the population. As is known to all, diversity is
beneficial for enhancing the search ability of the algorithm,
but too much diversity will slow the convergence. Tables
4 and 5 represent the experimental results of varying the
recombination rate.

FromTables 4 and 5, it could be observed that RHCSAhas
a quite robust performance with the varying recombination
rate. By comparison, 𝑁

𝑟
which is equal to 0.7 achieves the

best performance and is adopted in the paper.

4.2. Comparisons with Classic CSA. The experiments are
implemented to check if the proposed operators are beneficial
for the performance of the algorithm. Firstly, recombination
operator is added to the original CSA denoted as RCSA, and
then the modified hypermutation is introduced as RHCSA.

Table 6 shows the statistical results of CLONALG, RCSA,
and RHCSA in optimizing the 16 test problems with D =
10 based on 30 independent runs including the mean and
standard deviation. From the table, we can observe that,
for all these test instances, the introduced recombination
operator could obviously improve the performance of the
CSA. The reason is that the recombination operator could
bring diversity to enhance the search ability and avoid
being trapped into the local optima. The experiments results
on multimodal function 𝑓

3
∼𝑓
8
could present the ability

of introduced recombination operator. With the modified
hypermutation operator, the performance of the algorithm
obtains a further improvement. This is because both recom-
bination and hypermutation adopt the difference of chosen
individuals to generate the candidate solution in the proposed
algorithm. In the early stage, the population is distributed in
the search space, and the difference is relatively large which
is beneficial for global search and then, with the iterations
going on, the population converges to the optima and the
difference between individuals becomes smaller and smaller;
that is, the search process turns to be a local search. It can

Computational Intelligence and Neuroscience 7

Table 1: Benchmark functions used in our experimental study.

Name Test function D S 𝑓min

Sphere function 𝑓
1
(𝑥) =

𝐷

∑
𝑖=1

𝑥2
𝑖 10/30 [−100, 100] 0

Rosenbrock’s function𝑓2 (𝑥) =
𝐷−1

∑
𝑖=1

(100 (𝑥2
𝑖
− 𝑥
𝑖+1
)
2

+ (𝑥
𝑖
− 1)
2

) 10/30 [−2.048, 2.048] 0

Ackley’s function 𝑓
3
(𝑥) = −20 exp(−0.2√ 1

𝐷

𝐷

∑
𝑖=1

𝑥2
𝑖
) − exp(1

𝐷

𝐷

∑
𝑖=1

(2𝜋𝑥
𝑖
)) + 20 + 𝑒 10/30 [−32.768, 32.768] 0

Griewanks’s function 𝑓
4
(𝑥) =

𝐷

∑
𝑖=1

𝑥2
𝑖

4000
−
𝐷

∏
𝑖=1

cos
𝑥
𝑖

√𝑖
+ 1 10/30 [−600, 600] 0

Weierstrass function
𝑓
5
(𝑥) =

𝐷

∑
𝑖=1

{
𝑘max
∑
𝑘=1

[𝑎𝑘 cos (2𝜋𝑏𝑘 (𝑥
𝑖
+ 0.5))]} − 𝐷

𝑘max
∑
𝑘=1

{𝑎𝑘 cos (2𝜋𝑏𝑘 ⋅ 0.5)}
10/30 [−0.5, 0.5] 0

𝑎 = 0.5, 𝑏 = 3, 𝑘max = 20

Rastrigin’s function 𝑓
6
(𝑥) =

𝐷

∑
𝑖=1

{𝑥2
𝑖
− 10 cos (2𝜋𝑥

𝑖
) + 10} 10/30 [−5.12, 5.12] 0

Noncont.Ras

𝑓
7
(𝑥) =

𝐷

∑
𝑖=1

{𝑦2
𝑖
− 10 cos(2𝜋𝑦

𝑖
) + 10},

𝑦
𝑖
=

{{{
{{{
{

𝑥
𝑖

󵄨󵄨󵄨󵄨𝑥𝑖
󵄨󵄨󵄨󵄨 < 0.5

round (2𝑥
𝑖
)

2

󵄨󵄨󵄨󵄨𝑥𝑖
󵄨󵄨󵄨󵄨 ≥ 0.5

, 𝑖 = 1, 2, . . . , 𝐷

10/30 [−5.12, 5.12] 0

Schwefel’s function 𝑓
8
(𝑥) = 418.9829𝐷 −

𝐷

∑
𝑖=1

{𝑥
𝑖
sin (󵄨󵄨󵄨󵄨𝑥𝑖

󵄨󵄨󵄨󵄨
0.5

)} 10/30 [−500, 500] 0

Rot.Ackley’s function 𝑓
9
(𝑥) = 𝑓

3
(𝑦) , 𝑦 = 𝑀 ∗ 𝑥 10/30 [−32.768, 32.768] 0

Rot.Griewanks’s
function 𝑓

10
(𝑥) = 𝑓

4
(𝑦) , 𝑦 = 𝑀 ∗ 𝑥 10/30 [−600, 600] 0

Rot.Weierstrass
function 𝑓

11
(𝑥) = 𝑓

5
(𝑦) , 𝑦 = 𝑀 ∗ 𝑥 10/30 [−0.5, 0.5] 0

Rot.Rastrigin’s
function 𝑓

12
(𝑥) = 𝑓

6
(𝑦) , 𝑦 = 𝑀 ∗ 𝑥 10/30 [−5.12, 5.12] 0

Rot.noncon Ras
function 𝑓

13
(𝑥) = 𝑓

7
(𝑦) , 𝑦 = 𝑀 ∗ 𝑥 10/30 [−5.12, 5.12] 0

Rot.Schwefel’s
function

𝑓
14
(𝑥) = 418.9829𝐷 −

𝐷

∑
𝑖=1

𝑍
𝑖
,

𝑍
𝑖
=
{{
{{
{

𝑦
𝑖
sin (󵄨󵄨󵄨󵄨𝑦𝑖

󵄨󵄨󵄨󵄨
0.5

)
󵄨󵄨󵄨󵄨𝑦𝑖
󵄨󵄨󵄨󵄨 ≤ 500

0.001 (
󵄨󵄨󵄨󵄨𝑦𝑖
󵄨󵄨󵄨󵄨 − 500)

2 󵄨󵄨󵄨󵄨𝑦𝑖
󵄨󵄨󵄨󵄨 ≥ 500

, 𝑖 = 1, 2, . . . , 𝐷;

𝑦 = 𝑀 ∗ (𝑥 − 420.96) + 420.96

10/30 [−500, 500] 0

Composition 1 𝑓
15
= 𝐶𝐹1 10/30 [−5, 5] 0

Composition 2 𝑓
16
= 𝐶𝐹2 10/30 [−5, 5] 0

be observed that RCSA surpass CSA and be surpassed by
RHCSA at all the tested functions. It can be concluded that
the proposed recombination and hypermutation operators
are effective improving the ability of the CSA.

Table 7 shows the experimental results of the algorithms
when 𝐷 = 30. Similar results are represented, which
indicates that RHCSA is able to handle the high-dimensional
optimization problems as well.

4.3. Comparisons with the State-of-the-Art Algorithms. To
compare RHCSA with the state-of-the-art algorithms, exper-
imental results of seven representative evolutionary algo-
rithms are listed in Tables 8 and 9. These algorithms are
Baldwinian clonal selection algorithm (BCSA) [38]; hybrid
learning clonal selection algorithm (HLCSA) [40]; orthogo-
nal crossover based differential evolution (OXDE) [47]; self-
adaptive differential evolution (SaDE) [48]; global and local

8 Computational Intelligence and Neuroscience

Table 2: Results (mean ± std) of RHCSA with varying sampling points of combinatorial recombination in 16 benchmark functions with
𝐷 = 10.

Function 𝑚 = ⌈(1/10)𝐷⌉ 𝑚 = ⌈(1/5)𝐷⌉ 𝑚 = ⌈(1/3)𝐷⌉ 𝑚 = 𝐷

𝑓
1

1.3521𝑒 − 180 ± 0.0000𝑒 − 000 1.53784𝑒 − 166 ± 0.0000𝑒 − 000 7.2585e − 195 ± 0.0000e − 000 2.2773𝑒 − 078 ± 4.9085𝑒 − 078

𝑓
2

8.6187𝑒 − 004 ± 3.20378𝑒 − 004 8.1377𝑒 − 004 ± 3.0271𝑒 − 004 8.9516𝑒 − 004 ± 3.2039𝑒 − 004 2.8971e − 004 ± 3.6648e − 004

𝑓
3

5.2831𝑒 − 015 ± 4.2156𝑒 − 015 1.7763𝑒 − 015 ± 1.7763𝑒 − 015 8.8817e − 016 ± 0.0000e − 000 2.0724𝑒 − 015 ± 2.0511𝑒 − 015

𝑓
4

0 ± 0 0 ± 0 0 ± 0 0 ± 0

𝑓
5

0 ± 0 0 ± 0 0 ± 0 0 ± 0

𝑓
6

0 ± 0 0 ± 0 0 ± 0 0 ± 0

𝑓
7

0 ± 0 0 ± 0 0 ± 0 0 ± 0

𝑓
8

0 ± 0 0 ± 0 0 ± 0 0 ± 0

𝑓
9

4.0175𝑒 − 015 ± 1.3376𝑒 − 015 3.0923e − 015 ± 1.4969e − 015 3.9292𝑒 − 015 ± 1.1420𝑒 − 015 4.2912𝑒 − 015 ± 1.0827𝑒 − 015

𝑓
10

9.3401𝑒 − 002 ± 1.5480𝑒 − 002 1.8195𝑒 − 002 ± 1.0245𝑒 − 002 1.6937e − 002 ± 1.6091e − 002 5.5463𝑒 − 002 ± 2.6635𝑒 − 002

𝑓
11

0 ± 0 0 ± 0 0 ± 0 0 ± 0

𝑓
12

2.4401𝑒 + 000 ± 1.0935𝑒 + 000 2.0556𝑒 + 000 ± 1.1601𝑒 + 000 1.5954e + 000 ± 1.5954e + 000 1.6638𝑒 + 000 ± 1.7026𝑒 + 000

𝑓
13

8.1024𝑒 + 000 ± 5.6678𝑒 + 000 4.1385𝑒 + 000 ± 2.1123𝑒 + 000 4.0000e + 000 ± 2.1213e + 000 4.1773𝑒 + 000 ± 3.7530𝑒 + 000

𝑓
14

7.5454𝑒 − 008 ± 6.2091𝑒 − 007 6.8712e − 008 ± 7.0921e − 007 9.8137𝑒 − 008 ± 7.7851𝑒 − 007 9.2565𝑒 − 008 ± 8.6635𝑒 − 007

𝑓
15

0 ± 0 0 ± 0 0 ± 0 0 ± 0

𝑓
16

9.0023𝑒 + 000 ± 7.8901𝑒 + 000 6.4971𝑒 + 000 ± 7.9297𝑒 + 000 5.2613e + 000 ± 5.0573e + 000 8.6977𝑒 + 000 ± 7.4630𝑒 + 000

Table 3: Results (mean ± std) of RHCSA with varying sampling points of combinatorial recombination in 16 benchmark functions with
𝐷 = 30.

Function 𝑚 = ⌈(1/10)𝐷⌉ 𝑚 = ⌈(1/5)𝐷⌉ 𝑚 = ⌈(1/3)𝐷⌉ 𝑚 = 𝐷

𝑓
1

3.1129𝑒 − 114 ± 4.4031𝑒 − 114 8.2698𝑒 − 110 ± 0.0000𝑒 − 000 1.6994e − 194 ± 0.0000e − 000 6.6159𝑒 − 108 ± 0.0000𝑒 − 000

𝑓
2

1.9281𝑒 − 007 ± 8.9376𝑒 − 007 7.4820𝑒 − 007 ± 3.0968𝑒 − 007 2.6862𝑒 − 007 ± 6.0065𝑒 − 007 7.4820e − 008 ± 3.0968e − 008

𝑓
3

4.4415𝑒 − 016 ± 2.5108𝑒 − 016 8.9382𝑒 − 016 ± 8.1571𝑒 − 016 8.8817e − 016 ± 0.0000e − 000 2.1438𝑒 − 015 ± 2.6596𝑒 − 015

𝑓
4

0 ± 0 0 ± 0 0 ± 0 0 ± 0

𝑓
5

0 ± 0 0 ± 0 0 ± 0 0 ± 0

𝑓
6

0 ± 0 0 ± 0 0 ± 0 0 ± 0

𝑓
7

0 ± 0 0 ± 0 0 ± 0 0 ± 0

𝑓
8

0 ± 0 0 ± 0 0 ± 0 0 ± 0

𝑓
9

3.2039𝑒 − 015 ± 1.8147𝑒 − 015 2.6532e − 015 ± 1.3037e − 015 3.9092𝑒 − 015 ± 1.9459𝑒 − 015 4.3241𝑒 − 015 ± 2.9542𝑒 − 015

𝑓
10

0 ± 0 0 ± 0 0 ± 0 0 ± 0

𝑓
11

0 ± 0 0 ± 0 0 ± 0 0 ± 0

𝑓
12

5.1900𝑒 + 001 ± 4.3580𝑒 + 001 4.1625𝑒 + 001 ± 9.1218𝑒 + 000 2.6201e + 001 ± 8.3454e + 000 2.9186𝑒 + 001 ± 6.7990𝑒 + 001

𝑓
13

6.5345𝑒 + 001 ± 3.4082𝑒 + 001 5.1253𝑒 + 001 ± 2.3126𝑒 + 001 4.5502e + 001 ± 1.0609e + 001 4.8247𝑒 + 001 ± 1.0493𝑒 + 001

𝑓
14

3.0358𝑒 − 003 ± 3.8244𝑒 − 003 4.2769𝑒 − 003 ± 2.5513𝑒 − 003 2.4186e − 003 ± 5.3084e − 003 3.4354𝑒 − 003 ± 4.1538𝑒 − 003

𝑓
15

0 ± 0 0 ± 0 0 ± 0 0 ± 0

𝑓
16

9.4154𝑒 − 002 ± 7.1725𝑒 − 002 8.8757𝑒 − 002 ± 1.4384𝑒 − 002 8.8501e − 002 ± 1.5560e − 001 9.6583𝑒 − 002 ± 1.7236𝑒 − 001

Computational Intelligence and Neuroscience 9

Table 4: Results (mean ± std) of RHCSA with varying recombination rate in 16 benchmark functions with 𝐷 = 10.

Function 0.1 0.5 0.7 1

𝑓
1

3.8119𝑒 − 119 ± 3.8510𝑒 − 119 4.0163𝑒 − 178 ± 0.0000𝑒 − 000 7.2585e − 195 ± 0.0000e − 000 3.0122𝑒 − 178 ± 0.0000𝑒 − 000

𝑓
2

2.9186𝑒 − 004 ± 1.1966𝑒 − 004 3.1115𝑒 − 004 ± 1.05044𝑒 − 004 8.9516𝑒 − 004 ± 3.20393𝑒 − 004 2.2544e − 004 ± 1.5452e − 004

𝑓
3

1.9741𝑒 − 015 ± 1.9767𝑒 − 015 1.4807𝑒 − 015 ± 1.9052𝑒 − 015 8.8817e − 016 ± 0.0000e − 000 1.4135𝑒 − 015 ± 1.9876𝑒 − 015

𝑓
4

0 ± 0 0 ± 0 0 ± 0 0 ± 0

𝑓
5

0 ± 0 0 ± 0 0 ± 0 0 ± 0

𝑓
6

0 ± 0 0 ± 0 0 ± 0 0 ± 0

𝑓
7

0 ± 0 0 ± 0 0 ± 0 0 ± 0

𝑓
8

0 ± 0 0 ± 0 0 ± 0 0 ± 0

𝑓
9

5.6305𝑒 − 015 ± 1.3377𝑒 − 015 7.9474𝑒 − 015 ± 2.5291𝑒 − 015 3.9292e − 015 ± 1.1420e − 015 4.1535𝑒 − 015 ± 1.2103𝑒 − 015

𝑓
10

3.7179𝑒 − 002 ± 1.8338𝑒 − 002 3.1530e − 002 ± 1.7649e − 002 3.8363𝑒 − 002 ± 3.77691𝑒 − 002 3.7971𝑒 − 002 ± 3.7825𝑒 − 002

𝑓
11

0 ± 0 0 ± 0 0 ± 0 0 ± 0

𝑓
12

2.3153𝑒 + 000 ± 1.3464𝑒 + 000 2.3031𝑒 + 000 ± 1.3465𝑒 + 000 1.5954𝑒 + 000 ± 1.5954𝑒 + 000 1.3685e + 000 ± 1.4679e + 000

𝑓
13

4.0817𝑒 + 000 ± 5.5791𝑒 + 000 3.8531e + 000 ± 2.2514e + 000 4.0000𝑒 + 000 ± 2.1213𝑒 + 000 4.8073𝑒 + 000 ± 3.4243𝑒 + 000

𝑓
14

5.5773e − 008 ± 3.6818e − 007 6.9679𝑒 − 008 ± 5.9121𝑒 − 007 9.8137𝑒 − 008 ± 7.7851𝑒 − 007 7.0125𝑒 − 008 ± 1.0013𝑒 − 007

𝑓
15

0 ± 0 0 ± 0 0 ± 0 0 ± 0

𝑓
16

8.6735𝑒 + 000 ± 8.3012𝑒 + 000 6.2013𝑒 + 000 ± 4.2016𝑒 + 000 5.2613e + 000 ± 5.0573e + 000 5.6012𝑒 + 000 ± 7.1232𝑒 + 000

Table 5: Results (mean ± std) of RHCSA with varying recombination rate in 16 benchmark functions with 𝐷 = 30.

Function 0.1 0.5 0.7 1

𝑓
1

1.6848𝑒 − 121 ± 0.0000𝑒 − 000 1.1232𝑒 − 150 ± 0.0000𝑒 − 000 1.6994𝑒 − 194 ± 0.0000𝑒 − 000 8.4243e − 198 ± 0.0000e − 000

𝑓
2

3.3269𝑒 − 007 ± 8.1537𝑒 − 007 3.3493𝑒 − 007 ± 3.1302𝑒 − 007 2.6862e − 007 ± 6.0065e − 007 7.3295𝑒 − 007 ± 3.0183𝑒 − 007

𝑓
3

9.6645𝑒 − 016 ± 2.5121𝑒 − 016 8.9312𝑒 − 016 ± 2.8421𝑒 − 016 8.8817e − 016 ± 0.0000e − 000 2.6645𝑒 − 015 ± 2.7580𝑒 − 015

𝑓
4

0 ± 0 0 ± 0 0 ± 0 0 ± 0

𝑓
5

0 ± 0 0 ± 0 0 ± 0 0 ± 0

𝑓
6

0 ± 0 0 ± 0 0 ± 0 0 ± 0

𝑓
7

0 ± 0 0 ± 0 0 ± 0 0 ± 0

𝑓
8

0 ± 0 0 ± 0 0 ± 0 0 ± 0

𝑓
9

2.5600𝑒 − 015 ± 2.2178𝑒 − 015 2.4424e − 015 ± 1.2352e − 015 3.9092𝑒 − 015 ± 1.9459𝑒 − 015 2.5461𝑒 − 015 ± 2.2735𝑒 − 015

𝑓
10

0 ± 0 0 ± 0 0 ± 0 0 ± 0

𝑓
11

0 ± 0 0 ± 0 0 ± 0 0 ± 0

𝑓
12

4.6654𝑒 + 001 ± 4.1276𝑒 + 001 2.7521𝑒 + 001 ± 1.0387𝑒 + 000 2.6201e + 001 ± 8.3454e + 000 2.8012𝑒 + 001 ± 1.2293𝑒 + 001

𝑓
13

5.1231𝑒 + 001 ± 1.3024𝑒 + 001 4.5613𝑒 + 001 ± 1.3450𝑒 + 001 4.5502e + 001 ± 1.0609e + 001 4.7234𝑒 + 001 ± 1.1249𝑒 + 001

𝑓
14

2.6782𝑒 − 003 ± 3.2933𝑒 − 003 2.8334𝑒 − 003 ± 6.2013𝑒 − 003 2.4186e − 003 ± 5.3084e − 003 3.0187𝑒 − 003 ± 8.7612𝑒 − 003

𝑓
15

0 ± 0 0 ± 0 0 ± 0 0 ± 0

𝑓
16

8.7011𝑒 − 002 ± 5.6745𝑒 − 002 8.7329𝑒 − 002 ± 9.2581𝑒 − 002 8.8501𝑒 − 002 ± 1.5560𝑒 − 001 6.0112e − 002 ± 2.5832e − 002

10 Computational Intelligence and Neuroscience

Table 6: Results of traditional clonal selection algorithm and RHCSA when𝐷 = 10.

ALGs Clonal selection algorithm (CSA) CSA with recombination RHCSA
Mean Std Mean Std Mean Std

𝑓
1

5.0414𝑒 − 008 4.4098𝑒 − 008 6.9076𝑒 − 056 9.5731𝑒 − 055 7.2585e − 195 0

𝑓
2

5.5057𝑒 + 000 2.7914𝑒 + 000 4.5314𝑒 − 003 4.7750𝑒 − 002 8.9516e − 004 3.2039𝑒 − 004

𝑓
3

2.8532𝑒 − 003 8.5712𝑒 − 003 2.3976𝑒 − 015 5.7314𝑒 − 015 8.8817e − 016 0

𝑓
4

2.6092𝑒 − 002 1.9092𝑒 − 002 0 0 0 0

𝑓
5

1.2569𝑒 − 002 4.4216𝑒 − 003 0 0 0 0

𝑓
6

8.4141𝑒 + 000 2.4848𝑒 + 000 0 0 0 0

𝑓
7

5.7681𝑒 + 000 1.3571𝑒 + 000 0 0 0 0

𝑓
8

3.6436𝑒 + 002 9.7648𝑒 + 001 0 0 0 0

𝑓
9

1.0619𝑒 + 000 7.9728𝑒 − 001 1.3592𝑒 − 008 1.0975𝑒 − 008 3.9292e − 015 1.1420𝑒 − 015

𝑓
10

4.2974𝑒 − 001 1.0264𝑒 − 001 2.5301𝑒 − 001 1.1356𝑒 − 001 1.6937e − 002 1.6091𝑒 − 002

𝑓
11

6.0837𝑒 + 000 1.5496𝑒 + 000 5.2403𝑒 − 008 1.2560𝑒 − 008 0 0

𝑓
12

4.2193𝑒 + 001 5.4173𝑒 + 000 3.6021𝑒 + 001 1.2541𝑒 + 001 2.7006e + 000 1.5954𝑒 + 000

𝑓
13

4.3672𝑒 + 001 5.5570𝑒 + 000 2.3702𝑒 + 001 2.5091𝑒 + 001 4.0000e + 000 2.1213𝑒 + 000

𝑓
14

1.9305𝑒 + 003 2.3358𝑒 + 002 2.7201𝑒 − 003 6.1034𝑒 − 003 9.8137e − 008 7.7851𝑒 − 007

𝑓
15

4.5354𝑒 + 001 3.2450𝑒 + 001 1.0276𝑒 − 033 1.8734𝑒 − 033 0 0

𝑓
16

5.1701𝑒 + 001 1.7347𝑒 + 001 5.2613𝑒 + 000 5.0573𝑒 + 000 5.2613e + 000 5.0573𝑒 + 000

Table 7: Results of traditional clonal selection algorithm and RHCSA when𝐷 = 30.

ALGs Clonal selection algorithm (CSA) CSA with recombination RHCSA
Mean Std Mean Std Mean Std

𝑓
1

6.4595𝑒 − 002 2.9504𝑒 − 002 1.4668𝑒 − 105 3.0015𝑒 − 105 1.6994e − 194 0

𝑓
2

2.7748𝑒 + 001 2.1866𝑒 + 000 1.8524𝑒 − 001 2.6531𝑒 − 001 2.6862e − 007 6.0065𝑒 − 007

𝑓
3

3.1589𝑒 − 001 1.8716𝑒 − 001 1.9187e − 017 3.8302𝑒 − 017 8.8817𝑒 − 016 0

𝑓
4

1.6746𝑒 − 001 4.3211𝑒 − 002 0 0 0 0

𝑓
5

3.6752𝑒 + 001 4.6907𝑒 + 000 0 0 0 0

𝑓
6

3.6752𝑒 + 001 4.6907𝑒 + 000 0 0 0 0

𝑓
7

2.3935𝑒 + 001 2.5226𝑒 + 000 0 0 0 0

𝑓
8

1.6279𝑒 + 003 1.7813𝑒 + 002 0 0 0 0

𝑓
9

3.8700𝑒 + 000 3.2556𝑒 − 001 1.8245𝑒 − 005 1.3675𝑒 − 005 3.9092e − 015 1.9459𝑒 − 015

𝑓
10

8.3333𝑒 − 001 7.5256𝑒 − 002 2.9176𝑒 − 028 1.3613𝑒 − 028 0 0

𝑓
11

3.3702𝑒 + 001 2.7162𝑒 + 000 1.1680𝑒 − 030 1.9130𝑒 − 030 0 0

𝑓
12

2.5929𝑒 + 002 1.4658𝑒 + 001 4.3898𝑒 + 001 2.0666𝑒 + 000 2.6201e + 001 8.3454𝑒 + 000

𝑓
13

2.5762𝑒 + 002 2.1376𝑒 + 001 5.4715𝑒 + 001 1.7261𝑒 + 001 4.5502e + 001 1.0609𝑒 + 001

𝑓
14

8.7875𝑒 + 003 3.2136𝑒 + 002 2.5296𝑒 − 002 1.6225𝑒 − 002 2.4186e − 003 5.3084𝑒 − 003

𝑓
15

4.4892𝑒 + 001 9.5942𝑒 + 000 3.3097𝑒 − 033 1.6468𝑒 − 033 0 0

𝑓
16

3.9889𝑒 + 001 4.3023𝑒 + 000 2.5177𝑒 − 001 1.1168𝑒 − 001 8.8501e − 002 1.5560𝑒 − 001

real-coded genetic algorithm (GL-25) [49]; and comprehen-
sive learning particle swarm optimization (CLPSO) [1].

Table 8 presents the mean values and standard deviations
of the seven algorithms on the 16 test functions with𝐷 = 10,
where the best results are shown in bold face. First of all,
RHCSA performs the best on the 6 unrotated multimodal
functions 𝑓

3
∼𝑓
8
. It could exactly locate the global optima in

7 functions, 𝑓
4
∼𝑓
8
, 𝑓
11
, and 𝑓

15
. In particular, it is observed

that RHCSA surpasses all the other algorithms on functions
𝑓
3
and𝑓
12
with great superiority.Moreover, RHCSA,HLCSA,

BCSA, SaDE, and CLPSO can obtain the global minima
0 on functions 𝑓

5
, 𝑓
6
, 𝑓
7
, and 𝑓

8
; RHCSA, HLCSA, BCSA,

SaDE, and OXDE get the global optimum of function 𝑓
11

and RHCSA, HLCSA, SaDE, OXDE, and GL-25 find the
optimum on function 𝑓

15
. Though RHCSA cannot get the

best results on functions 𝑓
1
, 𝑓
9
, 𝑓
10
, 𝑓
13
, and 𝑓

16
, it still gets

the comparable solutions with respect to the best results
obtained by the other algorithms. To the composite problems
𝑓
15
, RHCSA reaches the global best as HLCSA, OXDE, SaDE,

and GL-25. To the function 𝑓
16
, RHCSA surpasses the other

algorithms except for HLCSA.
Similar results can be observed from Table 9 when 𝐷

equals 30. RHCSA can consistently obtain good results which
are even slightly better than those on 10-𝐷 problems. RHCSA

Computational Intelligence and Neuroscience 11

Table 8: Results (mean ± std) of RHCSA and other state-of-the-art evolutionary algorithms when𝐷 = 10.

(a)

ALGs 𝑓
1

𝑓
2

𝑓
3

𝑓
4

RHCSA 7.2585𝑒 − 195 ± 0.000𝑒 − 000 8.9516𝑒 − 004 ± 3.2039𝑒 − 004 8.8817e − 016 ± 0.000e − 000 0 ± 0
HLCSA 4.2228𝑒 − 053 ± 9.9892𝑒 − 053 3.9087e − 028 ± 6.6496e − 028 2.5757𝑒 − 015 ± 4.8648𝑒 − 016 0 ± 0
BCSA 1.1694𝑒 − 037 ± 1.3065𝑒 − 037 1.8521𝑒 − 001 ± 7.2808𝑒 − 001 2.6645𝑒 − 015 ± 0.0000𝑒 − 000 1.4146𝑒 − 001 ± 1.3744𝑒 − 001

OXDE 4.5059𝑒 − 056 ± 7.4966𝑒 − 056 1.0265𝑒 − 026 ± 2.0786𝑒 − 026 2.0724𝑒 − 015 ± 1.3467𝑒 − 015 9.9330𝑒 − 004 ± 1.0673𝑒 − 002

SaDE 1.4451𝑒 − 176 ± 0.0000𝑒 − 000 2.0249𝑒 + 000 ± 7.4832𝑒 − 001 5.0330𝑒 − 015 ± 1.1109𝑒 − 015 1.8074𝑒 − 003 ± 3.8251𝑒 − 003

GL-25 1.0771e − 321 ± 0.0000e − 000 2.0956𝑒 + 000 ± 6.3579𝑒 − 001 2.7830𝑒 − 015 ± 1.4703𝑒 − 015 1.2134𝑒 − 002 ± 1.0199𝑒 − 002

CLPSO 1.8154𝑒 − 041 ± 3.0360𝑒 − 041 2.1490𝑒 + 000 ± 1.2450𝑒 + 000 3.9672𝑒 − 015 ± 1.7413𝑒 − 015 7.4577𝑒 − 006 ± 2.1864𝑒 − 005

(b)

ALGs 𝑓
5

𝑓
6

𝑓
7

𝑓
8

RHCSA 0 ± 0 0 ± 0 0 ± 0 0 ± 0
HLCSA 0 ± 0 0 ± 0 0 ± 0 0 ± 0
BCSA 0 ± 0 0 ± 0 0 ± 0 0 ± 0
OXDE 0 ± 0 6.6331𝑒 − 002 ± 2.5243𝑒 − 001 5.6667𝑒 − 001 ± 7.2793𝑒 − 001 0 ± 0
SaDE 0 ± 0 0 ± 0 0 ± 0 0 ± 0
GL-25 7.3315𝑒 − 007 ± 2.2405𝑒 − 006 1.9633𝑒 + 000 ± 1.1774𝑒 + 000 5.6336𝑒 + 000 ± 1.2724𝑒 + 000 2.8952𝑒 + 002 ± 1.9959𝑒 + 002

CLPSO 0 ± 0 0 ± 0 0 ± 0 0 ± 0

(c)

ALGs 𝑓
9

𝑓
10

𝑓
11

𝑓
12

RHCSA 3.9292𝑒 − 015 ± 1.1420𝑒 − 015 1.6937𝑒 − 002 ± 1.6091𝑒 − 002 0 ± 0 1.5954e + 000 ± 1.5954e + 000
HLCSA 3.5527𝑒 − 015 ± 0.0000𝑒 − 000 2.8802𝑒 − 002 ± 1.9129𝑒 − 002 0 ± 0 4.2783𝑒 + 000 ± 2.0095𝑒 + 000

BCSA 3.5527𝑒 − 015 ± 0.0000𝑒 − 000 3.2715𝑒 − 001 ± 1.7104𝑒 − 001 0 ± 0 6.2881𝑒 + 001 ± 1.6334𝑒 + 001

OXDE 3.1974𝑒 − 015 ± 1.0840𝑒 − 015 4.9045𝑒 − 001 ± 2.7411𝑒 − 002 0 ± 0 3.7808𝑒 + 000 ± 1.9094𝑒 + 000

SaDE 9.4739e − 016 ± 1.5979e − 015 1.3704𝑒 − 002 ± 1.6048𝑒 − 002 0 ± 0 3.9135𝑒 + 000 ± 1.4295𝑒 + 000

GL-25 3.5527𝑒 − 015 ± 0.0000𝑒 − 000 1.0545e − 002 ± 1.0858e − 002 2.1771𝑒 − 004 ± 4.7010𝑒 − 004 3.3619𝑒 + 000 ± 2.2861𝑒 + 000

CLPSO 3.8606𝑒 − 014 ± 5.8665𝑒 − 014 2.8592𝑒 − 002 ± 1.5307𝑒 − 002 1.4403𝑒 − 002 ± 1.2235𝑒 − 002 4.1634𝑒 + 000 ± 9.0362𝑒 − 001

(d)

ALGs 𝑓
13

𝑓
14

𝑓
15

𝑓
16

RHCSA 4.0000𝑒 + 000 ± 2.1213𝑒 + 000 9.8137𝑒 − 008 ± 7.7851𝑒 − 007 0 ± 0 5.2613𝑒 + 000 ± 5.0573𝑒 + 000

HLCSA 4.2442𝑒 + 000 ± 2.6469𝑒 + 000 0 ± 0 0 ± 0 4.6177e − 001 ± 8.1247e − 001
BCSA 6.5935𝑒 + 001 ± 1.0618𝑒 + 001 2.6391𝑒 + 002 ± 7.9682𝑒 + 001 4.3387𝑒 − 031 ± 6.5797𝑒 − 031 8.7291𝑒 + 000 ± 1.7669𝑒 + 001

OXDE 3.0956𝑒 + 000 ± 1.1245𝑒 + 000 1.5792𝑒 + 001 ± 6.7669𝑒 + 001 0 ± 0 1.0047𝑒 + 001 ± 3.0498𝑒 + 001

SaDE 3.9534𝑒 + 000 ± 1.9500𝑒 + 000 2.0681𝑒 + 002 ± 8.6302𝑒 + 001 0 ± 0 1.8019𝑒 + 001 ± 3.7308𝑒 + 001

GL-25 7.3657𝑒 + 000 ± 2.2262𝑒 + 000 5.2254𝑒 + 002 ± 1.7963𝑒 + 002 0 ± 0 9.0000𝑒 + 001 ± 3.0513𝑒 + 001

CLPSO 2.0254e + 000 ± 1.0621e + 000 3.1281𝑒 + 002 ± 1.5723𝑒 + 002 2.3104𝑒 − 002 ± 6.5636𝑒 − 002 6.0233𝑒 + 000 ± 4.0698𝑒 + 000

achieves the best performance on functions 𝑓
3
, 𝑓
4
, 𝑓
5
, 𝑓
6
, 𝑓
7
,

𝑓
8
, 𝑓
10
, 𝑓
11
, 𝑓
15
, and 𝑓

16
compared with the other algorithms.

EvenRHCSA cannot find the best results on functions𝑓
9
,𝑓
12
,

and 𝑓
13
; its obtained results are very close to the best results

obtained by the other algorithms. For example, the best result
on function 𝑓

12
(1.6549𝑒 + 001 ± 4.4609𝑒 + 000) is found

by OXDE while a comparable result obtained by RHCSA is
2.6201𝑒 + 001 ± 8.3454𝑒 + 000. RHCSA greatly improves the
results on functions 𝑓

3
, 𝑓
14
, and 𝑓

16
. It obtains comparatively

good results on functions 𝑓
9
, 𝑓
12
, and 𝑓

13
. It can be observed

that the scalability of RHCSA is pretty well when dealing with
high-dimensional optimization problems.

5. Conclusion
This paper presents a new clonal selection based algorithm, in
which combinatorial recombination and hypermutation are
introduced to enhance the search ability. The proposed algo-
rithm is tested on 16 commonly used benchmark functions
with unimodal, multimodal, rotation, and composite charac-
teristics. Firstly, the CSAs with and without recombination

12 Computational Intelligence and Neuroscience

Table 9: Results (mean ± std) of RHCSA and other state-of-the-art evolutionary algorithms when𝐷 = 30.

(a)

ALGs 𝑓
1

𝑓
2

𝑓
3

𝑓
4

RHCSA 1.6994𝑒 − 194 ± 0.0000𝑒 − 000 7.4820𝑒 − 001 ± 3.0968𝑒 − 001 8.8817e − 016 ± 8.8817e − 016 0 ± 0
HLCSA 7.1289𝑒 − 066 ± 2.0169𝑒 − 065 1.1617e − 015 ± 5.5448e − 015 2.6645𝑒 − 015 ± 0.0000𝑒 − 000 0 ± 0
BCSA 2.9665𝑒 − 025 ± 8.4182𝑒 − 025 1.9018𝑒 + 001 ± 2.6925𝑒 + 000 1.5614𝑒 − 013 ± 3.9345𝑒 − 013 0 ± 0
OXDE 4.8545𝑒 − 059 ± 1.2064𝑒 − 058 2.6577𝑒 − 001 ± 1.0114𝑒 + 000 2.6645𝑒 − 001 ± 0.0000𝑒 − 000 2.8730𝑒 − 003 ± 5.6727𝑒 − 003

SaDE 9.1236𝑒 − 150 ± 4.4538𝑒 − 149 2.1973𝑒 + 001 ± 1.0132𝑒 + 000 7.7383𝑒 − 001 ± 6.0009𝑒 − 001 1.1999𝑒 − 002 ± 1.9462𝑒 − 002

GL-25 5.3539e − 228 ± 0.0000e − 000 2.0832𝑒 + 001 ± 8.6842𝑒 − 001 8.4969𝑒 − 014 ± 1.7664𝑒 − 013 9.7959𝑒 − 015 ± 3.2264𝑒 − 014

CLPSO 1.9761𝑒 − 029 ± 1.5041𝑒 − 029 1.7605𝑒 + 001 ± 3.6364𝑒 + 000 1.8415𝑒 − 014 ± 3.0495𝑒 − 015 1.1102𝑒 − 016 ± 3.2467𝑒 − 016

(b)

ALGs 𝑓
5

𝑓
6

𝑓
7

𝑓
8

RHCSA 0 ± 0 0 ± 0 0 ± 0 0 ± 0
HLCSA 0 ± 0 0 ± 0 0 ± 0 0 ± 0
BCSA 0 ± 0 0 ± 0 0 ± 0 0 ± 0
OXDE 1.6214𝑒 − 003 ± 6.5408𝑒 − 003 9.4189𝑒 − 000 ± 2.0859𝑒 − 000 1.5100𝑒 + 001 ± 2.9868𝑒 + 000 3.9479𝑒 + 000 ± 2.1624𝑒 + 001

SaDE 9.5195𝑒 − 002 ± 1.5798𝑒 − 001 8.6230𝑒 − 001 ± 8.9502𝑒 − 001 6.3333𝑒 − 001 ± 7.6489𝑒 − 001 3.9479𝑒 + 001 ± 6.4747𝑒 + 001

GL-25 7.1724 − 𝑒004 ± 4.8027𝑒 − 004 2.3030𝑒 + 001 ± 8.4952𝑒 + 000 3.9096𝑒 + 001 ± 2.2071𝑒 + 001 3.5030𝑒 + 003 ± 6.8004𝑒 + 000

CLPSO 0 ± 0 0 ± 0 8.7634𝑒 − 015 ± 1.3333𝑒 − 014 0 ± 0

(c)

ALGs 𝑓
9

𝑓
10

𝑓
11

𝑓
12

RHCSA 3.9092𝑒 − 015 ± 1.9459𝑒 − 015 0 ± 0 0 ± 0 2.6201𝑒 + 001 ± 8.3454𝑒 + 000

HLCSA 3.5527e − 015 ± 0.0000e − 000 0 ± 0 0 ± 0 2.5471𝑒 + 001 ± 6.7663𝑒 + 000

BCSA 1.3086𝑒 − 013 ± 3.4341𝑒 − 013 1.2273𝑒 − 002 ± 2.2389𝑒 − 002 1.8516𝑒 − 014 ± 4.8488𝑒 − 014 3.2115𝑒 + 001 ± 9.0135𝑒 + 000

OXDE 3.5527e − 015 ± 0.0000e − 000 1.5612𝑒 − 003 ± 3.2032𝑒 − 003 1.4210𝑒 − 001 ± 2.3765𝑒 − 001 1.6549e + 001 ± 4.4609e + 000
SaDE 1.1708𝑒 + 000 ± 6.5356𝑒 − 001 1.3096𝑒 − 002 ± 2.6787𝑒 − 002 2.0504𝑒 + 000 ± 9.0887𝑒 − 001 2.5050𝑒 + 001 ± 6.6415𝑒 + 000

GL-25 1.1416𝑒 − 013 ± 1.6841𝑒 − 013 4.2040𝑒 − 015 ± 5.5414𝑒 − 015 5.6795𝑒 − 003 ± 2.6720𝑒 − 003 2.9464𝑒 + 001 ± 2.2594𝑒 + 001

CLPSO 1.4501𝑒 − 007 ± 7.0645𝑒 − 007 4.4152𝑒 − 007 ± 7.4331𝑒 − 007 1.7977𝑒 + 000 ± 6.1941𝑒 − 001 4.6287𝑒 + 001 ± 5.7149𝑒 + 000

(d)

ALGs 𝑓
13

𝑓
14

𝑓
15

𝑓
16

RHCSA 4.5502𝑒 + 001 ± 1.0609𝑒 + 001 2.4186e − 003 ± 5.3084e − 003 0 ± 0 8.8501e − 002 ± 1.5560e − 001
HLCSA 4.7609𝑒 + 001 ± 1.5104𝑒 + 001 1.0663𝑒 + 003 ± 5.2886𝑒 + 002 0 ± 0 3.2212𝑒 + 000 ± 1.0133𝑒 + 000

BCSA 2.6912𝑒 + 001 ± 1.2152𝑒 + 001 2.6533𝑒 + 003 ± 5.3339𝑒 + 002 2.0259𝑒 − 023 ± 6.3626𝑒 − 023 1.8053𝑒 + 001 ± 1.8282𝑒 + 001

OXDE 1.7959e + 001 ± 5.1559e + 000 4.3428𝑒 + 001 ± 8.8341𝑒 + 001 3.3333𝑒 + 000 ± 1.8257𝑒 + 001 2.5992𝑒 + 000 ± 5.6332𝑒 − 001

SaDE 2.2788𝑒 + 001 ± 6.6879𝑒 + 000 2.4742𝑒 + 003 ± 5.9013𝑒 + 002 1.1833𝑒 − 031 ± 2.1659𝑒 − 031 1.0208𝑒 + 001 ± 1.7851𝑒 + 001

GL-25 9.6862𝑒 + 001 ± 4.0914𝑒 + 001 3.2335𝑒 + 003 ± 5.9871𝑒 + 002 2.7878𝑒 − 028 ± 1.1207𝑒 − 027 5.2187𝑒 + 001 ± 2.1654𝑒 + 001

CLPSO 4.0333𝑒 + 001 ± 7.5039𝑒 + 000 2.6321𝑒 + 003 ± 3.3553𝑒 + 002 8.2952𝑒 − 005 ± 3.3295𝑒 − 004 7.9983𝑒 + 000 ± 1.6728𝑒 + 000

operator is compared. The experimental results indicate that
the proposed recombination operator is able to improve the
performance of the CSA. And then the modified hyper-
mutation makes further improvement. Finally, the proposed
algorithm is compared with the state-of-the-art algorithms.
The experimental results show the competitiveness of the
RHCSA.

Competing Interests

The authors declare that they have no competing interests.

Acknowledgments

Thiswork is supported by theNational Natural Science Foun-
dation of China (no. 61403349, no. 61402422, no. 61501405,

Computational Intelligence and Neuroscience 13

no. 61401404, and no. 61302118), Science and Technology
Research Key Project of Basic Research Projects in Edu-
cation Department of Henan Province (no. 15A520033, no.
14B520066, and no. 17B510011), and Doctoral Foundation of
Zhengzhou University of Light Industry (no. 2013BSJJ044)
and in part by the Program for Science and Technology
Innovation Talents in Universities of Henan Province, under
grant no. 17HASTIT022.

References

[1] J. J. Liang, A. K. Qin, P. N. Suganthan, and S. Baskar,
“Comprehensive learning particle swarm optimizer for global
optimization of multimodal functions,” IEEE Transactions on
Evolutionary Computation, vol. 10, no. 3, pp. 281–295, 2006.

[2] A. R. Jordehi, “Enhanced leader PSO (ELPSO): a new PSO
variant for solving global optimisation problems,” Applied Soft
Computing, vol. 26, pp. 401–417, 2015.

[3] A. R. Jordehi, “Seeker optimisation (human group optimi-
sation) algorithm with chaos,” Journal of Experimental and
Theoretical Artificial Intelligence, vol. 27, no. 6, pp. 753–762, 2015.

[4] X.-S. Yang and A. H. Gandomi, “Bat algorithm: a novel
approach for global engineering optimization,” Engineering
Computations, vol. 29, no. 5, pp. 464–483, 2012.

[5] A. R. Jordehi, “Brainstorm optimisation algorithm (BSOA): an
efficient algorithm for finding optimal location and setting of
FACTS devices in electric power systems,” International Journal
of Electrical Power & Energy Systems, vol. 69, pp. 48–57, 2015.

[6] A. A. Heidari, R. A. Abbaspour, and A. R. Jordehi, “An efficient
chaotic water cycle algorithm for optimization tasks,” Neural
Computing & Applications, 2015.

[7] I. Boussaı̈d, J. Lepagnot, and P. Siarry, “A survey on optimization
metaheuristics,” Information Sciences, vol. 237, pp. 82–117, 2013.

[8] E. Hart, C. McEwan, J. Timmis, and A. Hone, “Advances in
artificial immune systems,” Evolutionary Intelligence, vol. 4, no.
2, pp. 67–68, 2011.

[9] Y. Xu, Y. Jiang, and W. Deng, “An novel immune genetic
algorithm and its application in WWTP,” in Proceedings of
the Chinese Automation Congress (CAC ’15), pp. 802–808,
November 2015.

[10] R. Daoudi, K. Djemal, and A. Benyettou, “Improving cells
recognition by local database categorization in Artificial
Immune System algorithm,” in Proceedings of the IEEE Interna-
tional Conference on Evolving and Adaptive Intelligent Systems
(EAIS ’15), pp. 1–6, Douai, France, December 2015.

[11] Z. Lu, G. Pei, B. Liu, and Z. Liu, “Hardware implementation
of negative selection algorithm for malware detection,” in
Proceedings of the IEEE International Conference on Electron
Devices and Solid-State Circuits (EDSSC ’15), pp. 301–304, IEEE,
Singapore, June 2015.

[12] M. Pavone, G. Narzisi, and G. Nicosia, “Clonal selection: an
immunological algorithm for global optimization over contin-
uous spaces,” Journal of Global Optimization, vol. 53, no. 4, pp.
769–808, 2012.

[13] R. Liu, L. Jiao, X. Zhang, and Y. Li, “Gene transposon based
clone selection algorithm for automatic clustering,” Information
Sciences, vol. 204, no. 20, pp. 1–22, 2012.

[14] L. D. S. Batista, F. G. Guimarães, and J. A. Ramirez, “A dis-
tributed clonal selection algorithm for optimization in electro-
magnetics,” IEEE Transactions on Magnetics, vol. 45, no. 3, pp.
1598–1601, 2009.

[15] J. Zheng, Y. Chen, andW. Zhang, “A survey of artificial immune
applications,” Artificial Intelligence Review, vol. 34, no. 1, pp. 19–
34, 2010.

[16] L. N. de Castro and J. Timmis, Artificial Immune Systems: A
New Computational Intelligence Approach, Springer, London,
UK, 2002.

[17] N. Cruz-Cortés, “Handling constraints in global optimization
using artificial immune systems: a survey,” in Constraint-
Handling in Evolutionary Optimization, pp. 237–262, Springer,
Berlin, Germany, 2009.

[18] E. Mezura-Montes and C. A. Coello Coello, “Constraint-
handling in nature-inspired numerical optimization: past,
present and future,” Swarm and Evolutionary Computation, vol.
1, no. 4, pp. 173–194, 2011.

[19] D. Dasgupta, S. Yu, and F. Nino, “Recent advances in artificial
immune systems: models and applications,” Applied Soft Com-
puting Journal, vol. 11, no. 2, pp. 1574–1587, 2011.

[20] L. N. de Castro and F. J. von Zuben, “Learning and optimization
using the clonal selection principle,” IEEE Transactions on
Evolutionary Computation, vol. 6, no. 3, pp. 239–251, 2002.

[21] V. Cutello, G. Nicosia, andM. Pavone, “Real coded clonal selec-
tion algorithm for unconstrained global optimization using
a hybrid inversely proportional hypermutation operator,” in
Proceedings of the ACM Symposium on Applied Computing (SAC
’06), pp. 950–954, ACM, Dijon, France, April 2006.

[22] T. Jansen and C. Zarges, “Analyzing different variants of
immune inspired somatic contiguous hypermutations,” Theo-
retical Computer Science, vol. 412, no. 6, pp. 517–533, 2011.

[23] N. Khilwani, A. Prakash, R. Shankar, and M. K. Tiwari, “Fast
clonal algorithm,” Engineering Applications of Artificial Intelli-
gence, vol. 21, no. 1, pp. 106–128, 2008.

[24] H. Lu and J. Yang, “An improved clonal selection algorithm
for job shop scheduling,” in Proceedings of the International
Symposium on Intelligent Ubiquitous Computing and Education
(IUCE ’09), pp. 34–37, Chengdu, China, May 2009.

[25] X. Liu, L. Shi, R. Chen, and H. Chen, “A novel clonal selection
algorithm for global optimization problems,” in Proceedings
of the International Conference on Information Engineering
and Computer Science (ICIECS ’09), pp. 1–4, Wuhan, China,
December 2009.

[26] L. N. De Castro and J. Timmis, “An artificial immune network
for multimodal function optimization,” in Proceedings of the
Congress on Evolutionary Computation (CEC ’02), pp. 699–704,
IEEE, Honolulu, Hawaii, USA, May 2002.

[27] Z. Li, Y. Zhang, and H.-Z. Tan, “IA-AIS: an improved adaptive
artificial immune system applied to complex optimization
problems,”Applied SoftComputing, vol. 11, no. 8, pp. 4692–4700,
2011.

[28] Z. Li, C. He, and H.-Z. Tan, “AINet-SL: artificial immune net-
work with social learning and its application in FIR designing,”
Applied Soft Computing Journal, vol. 13, no. 12, pp. 4557–4569,
2013.

[29] Z. Li, J. Li, and J. Zhou, “An improved artificial immune network
for multimodal function optimization,” in Proceedings of the
26th Chinese Control and Decision Conference (CCDC ’14), pp.
766–771, IEEE, Changsha, China, June 2014.

[30] G. P. Coelho and F. J. V. Zuben, “A concentration-based artificial
immune network for continuous optimization,” in Proceedings
of the IEEECongress on EvolutionaryComputation, pp. 1–8, 2010.

[31] G. P. Coelho, F. O. De Franca, and F. J. V. Zuben, “A con-
centration-based artificial immune network for combinatorial

14 Computational Intelligence and Neuroscience

optimization,” in Proceedings of the IEEE Congress of Evolution-
ary Computation (CEC ’11), pp. 1242–1249, New Orleans, La,
USA, June 2011.

[32] G. P. Coelho and F. J. V. Zuben, “A concentration-based
artificial immune network for multi-objective optimization,” in
Proceedings of the IEEE Congress on Evolutionary Computation,
pp. 343–357, 2011.

[33] A. R. Yildiz, “An effective hybrid immune-hill climbing opti-
mization approach for solving design and manufacturing opti-
mization problems in industry,” Journal of Materials Processing
Technology, vol. 209, no. 6, pp. 2773–2780, 2009.

[34] M. Gong, L. Zhang, L. Jiao, and W. Ma, “Differential immune
clonal selection algorithm,” in Proceedings of the International
Symposium on Intelligent Signal Processing and Communications
Systems (ISPACS ’07), pp. 666–669, Xiamen, China, December
2007.

[35] M. Gong, L. Jiao, F. Liu, and W. Ma, “Immune algorithm with
orthogonal design based initialization, cloning, and selection
for global optimization,” Knowledge & Information Systems, vol.
25, no. 3, pp. 523–549, 2010.

[36] M. Gong, L. Jiao, H. Du, and L. Bo, “Multi-objective immune
algorithmwith non-dominated neighbor-based selection,” Evo-
lutionary Computation, vol. 16, no. 2, pp. 225–255, 2008.

[37] R. Shang, L. Jiao, F. Liu, and W. Ma, “A novel immune clonal
algorithm for MO problems,” IEEE Transactions on Evolution-
ary Computation, vol. 16, no. 1, pp. 35–50, 2012.

[38] M. Gong, L. Jiao, and L. Zhang, “Baldwinian learning in clonal
selection algorithm for optimization,” Information Sciences, vol.
180, no. 8, pp. 1218–1236, 2010.

[39] M. Gong, L. Jiao, J. Yang, and F. Liu, “Lamarckian learning
in clonal selection algorithm for numerical optimization,”
International Journal on Artificial Intelligence Tools, vol. 19, no.
1, pp. 19–37, 2010.

[40] Y. Peng and B. Lu, “Hybrid learning clonal selection algorithm,”
Information Sciences, vol. 296, pp. 128–146, 2015.

[41] L. N. De Castro and F. J. V. Zuben, “Artificial immune systems:
part I—basic theory and applications,” Tech. Rep. 210, Univer-
sidade Estadual de Campinas, 1999.

[42] H. Bersini, “The immune and the chemical crossover,” IEEE
Transactions on Evolutionary Computation, vol. 6, no. 3, pp.
306–313, 2002.

[43] Y. Qi, Z. Hou,M. Yin, H. Sun, and J. Huang, “An immunemulti-
objective optimization algorithm with differential evolution
inspired recombination,” Applied Soft Computing Journal, vol.
29, pp. 395–410, 2015.

[44] R. Liu, C. L. Ma, F. He, W. P. Ma, and L. C. Jiao, “Reference
direction based immune clone algorithm for many-objective
optimization,” Frontiers in Computer Science, vol. 8, no. 4, pp.
642–655, 2014.

[45] W.-F. Gao, S.-Y. Liu, and L.-L. Huang, “A novel artificial
bee colony algorithm based on modified search equation and
orthogonal learning,” IEEE Transactions on Cybernetics, vol. 43,
no. 3, pp. 1011–1024, 2013.

[46] J. J. Liang, P. N. Suganthan, and K. Deb, “Novel composition
test functions for numerical global optimization,” in Proceedings
of the IEEE Swarm Intelligence Symposium (SIS ’05), pp. 68–75,
Pasadena, Calif, USA, June 2005.

[47] Y.Wang, Z. Cai, and Q. Zhang, “Enhancing the search ability of
differential evolution through orthogonal crossover,” Informa-
tion Sciences, vol. 185, no. 1, pp. 153–177, 2012.

[48] A. K. Qin, V. L. Huang, and P. N. Suganthan, “Differential evo-
lution algorithm with strategy adaptation for global numerical
optimization,” IEEE Transactions on Evolutionary Computation,
vol. 13, no. 2, pp. 398–417, 2009.

[49] C. Garćıa-Mart́ınez, M. Lozano, F. Herrera, D. Molina, and A.
M. Sánchez, “Global and local real-coded genetic algorithms
based on parent-centric crossover operators,” European Journal
of Operational Research, vol. 185, no. 3, pp. 1088–1113, 2008.

