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During an infectious disease progression, it is crucial to understand the cellular

heterogeneity underlying the differential immune response landscape that will

augment the precise information of the disease severity modulators, leading to

differential clinical outcome. Patients with COVID-19 display a complex yet

regulated immune profile with a heterogeneous array of clinical manifestation

that delineates disease severity sub-phenotypes and worst clinical outcomes.

Therefore, it is necessary to elucidate/understand/enumerate the role of

cellular heterogeneity during COVID-19 disease to understand the

underlying immunological mechanisms regulating the disease severity. This

article aims to comprehend the current findings regarding dysregulation and

impairment of immune response in COVID-19 disease severity sub-

phenotypes and relate them to a wide array of heterogeneous populations of

immune cells. On the basis of the findings, it suggests a possible functional

correlation between cellular heterogeneity and the COVID-19 disease severity.

It highlights the plausible modulators of age, gender, comorbidities, and hosts’

genetics that may be considered relevant in regulating the host response and

subsequently the COVID-19 disease severity. Finally, it aims to highlight

challenges in COVID-19 disease that can be achieved by the application of

single-cell genomics, which may aid in delineating the heterogeneity with

more granular understanding. This will augment our future pandemic

preparedness with possibility to identify the subset of patients with increased

diseased severity.
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Introduction

Cellular heterogeneity is defined as an inherent attribute of

biological systems that contribute to genetic diversity. Nearly all

the cellular systems within an organism are heterogeneous (1).

However, there may be differences in the hierarchy of

heterogeneity at different levels of expression or regulation.

Multicellular organisms undergo specialization, allowing cells

to carry out distinct physiological activities. Despite having

similar or nearly identical genomic architecture, these cells

differentiate in function by retaining diverse (in nature) but

specific (in function) gene expression profiles throughout

developmental and disease conditions. Hence, it is necessary to

unravel the cellular heterogeneity occurring originally via a

specific infection toward differentiating healthy and disease

states. Therefore, understanding the diversity of disease

severity and clinical outcomes, requires uncovering the

functional diversity of cells. The outcome modulation by this

cellular heterogeneity can imply distinct functionality necessary

during a diseased state for survival conditions (2).

There is a diverse array of factors that regulate cellular

heterogeneity. Variable biochemical processes, such as

stochastic gene and protein expression, functional variances in

cell development or cell cycle status, and tissue micro-

environmental alterations, are the fundamental sources of

cellular heterogeneity (3, 4). Cellular heterogeneity can also be

triggered by intrinsic factors such as genetic mutations during

transcription and translation, genotype mediated cell switching,

or extrinsic factors such as environmental induced adaptive

transformation (5, 6). This leads to cell–cell variations that

promote functional heterogeneity within the cell population.

The competence to extensively characterize cellular

heterogeneity is critical for furthering our understanding of

cell activity and disease causes. However, because of the

complexity in cell diversity, it becomes a cumbersome task to

identify significant and specific cellular subgroups that may be

responsible for several infectious diseases.

In recent times, several high-throughput sequencing

approaches have enabled study of cellular heterogeneity across

infectious diseases. Next-generation sequencing (NGS) platforms

have been critical toward this as they generate huge amounts of data

(7). With bulk NGS analysis, millions of cells can be sequenced at
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once, but the understanding of distinct cell and tissue type is

compromised vis-à-vis extent and functional role of cell

heterogeneity (8). During the last few years, single-cell NGS

(scNGS) has potential to alleviate limitations associated with the

bulk NGS by allowing sequences to be linked to a single cell at the

proteomic, epigenomic, transcriptomic, and genetic levels (9).

This article aims at highlighting the role of cellular

heterogeneity across infectious disease, particularly the COVID-

19. This includes the different levels of immune response defining

the host’s response with disease phenotype and correlation of the

heterogeneous population of immune cells with COVID-19 disease

severity and clinical outcome. It provides a compendium of insights

on the possible clinical outcome of a disease from the cellular

heterogeneity perspective, based on the clinical phenotypes.
Cellular heterogeneity across
infectious diseases

COVID-19 disease severity
sub-phenotype

While understanding the infectious diseases, COVID-19

pandemic has surpassed the previous known global infectivity

and is one of the major infectious diseases of the era. The single-

stranded RNA virus, severe acute respiratory syndrome

coronavirus 2 (SARS-CoV-2), causes COVID-19, which is a

heterogeneous disease with a variable range of severity

symptoms. The clinical presentation of COVID-19 varies from

predominantly asymptomatic and mild-to-moderate episodes to

more severe and critical, where 10%–20% of patients develop

acute respiratory distress syndrome (ARDS) and pneumonia

(10, 11). Although the viral genetic diversity, genetic evolution,

variable infectivity, or co-pathogenesis contribute to infectivity

and fatality, there are missing links to explain the observed

diversity of disease heterogeneity for COVID-19. It seems that

an important contribution toward the disease heterogeneity

modulation is by the human host immune response itself (12).

The COVID-19 disease severity sub-phenotype is categorized

by World Health Organization (WHO) into asymptomatic, mild,

moderate, severe, and critical, where there is a clear distinction

based on clinical symptoms that they exhibit (Table 1) (Clinical
TABLE 1 Classification of COVID-19 disease severity sub-phenotypes.

Category Infection status Disease symptoms

Asymptomatic SARS-CoV-2 +ve no COVID-19 associated symptoms

Mild SARS-CoV-2 +ve fever, sore throat, malaise but no shortness of breath with SpO2 >94%

Moderate SARS-CoV-2 +ve clinical signs of pneumonia, breathing difficulty with SpO2 ≥ 90%

Severe SARS-CoV-2 +ve clinical signs of pneumonia, severe respiratory distress with SpO2 <90%

Critical SARS-CoV-2 +ve clinical signs of severe pneumonia, acute respiratory distress syndrome, respiratory failure, multi-organ failure
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management of COVID-19: interim guidance, WHO). Most of the

SARS-CoV-2–infected individuals display a mild form of disease

that is generally asymptomatic, whereas a few people progress

toward a severe or critical phase that necessitates intensive care unit

admissions. In addition to the diverse clinical symptoms, the SARS-

CoV-2–infected individuals also manifest differential immune

responses. Studies have reported that most patients with severe

COVID-19 have elevated plasma levels of pro-inflammatory

cytokines, interleukin-6 (IL-6), and IL-1b, along with monocyte

chemoattractant protein 1 (MCP-1), interferon gamma (IFN-g)–
induced protein 10 (IP-10), and granulocyte colony-stimulating

factor (G-CSF) (10). Severe patients have reported elevated levels of

inflammatory neutrophils and monocytes, a dramatic decrease in

lymphocytes, and an inflammatory environment including IL-1,

IL-6, and tumor necrosis factor (TNF) (previously known as

TNFa) (13–16). Pro-inflammatory cytokines such TNF, MCP-1

(CCL2), and macrophage inflammatory protein 1a (CCL3) were

found to be present at higher levels in severe cases, indicating a

robust inflammatory response (10). Further research demonstrated

a unique cytokine response with chemokine-enriched signature and

activated IL-1 and IL-6 pathways (17, 18). Patients with severe

COVID-19 compared with mild patients and healthy individuals

revealed a reduced frequency of T cells, accompanied by an

increased frequency of monocytes (19). The presence of a high

concentration of pro-inflammatory cytokines over the course of

disease in severe patients, whereas its lower concentration in

patients with mild symptoms, suggests an innate signature shift
Frontiers in Immunology 03
between the early and late stages of the disease, leading to a

divergence of patients into mild and severe COVID-19 over the

disease course (19).

Although there is an increasing amount of knowledge on the

host immune response to SARS-CoV-2 infection and the

pathogenesis of COVID-19, it is still not apparent why some

patients progress to severe illness, whereas others present mild

symptoms or are asymptomatic. Therefore, it is crucial to define

the immunological and inflammatory components of SARS-

CoV-2 infection in great detail. The rationale behind different

clinical outcomes based on immune profiles of patients infected

with similar viral strain could be possibly due to cellular

heterogeneity (Figure 1).
Different layers of cellular
heterogeneity in COVID-19

The role of cellular heterogeneity is essential to understand

the mechanism by which a complex network of billions of

specialized immune cells functions in harmony and produces a

coordinated host response against COVID-19. During a viral

infection, there are two different layers of the immune system,

i.e., innate and adaptive, which functions one after the other to

restrict the entry of virus or prevent it from bypassing the host’s

immune system (20, 21). The innate immune system provides

the first line of defense during the initial phase of viral infection,
FIGURE 1

Overview of cellular heterogeneity across COVID-19 disease. SARS-CoV-2–infected individuals exhibit distinct cellular heterogeneity, which is
contributing toward the diversity in COVID-19 disease severity sub-phenotypes. This is at the core of differential clinical outcome of recovered
and mortality albeit infected by same/similar clade/lineage of the virus.
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which is followed by the activation of adaptive immune

response. The similar response has been observed during

COVID-19 as well, where the two defense systems attempt to

diminish the deleterious effects caused during and after the

SARS-CoV-2 infection.
Innate immune response

Innate immune cells carry pathogen recognition receptors

(PRRs) on their surface that, upon viral entry, trigger

inflammatory signals through recognition and binding of

harmful viral particles that behave as pathogen-associated

molecular patterns. On the other hand, intrinsic compounds,

such as heat shock proteins, are released from viral-infected or

damaged cells that act as damage-associated molecular patterns

and activate innate immune and inflammatory responses by

interacting with PRRs. Nucleotide-binding oligomerization

domain, Toll-like receptors (TLRs), C-type lectin receptors, a

retinoic acid–inducible gene I–like receptors (RLRs), and absent

in melanoma 2–like receptors are the most prevalent PRRs in the

host (22). Among these receptors, RLRs and TLRs are two

crucial receptors for detecting RNA viral infection. These

receptors are known to activate signaling-related pathways,

such as IFN signaling, cytokine production, and cell death in

response to the SARS-CoV-2 infection (23). However, SARS-

CoV-2 counteracts host’s innate immune defenses by encoding

proteins and mechanisms that ult imately leads to

hyperactivation of the innate immune response, which is a

hallmark of COVID-19 severity (24). Recent studies have

revealed several mechanisms employed by SARS-CoV-2 to

restrict the overall cellular antiviral state, simultaneously

leading to hyperactivation of the innate immune response.

This involves the following: prevention of PRRs’ sensing of

viral RNA by encoding non-structural proteins; inhibition of

PRR-mediated signaling pathways by encoding structural

proteins (M, membrane; N, Nuclear); and viral protease-

mediated cleavage by encoding two proteases (PLpro and

3Clpro), which negatively impacts the innate immune system

(25–28).

The innate immune cells are the primary target for

successful SARS-CoV-2 infection (29). Macrophages,

monocytes, neutrophils, and natural killer (NK) cells are the

major types of innate immune cells that are known to activate

the downstream signaling of inflammatory response during

COVID-19 (23). However, the outcome among COVID-19

disease sub-phenotypes is unique, which indicates the presence

of a heterogeneous population of immune cells functioning in

response to the SARS-CoV-2 infection. According to previous

studies, patients with severe COVID-19 have decreased

abundance of monocytes dendritic cells (DCs) and NK cells

together with increased proportions of neutrophils,

macrophages, and monocyte-derived suppressor cells when
Frontiers in Immunology 04
compared with patients with mild COVID-19 (30–35).

Increase in myeloid-derived suppressor cell population is

known to suppress the T-cell functions, leading to the

dampening of excessive immune response and simultaneously

the inflammatory phenomenon (36). This brings out the

diversity within a major class of innate immune cells

responding toward sub-phenotypes of COVID-19.

Furthermore, a heterogeneous understanding of innate

immune cells can help in functional understanding of the

clinical outcome with a dysregulated immune profile of

individuals affected with SARS-CoV-2. Xu et al. observed a

significant difference among the myeloid cells (monocytes and

DCs) composition between patients with severe and mild

COVID-19. This was supported by an increased CD14+

monocyte population and decreased CD16+ non-classical

monocyte, CD14+CD16+ monocytes, and DC2 in severe

patients compared with mild patients and healthy individuals

(37). Whereas classical CD14+ monocyte is critical for initiating

initial inflammatory response, non-classical monocytes are

majorly involved in immune surveillance (38, 39). In a study,

inflammatory HLA-DRhiCD11chiCD14+ monocytes were

abundant in individuals with mild COVID-19 whereas the

severe patients exhibited decreased HLA-DR expression (40).

The expression of HLA-DR is a pro-inflammatory sign, where

an inc r e a s ed popu l a t i on o f i nflammato ry HLA-

DRhiCD11chiCD14+ monocytes in patients with mild

COVID-19 suggests the activation of the innate immune

response, whereas its reduced expression may lead to immune

suppression in patients with severe COVID-19. This decrease in

monocyte subpopulations indicates a monocyte dysfunction that

may be caused due to the presence of increased levels of IL-6 in

patients with severe COVID-19 (41). The macrophages also

revealed heterogeneity, where monocyte-derived macrophages

were abundant in severe patients, thereby exhibiting hyper-

inflammatory conditions (34, 42). Monocyte-derived

macrophages have also been linked as a possible source of

pro-inflammatory cytokines, TNF, CXCL-8, IL-1, and IL-8

during severe COVID-19, therefore suggesting a strong

association between monocyte-derived macrophages and

COVID-19 disease severity (37, 43). The upregulation of pro-

inflammatory genes in innate immune cells of severe patients

mainly belongs to the Nuclear factor kappa-light-chain-

enhancer of activated B cells (NF-kB) pathway (44). Therefore,

an excess of pathogenic inflammatory neutrophils and

macrophages may result from the buildup of NF-kB–

dependent pro-inflammatory mediators, and these cells may

continue to release pro-inflammatory cytokines and

chemokines, including CCL2, CCL3, CCL5, CCL8, TNF,

CXCL2, CXCL8, CXCL9, CXCL16, IL-1, IL-17, IL-1RA, IFN-g,
IP-10, MCP-1, G-CSF, and GM-CSF (10, 18, 45–47). A

significant increase in the immature neutrophil population,

which show evidence of recent activation including increased

surface expression of CD64, RANK, RANKL, PD-L1, and
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reduced CD62L expression, suggests a suppressive character of

neutrophils in severe COVID-19 (40). NK-cell subpopulation

consists of two subsets based on their relative surface expression

of CD56 and CD16 receptors. The CD56brightCD16neg NK-cell

subset majorly produces cytokines, and the CD56dimCD16pos

NK-cell subset is characterized by strong cytotoxicity and high

expression of inhibitory receptors such as killer cell

immunoglobulin-like receptors. (48). Among these NK-cell

subsets, the frequency of CD56brightCD16neg NK cells has been

reported to be depleted in severe patients, suggesting their

involvement in mediating the COVID-19 disease severity (49).

In contrast, reduced NK-cell subpopulation within severe

revealed a reduced CD16 expression (33), which indicates

increased NK effector activity and overproduction of cytokines

like IFN-g in response to IL-12, IL-15, and IL-18 stimulation

(50). Zheng et al. reported decreased NK-cell subpopulation due

to an increased expression of NKG2A, an inhibitory molecule,

leading to functional exhaustion of NK cells and elevated

cytotoxicity in patients with COVID-19 as compared with

healthy (51). It can be suggested that inhibitory checkpoint

receptors play a crucial role in reducing the activity of NK

cells in patients with COVID-19. In summary, the innate

immune response in patients with COVID-19 is divergent,

where heterogeneous population of cells behaves differently

across the disease sub-phenotypes, thereby contributing

toward the diversity of clinical outcomes.
Adaptive immune response

In contrast to the innate mechanism of host defense, the

adaptive immune system exhibits specificity for its target antigen.

Humoral and cellular immunity forms the adaptive or acquired

immune response, where B and T lymphocytes, respectively,

provide antigen-specific responses (52). The ability of B cells to

mature into plasma cells, which produce a large antibody repertoire

to defend against a viral pathogen, as well as the development of

immunological memory to prevent recurring infections with the

characterization of lymphocytes’ roles, occurs during a viral

infection (53). Naïve B cells, mature lymphocytes, memory B

cells, transitional B cells, and antibody-secreting plasmablasts/

plasma cells are among the several circulating human B cells,

each having its own phenotypic and functional subgroups. On

the other hand, T lymphocytes, upon viral entry, release mainly

CD4+ T cells (helper T cells) and CD8+ T cells (cytotoxic T cells),

leading to a combined antiviral immune response (54, 55).

Su et al. reported that, during COVID-19, several B-cell

subsets, including naive B cells and antibody secreting cells, were

elevated in severe patients, whereas memory B cells were

increased in mild patients, suggesting a heterogeneous B-cell

population across COVID-19 disease sub-phenotypes (55).

Patients with severe COVID-19 exhibited expansion of

plasmablasts along with elevated levels of SARS-CoV-2 spike
Frontiers in Immunology 05
receptor binding domain (RBD)–specific IgM and IgG

compared with the healthy individuals, indicating an altered

B-cell subset with a strong SARS-CoV-2–specific humoral

response (33). Among memory B cells, the frequency of both

class-switched and non–class-switched memory B cells is found

to be significantly reduced in severe patients, whereas elevated

expression of plasmablasts suggests that the decline in the

memory B-cell population might be due to the activation of

pre-existing memory cells (coronavirus other than SARS-CoV-

2), further differentiating into “atypical” cells (56, 57). An

increase of memory B cells in patients with mild COVID-19

demonstrates an effective and protective antibody response

against SARS-CoV-2 (58). We can say that the memory B-cell

subsets are negatively correlated with COVID-19 disease

severity. Similarly, transitional B cells were also observed to

decrease with disease severity and, therefore, display a loss of

immune-suppressive regulatory B cells with an expansion of

effector B-cell subsets (59). Another study also reported elevated

plasmablasts, enriched T-bet+ B-cell subset, and decreased

memory B-cell subsets in severe patients (60). An

immunopathologic function for circulating antibody-secreting

cells in severe COVID-19 is suggested by the fact that severe

patients, compared with mild patients, showed increased levels

of antibody-secreting cells (61). Together, these findings indicate

that the dynamic B-cell heterogeneity might be modulating

COVID-19 disease toward severity.

T lymphopenia has been reported in patients with COVID-

19 through multiple studies. Both CD4+ T-cell and CD8+ T-cell

populations have been shown to be reduced in severe patients

compared with moderate or mild patients (62). There is a

negative correlation between the CD4+ T cells and COVID-19

severity, where the extended absence of SARS-CoV-2–specific

CD4+ T cells is associated with severe or critical COVID-19 (63).

CD4+ T-helper cell subsets also display heterogeneity across

COVID-19 disease severity sub-phenotypes, where critical

patients report decreased proportion of T-helper 1 (Th1) and

T-helper 17 (Th17) lymphocytes, whereas T-helper 2 (Th2) cells’

percentage increased in comparison with less severe individuals

(64). It leads to a lower Th1/Th2 ratio that indicates a

dysregulated balance of T-helper lymphocytes, wherein

decreased Th1/Th2 cell ratio and Th17 cells suggest a reduced

humoral response and poor outcomes in COVID-19 disease

(65). As Th1 response is essential for viral clearance, lowering of

this response and increase of Th2 plausibly indicates an

abnormal cellular immune response in patients with severe

COVID-19. CD4+ T-cell populations are also associated with

the elevated expression of exhaustive markers such as Tim-3,

PD-1, and LAG-3, which aids in the progression of disease

severity (66). This indicates a link toward discordant CD4+ T-

cell responses, which is a likely key element in the development

of severe COVID-19. An altered T-cell differentiation and

cytotoxicity has been identified by Cervantes et al., wherein

circulating cytotoxic CD8+ T cells have been found in higher
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percentage in severe patients compared with the mild patients

(33). Although the absolute number of CD8+ T cells decreases in

patients with severe COVID-19, the increased proportion of

granzyme B and perforin produced via effector CD8+ T cells

provides evidence of elevated cytotoxicity induced in severe

patients (67, 68). Furthermore, a pronounced expression of

inhibitory markers such as PD-1, Tim-3, and CD39 on CD8+

T cells in severe patients demonstrates an exhausted CD8+ T-

cell population that may lead to uncontrolled cytotoxicity

response, reduced cellular immunity, and tissue damage with

COVID-19 disease severity (69–71). On the other hand, patients

in their initial stage show a robust cellular immune response,

where lower cytotoxicity and reduced exhaustive marker

expression are observed, thereby suggesting a crucial role of

overexpressed exhausted T-cell subpopulation in worsening

COVID-19 disease severity (72). An association between

hyperactivated antigen-specific T cells and COVID-19 disease

pathogenesis is supported by the presence of SARS-CoV-2–

specific CD8+ T cells in severe patients exhibiting elevated

expression of cytotoxic and inflammatory genes, as well as

greater levels of TCR clonal expansion (73). In contrast, a

reduced cytokine production via CD8+ T-cell population in

severe patients is also known. Similar to CD4+ T cells, there is

evidence of functional disbalance due to increased expression of

exhaustive markers by CD8+ T-cell population in patients with

COVID-19 (71). CD8+ T cells from patients with severe

COVID-19 produced less cytokine when stimulated (51). The

study also suggests that CD8+ T cells exhibit a hyperactivation

profile with enhanced cytotoxicity (33). These findings provide

evidence for heterogeneous and diverse patterns of CD8+ T-cell

responses across patients with COVID-19. Therefore, it can be

concluded that, even in patients with severe COVID-19, a

significant heterogeneity occurs due to differences in the

expression of the T-cell population, leading to diverse clinical

outcomes. Together, COVID-19 disease demonstrates a major

impact on the innate and adaptive immune system (Table 2),

where the response is a variable, thus reflecting a diversified

outcome across the infected population (Figure 2).
Correlation between disease severity
and immune cell heterogeneity

SARS-CoV-2 has been associated with dynamic immune

response, which seems to be at the root of the differential disease

severity and clinical outcomes in the infected individuals

globally. The presence of immune cell heterogeneity, both

innate and adaptive response, during COVID-19 indicates a

strong link with the disease severity, which is observed

extensively. The COVID-19 severity has been correlated with

several granular parameters of immature neutrophils,

dysregulated myeloid cell compartments, and increased
Frontiers in Immunology 06
proliferative CD4+ and CD8+ T cells with heightened cytokine

storm (77, 78). With increase in COVID-19 severity, the CD8+ T

effector and central memory cells are compromised for their

clonotype expansion (79). This suggests an overall decrease in

the lymphocyte population with increasing disease severity.

However, higher expression of CD8+ T cells is supported by

activation of exhaustive markers, which is elevated with the

progression of the disease, indicating a SARS-CoV-2–driven T-

cell exhaustion in severe patients (69).

Apart from the cell mediated immune response, the

correlation between COVID-19 and humoral immunity is also

diverse, where higher antibody titers are associated with severe

clinical manifestations. Elevated levels of anti-N IgG and IgM

antibodies contribute toward the disease severity among patients

with fatal COVID-19 (80). Tan et al. reported higher viral

clearance rate by weak responders of IgG, whereas strong

responders of IgG had lower viral clearance, thereby

suggesting that a stronger antibody response supports delayed

viral clearance and severity (81). It is also shown that patients

with mild to moderate COVID-19 exhibit a rapid decline in the

SARS-CoV-2–specific antibody titer and thus indicate a
TABLE 2 Major impact on the innate and adaptive immune response
during COVID-19 infection.

Immune
response

Observations during COVID-19
(compared to mild/moderate)

References

Innate

Monocytes An overall reduced abundance of monocytes in
severe with increased CD14+ and decreased
CD16+, CD16+CD14+ monocytes in severe
COVID-19.

(37)

Dendritic
cells

Decrease populations of dendritic cells in severe
COVID-19 with impaired CD86 and HLA-DR.

(74)

NK cells Decreased absolute number of circulating NK
cells with elevated levels of pro-inflammatory
cytokines in severe COVID-19.

(75)

Neutrophils Increased abundance of neutrophils in severe
COVID-19 with elevated expression of pro-
inflammatory cytokines and chemokines.

(33)

Macrophages Increased proportion of macrophage, especially
monocyte-derived macrophage in severe
COVID-19.

(34)

Cytokines/
chemokines/
interferons

Increased plasma levels of pro-inflammatory
cytokines and chemokines (especially IL-2, IL-6,
IL-10, and TNF-a) with impaired IFN-I
activation in severe COVID-19.

(46)
(44)

Adaptive

T cells Lymphocytopenia and modulation in lymphocyte
balance associated with a decrease in levels of
CD4+ cells, CD8+ cells, Th1, and Th2 cells and
increased circulating CD4+ T cells, CD8+ T cells,
Th2, PD-1, Tim-3, and LAG-3 in severe
COVID-19.

(76)

B cells Elevated B cell (naive B cells and plasmablasts)
population with reduced memory B cells in
severe COVID-19.

(58)
fr
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correlation between longevity of the antibody responses with

disease severity (82, 83). The presence of increased anti-spike

and anti-RBD antibody levels with elevated expression of pro-

inflammatory markers in severe patients indicates a correlation

between elevated antibody response and inflammation (84).

Although increased expression levels of several cytokines and

chemokines mediated via monocytes, macrophages, DCs, NK

cells, or neutrophils have been observed within the severe

patients (13, 18), only a few among them such as CRP,

CXCL8, CCL20, IL-6, IL-8, IL-10, PTX3, MCP-3, and IP-10

(85–88) serve as “biomarkers” and indicate a “cytokine storm”

underlying COVID-19 severity. Hence, the wide range of impact

of COVID-19 on the immune cell population explains the

heterogeneous complexity underlying the seriousness of

infectious disease and its correlation with disease severity.
Possible modulators of
COVID-19 severity

Effect of age

Aging generates significant biochemical changes in the

immune system, which have been linked to age-related

disorders and infectious disease vulnerability (89–91). The
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impact of COVID-19 is associated with age, where the severity

is observed in elderly patients compared with young adults (92,

93). Studies show that older patients with COVID-19 had higher

rates of lymphopenia and the elevation of inflammatory markers

such as IL-6 and CRP, which are significantly correlated with

disease severity (94). Age-related imbalances in immune

response and cellular activity tend to reduce innate activation

of a previously weakened adaptive immune system. This chronic

long-term stimulation of the innate with a reduced adaptive

immune system accentuates aged people toward infection/s.

Therefore, the older population has been more susceptible

toward COVID-19 and exhibits a diverse immune profile

(Table 3). On the other hand, children are less susceptible to

becoming SARS-CoV-2–infected, which might be due to cross-

immune protection from other coronaviruses or non-specific

protection induced by other respiratory viruses (101–103).
Effect of gender

Worldwide, greater COVID-19 mortality rates have been

reported in men than in women (104), suggesting that men may

be more susceptible to COVID-19 and progress toward severity.

This can be correlated with the presence of stronger innate

immune responses in women than in men, which possibly allows
FIGURE 2

Cellular heterogeneity across the immune landscape of COVID-19 sub-disease severity phenotypes. Different cell subsets of the innate and
adaptive immune system and their associated marker expression (upregulation/downregulation) showing diverse heterogeneity across patients
with mild/moderate and severe/critical COVID-19.
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for faster viral detection and production of interferon and

inflammatory cytokines, leading to faster viral clearance (105).

X-chromosome harbors many PRRs genes (TLR-7 and 8),

ACE2, and interleukins that confer its association with innate

and adaptive immunity. A study highlighted that, compared

with women, men lack the extra X-chromosome and are

therefore more susceptible toward COVID-19 severity (106).

TLRs are also different across both genders, where men have

higher TLR-2 and TLR-4 expression, whereas women have

higher expression of TLR-3, TLR-7, and TLR-9 (107). Because

TLR-4 has a higher binding affinity for S-protein of SARS-CoV-

2 (108) and induces cytokine production, it causes severe

infection in men. On the other hand, TLR-7 stimulates B cells

to increase antibodies and also the production of type I IFN

during viral infection, which suggests a better initial response

and viral attenuation in women upon SARS-CoV-2 infection

(109, 110). Macrophages, DCs, T cells, B cells, and NK cells are

among the immune-related cells that express estrogen receptors

(ER-alpha and ER-beta), suggesting that the female sex steroid

hormone, estrogen, regulates immune-related cells to a certain

extent. According to Zafari Zangeneh et al., estrogen or estradiol

may play a role in regulating the pro-inflammatory immune

response against SARS-CoV-2 infection and thereby increasing

the anti-inflammatory and antiviral response (110).
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In contrast to estrogen, testosterone has a complex role that

makes men more susceptible to COVID-19. Testosterone

induces ACE2 expression that further increases TMPRSS2

expression (111). Therefore, higher testosterone levels might

be associated with increased SARS-CoV-2 entry and disease

severity. High levels of testosterone may also lead to COVID-19

severity in men by increasing neutrophil counts and cytokine

production (IL-1, IL-10, and IL-2), changing Transforming

growth factor beta (TGF-b) production by immune cells, and

lowering antibody production that can possibly induce cytokine

storm (112). Contrarily, low testosterone levels are correlated

with worse disease outcome and increased production of

inflammatory markers in men during COVID-19 (113).

Testosterone levels are also linked to T-cell immunological

activation and have a significant correlation with CD28

expression (114), therefore indicating that low testosterone

levels may hamper the activation of the immune system

during SARS-CoV-2 infection. This indicates that testosterone

acts as a dual edge sword in modulating the COVID-19 severity

and further elucidation would help infer the association between

testosterone and COVID-19.
Effect of comorbidities

COVID-19 is also associated with several comorbidities that

play crucial roles in modulating the disease severity. According

to Zhou et al., almost 50% of patients with COVID-19 in their

study had either hypertension, diabetes, or coronary heart

disease (115). Another study also reported that hypertension,

cardiovascular disease, and diabetes are frequently associated

comorbidities in severe patients, which correlates with poor

clinical outcomes (116). However, other comorbidities such as

cerebrovascular disease, chronic kidney disease (CKD), and

other renal diseases have also been associated with severity

and mortality in patients with COVID-19 (117). This indicates

an overall systemic disruption induced by SARS-CoV-2

infection, where multiple organs apart from the site of

infection are affected and responsible for COVID-19 severity.

Patients with comorbid COVID-19 were also reported to have

an altered immune profile compared with the non-comorbid.

Del Valle et al. observed the presence of elevated levels of TNF-a
and IL-8 in patients with diabetes, hypertension, and CKD-

associated COVID-19, suggesting an elevated pro-inflammatory

cytokine in patients having comorbidities (118). Higher

expression of IL-6 and CRP with increased oxidative stress has

also been observed in patients having diabetes as an underlying

comorbidity in COVID-19 (119). Together, these findings

suggest a hyperactivation and elevated immune and

inflammatory response during COVID-19, having at least one

comorbidity that often leads to disease severity.
TABLE 3 Effect of age on the immune landscape of COVID-19–
affected individuals.

Immune
response

Key observations in
COVID-19–affected older age group

(compared to younger)

Reference

Innate

Monocytes Reduced antigen presentation with accumulation
of non-classical monocytes and downregulated
HLA-DR.

(95)

Macrophage Imbalance between pro-inflammatory and pro-
repair macrophages.

(96)

Dendritic cells Impaired antigen presentation with reduced
CD40 and CD80; alterations in DC maturation
affects T-cell activation.

(97)

NK cells Depleted and dysfunctional NK cell with reduced
cytotoxicity.

(96)

Neutrophils Increased neutrophil count with high neutrophil
to lymphocyte ratio.

(98)

Inflammatory
response

Delayed type I IFN response, heightened
activation of NLRP3 inflammasome with IL-1b
and IL-18 levels.

(99)

Adaptive

T cells Rapid activation of CD8+ T cells, loss of anti-
inflammatory Treg suppression, increased Th1/
Th2 ratio, and Th17 expression leading to
cytokine storm.

(100)
(96)

B cells Decreased antibody affinity, reduced production
of naive B cells, and increased tissue-specific
antibody-experienced memory cell.

(100)
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Effect of genetic factors

Host genetic factors are essential determinant of an infectious

disease’s susceptibility and severity. During COVID-19, compared

with SARS-CoV-2 virus, the host’s genetic variants have an

important contribution toward the progression of the disease

severity. Multiple genetic variants, together with candidate causal

genes, are known to be associated with SARS-CoV-2 infection

susceptibility and COVID-19 severity (Table 4). SLC6A20, one of

the genes among the cluster of six genes (SLC6A20, CCR9, CXCR6,

FYCO1, and LZTFL1) is present on the 3p21.31 locus and encodes

the sodium–imino acid (proline) transporter 1 (SIT1), which is

known to interact with the ACE2 receptor (128) and therefore may

facilitate the entry of SARS-CoV-2. In particular, the Single

nucleotide polymorphism (SNP) rs11385942 is present on the

chromosome 3 at 3p21.31 locus and spans the six gene-

containing clusters and has been associated with respiratory

failure in patients with COVID-19 (120). Hospitalization of

patients with COVID-19 and the severity of the disease are

associated with a different mutation, rs1886814, in the

transcription factor FOXP4 (129). A candidate causal variant

rs10774671, present in the splice region of OAS1, has been linked

with COVID-19 severity (130). DPP9 is a serine protease encoding

gene that is involved in antigen presentation, inflammasome

activation, and antiviral signaling (131). Its variant rs2109069

present at 19p13.3 locus is related to pulmonary fibrosis along

with COVID-19 severity (132). Blood group A individuals are

observed at increased risk, whereas O blood group persons have a

protective phenotype. The ABO blood group locus contains an

overlapping locus 9q34.2 and identified as susceptibility loci for

severe COVID-19 (133).

IL-12, IL-23, and IFN signal transduction, as well as Th1/

Th17 cell–dependent immune responses, are determined by the

Janus kinase encoding gene TYK2 (134). TYK2 variant

rs74956615 has been correlated with severity of COVID-19,

where high TYK2 expression is associated with critically ill and

hospitalized patients (132). TLR7 is a potent innate immune

sensor capable of recognizing viral antigen and immediately
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inducing interferon and other pro-inflammatory cytokines as an

antiviral immune response (135). An X-linked deleterious

variant of TLR7 is reported to cause loss of function in male

patients with COVID-19, which resulted in low levels of type I

IFN by plasmacytoid DCs, leading to an impairment of type I

interferon in response to SARS-CoV-2 infection, demonstrating

the importance of functional TLR7 in regulating the progression

and severity of COVID-19 (136). HLA genes (both HLA-I and

HLA-II) are one of the major players involved in antigen

presentation to the lymphocytes, further activating the host

immune response (137). There have been multiple variants of

HLA associated with the COVID-19, among which class I HLA,

including HLA-A*11:01, -B*51:01, and -C*14:02, is the

significantly prevalent one associated with the worst outcome

in patients with COVID-19, indicating the immuno-protective

role of HLA in regulating the disease severity (122). In direct

consequence toward SARS-CoV-2 infection, two major gene loci

are necessary: ACE2 and TMPRSS2. Huo et al. reported an

association between ACE2 and TMPRSS2 with genetic

susceptibility and COVID-19 disease severity, respectively

(138). In SARS-CoV-2–infected individuals, both the alternate

allele of rs2285666 for ACE2 gene and the SNP (rs12329760) of

TMPRSS2 polymorphisms may serve as predictive model for

COVID-19 severity (139). Therefore, we can say that, during

COVID-19, the host’s genetic factors and the associated

polymorphisms do play a significant role in determining the

state of infection and disease severity (Figure 3).
Discussion

Cellular heterogeneity has always been at the core for

defining spectrum of infectious diseases that can be harnessed

to understand the complexity underlying the disease

progression. COVID-19 has been a disease of concern that has

alarmed the human population globally. This heterogeneous

infectious disease has affected a wide range of populations

experiencing a diverse array of symptoms. The disparities
TABLE 4 Reported COVID-19 association with genetic variants and their respective outcomes.

S. No. Gene/s Variants/
polymorphism

Causal genes Associated with
COVID-19 phenotype

Reference

1. SLC6A20, CCR9, CXCR6, FYCO1, LZTFL1 rs11385942 SLC6A20 Respiratory failure (120)

2. FOXP4 rs1886814 FOXP4 Disease severity (121)

3. HLA HLA-A*11:01, -B*51:01, and -C*14:02 HLA Disease severity (122)

4. ACE2 rs2285666 ACE2 Disease severity (123)

5. TMPRSS2 rs12329760 TMPRSS2 Disease susceptibility (124)

6. TLR7 Rare deleterious variant TLR7 Disease severity (125)

7. ABO rs912805253 ABO Disease susceptibility (126)

8. DPP9 rs2109069 DPP9 Disease severity (127)

9. TYK2 rs74956615 TYK2 Disease severity (127)

10. OAS1 rs10774671 OAS1 Disease severity (127)
fro
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between the clinical presentation and disease pattern across

patients with COVID-19 are possibly due to the presence of

immune cell heterogeneity (60). Severe patients reveal a

completely different immune profile compared with the ones

with mild clinical features. For example, severe patients

compared with mild patients exhibit lymphopenia and

increased monocyte population with elevated pro-

inflammatory cytokines and chemokines (140). This indicates

that, during COVID-19, infected individuals experience a major

difference in their immune profile that regulates disease

progression and affects the host’s survival.

Two levels of the defense program are activated in response to

SARS-CoV-2 entry, where each endeavors to avoid any further

damage to the host (141). The viral infection triggers the innate and

adaptive immune responses, where different cells are programmed

to perform their specific function/s in time and space. As the initial

line of defense, innate immune cells, such as macrophages,

DCs, monocytes, neutrophils, and NK cells, are followed by T

and B lymphocytes in the adaptive immune response. Normally, the

immune cells are affected during the initial stages of the disease that,

with time, increases to limit any further infection. However, this

trend is not always followed linearly during COVID-19. The severe

patients have decreased abundance of monocytes, NK cells, and

DCs, compared with mild patients (142, 143). This indicates a
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dysregulated myeloid cell compartment during severe COVID-19,

which correlates with disease severity and ARDS development

(144). However, elevated macrophage and neutrophil cell

populations have been associated with overproduction of pro-

inflammatory markers—CXCL8, CCL20, IFN-g, IL-6, IL-1b, and
TNF-a—across severe patients (145). These differences within

innate immune cells across infected individuals indicate their

abnormal expression triggered due to COVID-19, with expected

major impact on the cellular landscape. These findings provide

crucial information about the presence/absence of specific cell types

across infected individuals based on specific markers expressed by

these cells. Although there are multiple reports highlighting the

upregulation/downregulation of these cell-specific markers, the

exact mechanism of these heterogeneous cell populations

modulating the immune response during COVID-19 is yet to

be known.

Lymphopenia is a hallmark of severe COVID-19, where T- and

B-cell populations are decreased with disease severity (146, 147).

However, patients reveal cellular heterogeneity, especially within T-

cell subsets, where the cell-mediated response is highly diverse

within infected individuals. Although severe patients exhibit

reduced T-cell population, they also express elevated expression

of exhausted markers within T-cell subsets (both CD8+ and CD4+

T cells), suggesting a possible abnormal T-cell response throughout
FIGURE 3

Different modulators of COVID-19 disease severity. Age, gender, presence of comorbidities, and genetic factors are four significant factors that
are shown in multiple studies to modulate or are associated with COVID-19 disease severity and clinical outcomes.
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COVID-19 (69, 71). These heterogeneous populations of cells with

an abnormal expression within patients with COVID-19 reveal a

strong impact of the disease on the immune profile that provides

inter-individual differences. We can say that, with disease severity,

the heterogeneous immune-cell population is also altered and so is

necessary to be taken forward for their functional role in the

future studies.

Cellular heterogeneity also defines specific factors that can be

considered as possible modulators for COVID-19 disease severity.

Aging has always been a concerning issue where individuals fall

into the immunocompromised category. These individuals’

immune profile is suboptimal for maintaining a healthy state

among elderly, which becomes a major accelerator in COVID-19

severity. Compared with adults, the immune landscape of older

individuals exhibits dysregulated innate and adaptive immune cell

compartments during COVID-19. This can be correlated with

inflammaging and immunoscenesce that are the defining features

of infected elderly individuals and therefore indicate the observed

COVID-19 severity (148–150). In addition to age, gender is also

known to be associated with COVID-19 disease severity. Men,

according to studies, are more vulnerable to SARS-CoV-2

infection than women (151). The presence of an extra X

chromosome in women and its association with innate and

adaptive immune response makes them more protective against

COVID-19. Moreover, the immune cell heterogeneity is more

pronounced inmen as highlighted by increased neutrophil counts,

heightened inflammatory response, and reduced antibody

production (151, 152). Further understanding of gender-specific

immune profiles is necessary to strengthen our understanding of

COVID-19 with cellular heterogeneity, where gender may have a

major impact on the modulation of disease severity. Specific

comorbidities such as hypertension, diabetes, CKD, and

cardiovascular disease correlate with higher morbidity and

mortality rates in patients with COVID-19 (153). Elevated

cytokines and chemokines are observed in comorbid patients

compared with non-comorbid, suggesting a major alteration of

the immune landscape in patients with comorbid COVID-19 (60,

119). Host’s genetic factors are of immense importance in

modulating the COVID-19 disease severity. Numerous genetic

variants have been studied to be associated with COVID-19

susceptibility, severity, and clinical outcomes. Among all, the

specific variants associated with HLA, ACE2, and TMPRSS2

have significant contribution in modulating the COVID-19

severity (154). A possible explanation for the effect of an HLA

allele on disease severity might be abnormal binding affinity with

SARS-CoV-2 peptides (155). The HLA-restricted T-cell response

mechanism, in which viral epitopes are delivered by DCs to CD8+

T lymphocytes through contact with HLA class I alleles and CD4+

T lymphocytes through interactions with HLA class II alleles, is

critical to the human protection mechanism. This interaction is

affected in SARS-CoV-2 infection, where HLA variants have lower

binding sites for SARS-CoV-2 peptides, leading to a decreased

immune response and increased disease severity (156). Moreover,
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TLR7-, DPP9-, ABO-, OAS1-, and TYK2-associated genetic

variants have been correlated with reduced antigen presentation,

delayed type I IFN, and heightened cell-mediated immune

response in severe patients (18, 157, 158). The respective

evidence highlights the relevance of cytokine storm in COVID-

19 severity and several complications, including a fatal outcome.

Therefore, we can say that identifying genetic factors could aid in

explaining the uncontrolled inflammatory response and, if

possible, plausible biomarkers defining the COVID-19 severity

that can be harnessed for therapeutic strategies.
Challenges and future prospects

An insufficient understanding of cellular heterogeneity within

patients with COVID-19 can have considerable implications for

prognosis and therapeutic interventions. The disparities in clinical

outcomes among COVID-19 individuals have been treated based

on the supportive care and close monitoring with treatment

intensification for the individuals with worsened symptoms.

Hence, more stratified strategies should be opted to identify the

patients with the future worse symptoms. It is necessary to dig

deeper to understand patient heterogeneity that assists clinicians in

utilizing intensive therapy for stratified patients and aiding

potentially beneficial treatments required by an individual patient.

Immunological investigations are emerging to reveal insights

into patient heterogeneity and clinical variability in patients with

COVID-19 that may help understanding the disease trajectories

and progression. Both B- and T-cell responses are known to be

associated with the COVID-19 disease spectrum. However, the

T-cell immune response has widely been shown to have a

diversity among infected individuals, highlighting its

significance in understanding the disease progression and

patient stratification. Vital information on the involvement of

T cells for COVID-19 protection is considered necessary and

presently awaiting functional elucidation. Longitudinal studies

of patients with COVID-19 may help to overcome this limitation

by providing a precise understanding of heterogeneity within T

cells and T-cell–mediated immune response across patients with

COVID-19. It would be crucial to characterize the protective T-

cell responses following infection and vaccination. In doing this,

the single-cell genomics approach can be helpful in delineating

the complex immune profile of infected individuals. Single-cell

RNA sequencing (scRNA-seq) is of paramount importance in

providing relevant information at single-cell resolution with the

highest granularity that can aid in a comprehensive

understanding of cellular immune response during COVID-19.

Rather than using composites or averages from multiple cells,

single-cell approaches offer a high-resolution perspective into

these subsets and individual cells. Furthermore, multi-omics

profiling of concurrent readouts from the same cell, including

gene expression, cell surface proteins, and receptor sequences,

enables more accurate and reliable characterization of these
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heterogeneous cell populations. From evidence within patients

with COVID-19, where T-cell population is immensely variable,

the single-cell profiling of T-cell subsets can be performed on a

clinical cohort to understand insights of T-cell–mediated

response and T-cell receptor repertoire dynamics. Detailed

characterization of both CD4+ T cells and CD8+ memory T

cells using single-cell omics can be helpful in patient

categorization and plausible future protection. Understanding

from the perspective of genes involved in defining the particular

cell states during severe COVID-19 can also help us to elucidate

the role of cellular heterogeneity in disease severity. Single-cell

omics approach will help address the unresolved query

concerning cellular heterogeneity that may assist us in

preparing for the future as the SARS-CoV-2 is continuously

evolving with acquired immune escape capabilities.

Understanding cellular heterogeneity in COVID-19 can be a

cumbersome task as it comes with many challenges (Figure 4).

The data generated from scRNA-seq are quite complex and have

big volume, and multiple levels of quality check should be taken

care of while arriving at the precise result. Often, the cell type

identified can be misleading due to its probability of being a false

result or noise. Hence, it is crucial to eliminate the noise in the

data because each cell type and its expression contribute

enormously to delineating patient heterogeneity. Even a low
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number of cells as input data can also cause a reduction in the

discovery of rare cell types that usually are present in a low

proportion. To avoid this, cell count as input should be above a

threshold to capture even the low percentage of cell types.

Generally, annotation of cell clusters is performed manually,

which is labor-intensive that reduces the chances of achieving

high accuracy in the results. With the help of multiple automated

platforms and tools such as SCSA (a cell type annotation tool for

single-cell RNA-seq data) and MACA (marker-based automatic

cell-type annotation), heterogeneous cell populations may be

captured efficiently within a patient (159, 160). Sometimes, the

location of a particular cell type in a tissue can also be mistaken,

which may lead to wrong interpretation of the spatial and

temporal characteristics of the cell. Spatial transcriptomics,

together with the scRNA-seq technique, can be performed,

which is a high-throughput approach that can assist in

providing the exact position with the expression of the cell

from the tissue of interest. Gene expression may not provide

enough clarity in detecting the granularity of heterogeneous cell

populations. Therefore, it can be united with surface marker

expression, further aiding elucidation of cellular heterogeneity.

Altogether, the solutions toward resolving these challenges

associated with single-cell omics technology in the future may

help to develop a better understanding of the intricacies
FIGURE 4

Challenges and possible solutions for delineating cellular heterogeneity. The figure captures challenges and possible solutions toward
elucidating the role of cellular heterogeneity during infectious disease with the aid of single-cell genomics approach.
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associated with cellular heterogeneity and provide substantial

insights into the complexity behind COVID-19 disease.
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