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ABSTRACT

Although computers have had a role in interpretation of mammograms for at least two decades, their
impact on performance has not lived up to expectations. However, in the last five years, the field of
medical image analysis has undergone a revolution due to the introduction of deep learning convolu-
tional neural networks — a form of artificial intelligence (Al). Because of their considerably higher per-
formance compared to conventional computer aided detection methods, these Al algorithms have
resulted in renewed interest in their potential for interpreting breast images in stand-alone mode. For
this, first the actual capability of the algorithms, compared to breast radiologists, needs to be well un-
derstood. Although early studies have pointed to the comparable performance between Al systems and
breast radiologists in interpreting mammograms, these comparisons have been performed in laboratory
conditions with limited, enriched datasets. Al algorithms with performance comparable to breast radi-
ologists could be used in a number of different ways, the most impactful being pre-selection, or triaging,
of normal screening mammograms that would not need human interpretation. Initial studies evaluating
this proposed use have shown very promising results, with the resulting accuracy of the complete
screening process not being affected, but with a significant reduction in workload. There is a need to
perform additional studies, especially prospective ones, with large screening data sets, to both gauge the
actual stand-alone performance of these new algorithms, and the impact of the different implementation
possibilities on screening programs.
© 2019 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

mammograms are double-read by two radiologists specifically
trained and certified for reading screening mammograms, inde-

The use of mammography for breast cancer screening in the
general population has resulted in widespread use of this imaging
technology. To provide just two examples, an estimated 33 million
screening mammograms are performed in the US every year [1],
while in the Netherlands, over one million such tests are performed
yearly [2]. In the Netherlands, as in many countries throughout
Europe, a national screening program has been established by the
government. As part of this program, all women between the ages
of 50 and 75 are invited for a free screening digital mammography
exam every two years. As is common in Europe, these screening
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pendently, blinded to each other’s interpretation. If the two radi-
ologists arrive at disparate decisions on the case, a third reader
arbitrates the case, providing the final decision of whether to recall
the woman or not for diagnostic work-up. This arbitration occurs in
about 2% of the cases [3]. Thus, altogether, over two million
mammographic interpretations are performed within the national
screening program alone, every year, in the Netherlands. As a result
of these interpretations, about 2.4% of screened women are recalled
due to a suspicious finding [2], which, after work-up and biopsy,
result in 6.8 cancers diagnosed per thousand women screened. In
other words, over 97% of screening mammograms are interpreted
as normal, and cancer is detected in less than 1% of examinations.

Although the introduction of screening mammography has
contributed to an important reduction in breast cancer-related
mortality [4], the very nature of population screening results in
an extremely high number of negative tests. Given that this test is
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interpreted by highly specialized, human, experts, there would be
various advantages in automating this process, at least partly, if at
all possible.

Of course, various questions need to be answered convincingly
before automation of interpretation of screening mammograms can
be introduced. Is the image interpretation technology good
enough? Are we aiming to automate screening interpretation fully
or only partially? If the latter, then what is the best combination of
computer vs. human interpretation? Why do this? What would the
advantages be? Finally, and most importantly, would it be ethical to
automate this process and therefore refrain from human reading in
some or all of the mammograms?

The past: conventional computer aided detection algorithms

Stand-alone computer interpretation of mammograms, which
would allow for automated screening, is not, strictly speaking,
equivalent to Computer Aided Detection (CADe) and Computer
Aided Diagnosis (CADx), but it is based on the same technology.
Conventional CADe/CADx methods are based on the algorithms
recognizing suspicious lesions due to their matching characteristics
specified by the algorithm programmers. In other words, the pro-
grammer teaches the computer what a malignant mass or calcifi-
cation cluster distribution looks like, by describing to the computer
the different features that distinguish a malignant mass, for
example, from normal tissue or a benign mass. CADe algorithms
then search the image for areas that contain (some of) the
programmed-in features, and, if the score for a possible finding is
high enough, that location is marked as suspicious on the image. In
CADx, the algorithm is input the region of the image that contains a
suspicious finding, and the software evaluates only that area for
determining how much it contains features that match the pre-
programmed signs of malignancy. Therefore, the output of CADx
software is usually a score that relates to the probability of finding
analyzed being malignant.

The goal of CADe/CADx is to aid the radiologist during their
interpretation of the exam, in one of two ways. In the traditional
use of CADe, after the radiologist interprets the case and arrives at a
decision, he/she turns on the CADe marKks, if any, and reviews them
to ensure that none of the locations highlighted as suspicious are
deemed actionable findings. The use of CADe in this manner aims to
reduce false negatives due to lesions being overlooked by the
radiologist during his/her search for findings. During the lab-
setting testing of CADe, using retrospective studies with selected
data sets, the performance of the CADe algorithms was found to be
very promising [5—8]. This led to the rapid introduction of these
algorithms in the clinic, especially in the US. However, later studies
that evaluated the actual impact on clinical performance of CADe
introduction showed that its promise was not fulfilled [9,10]. The
high rate of false positive marks, typically far above one per image,
leads to a reduction in specificity. This is because, compared to the
very low actual prevalence of cancer, if the radiologist is swayed to
accept only a small percentage of marks as actionable, the rate of
negative recalls will increase, while the chances that a overlooked
cancer is found thanks to the algorithm are small [11]. In addition,
the CADe programs seem to be used in a different fashion than
intended, as in practice sensitivity also decreases. This is most likely
caused by the fact that areas not marked by the CAD system are
more easily dismissed.

Another scenario for use of computer algorithms in interpreta-
tion of screening mammograms uses a hybrid CADe/CADx
approach. In this setting, CADe marks are not automatically shown,
but during interpretation of the case, the radiologist may query the
computer on its opinion of an area already identified by him/her as
potentially being suspicious. Only at this point are hidden CADe

marks displayed, if available, usually together with a likelihood of
malignancy for the queried area. In trying to arrive at a decision to
recall or not based on the potential finding, the radiologist thus
seeks a second opinion, and instead of asking his/her colleague,
asks the computer for help. Such use case would have a positive
impact on both sensitivity and specificity, but is limited in magni-
tude, since it can only affect the outcome in difficult border-line
cases, where the radiologist would actually use the algorithm. In
normal cases with no detected findings, or cases with findings in
which the radiologist is certain of his/her decision (even if that
decision is actually wrong), then the algorithm would not be used,
and therefore it could not have an impact [12].

The main limitation of conventional CADe/CADX algorithms is
the need for the characteristics of malignancy to be specified by the
programmer. This is a challenging, cumbersome, subjective pro-
cess, which is inherently limiting in terms of amount of information
that can be provided to the algorithm by the programmer. The fact
that hardly any of the conventional algorithms ever approached the
performance of breast radiologists implies that it is very difficult to
capture all the signs of breast cancer recognized by humans in
handcrafted mathematical formulations. The introduction of the
new generation of artificial intelligence (AI) algorithms for
computer-interpretation of mammographic images solves this
limitation.

Introduction of Al

This new generation of algorithms is, for the most part, based on
deep learning convolutional neural networks (CNNs). These net-
works consist of a series of simple mathematical operations,
grouped in layers, that sequentially first break down the image
being analyzed into ever-smaller components. Depending on the
network, this might be followed by putting back together these
components into an image of the same or similar size as the original
input, learning the spatially related characteristics that determine a
pre-defined ground truth at every level. Depending on the nature
and intent of the algorithm, the output could be a single binary
positive/negative decision, or a probability of malignancy score for
each lesion detected. The latter might include a heat map high-
lighting the area(s) that contained the characteristics used to come
to the final classification. In mammograms containing breast cancer
this usually means the cancer itself, but as is the case for human
interpretation, the final classification might also be influenced by
retraction patterns or skin characteristics.

The design of the network, in terms of the number and type of
layers and of the connections among them define what the network
outputs, which is still defined by programmers. However, the
multiple layers of mathematical operators also include thousands
of numerical parameters, denoted weights, that have to be set to
specific values. The values of these thousands of weights are what
define the characteristics searched for in the images, and how these
different characteristics influence the final output. These values are
determined by the software itself, during the training process. For
this, the network learns by repeatedly being shown example im-
ages and the correct output for each image, and the weight values
are adjusted each time so that the network arrives to an output
ever-closer to the correct one.

This is the major difference between conventional CADe/CADx
algorithms and the new generation of Al-based algorithms; the
computer learns to distinguish malignant findings from normal
tissue or benign findings by itself, not because it is taught what a
malignant finding looks like by the programmer. This results in a
performance that is substantially improved compared to that of
conventional algorithms [13,14], since the process is objective and
data-driven. In other words, it is the network that determines what
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really differentiates a malignant lesion in an image from a benign
one, in a way that descriptive code written by a programmer would
never be able to achieve.

Interestingly, the exact same network can be trained, by use of
corresponding examples, to detect a tumor in a mammogram, a cat
in a photograph, or a fault in a photograph of fabricated piece of
machinery [15—18].

Achieving stand-alone computer interpretation: when is it
feasible?

As discussed by Doi years before the introduction of Al for
medical image analysis, and therefore before it was feasible, the
requirements on stand-alone computer interpretation of mam-
mograms are very different from those for the use of CADe/CADx
algorithms [19]. For the latter, as already discussed, and its name
implies, the interpreting radiologist is aided by the computer. In one
implementation the radiologist can discard the CADe marks as false
positives, while with the interactive software the radiologist might
not even turn it on for cases in which he/she is sure of his/her de-
cision. As a result, the final performance is determined by the
radiologist.

Of course, a better-performing CAD would most probably result
in a better outcome, in most circumstances. But, at least in theory,
this is not necessarily true, if the radiologist decides to discard or
ignore the CAD opinion the times it is correct, then the contribution
of the software to the final performance could be limited. In addi-
tion, if, for example, the CADe performs at the same level as the
radiologist, but with a perfect overlap in what it detects and what it
misses, then it actually would not contribute to the final outcome at
all. In the other extreme, if the performance of the CADe is rather
poor but it is even sometimes correct, and the radiologist is patient
enough (a tall order to ask), then the final outcome might, even just
a few times, be improved, because some cancers missed by the
radiologist are pointed out by the CADe algorithm. Therefore, in an
idealized world in which the radiologist does not get frustrated or
loses confidence in the computer, but evaluates each and every one
of its marks, the final outcome could be improved by the incorpo-
ration of even a sub-optimal CAD algorithm. Still, even with a good
CAD algorithm, the gain that can be achieved by the use of an al-
gorithm as an aid is relatively limited. The use of Al as a stand-alone
reader of mammograms might have a much larger impact on the
associated workload of screening, and, if the system is really good,
on the quality of the screening program.

On the other hand, conventional wisdom states that for stand-
alone computer interpretation of medical images to be acceptable
and incorporated into clinical use, the computer has to approach, or
exceed, human performance. The obvious expectation is that if any
radiologist is to be, at least partly replaced by computers, then
performance cannot be lower. In general, we should not accept an
increase in missed cancers or recalling additional healthy women
due to having incorporated a computer to read any number of
screening mammograms.

However, there are exceptions to this requirement. In the first
place, sub-par performance of computer interpretation might be
the only option to read screening mammograms. That is, in a
developing country, perhaps the human or economic resources are
simply not available, and therefore reading a substantial number of
screening exams could be only possible with computers. In fact, this
could be the case in the near future in some developed countries,
where the shortage of radiologists is increasing [20]. In these cases,
reduction of the total workload by automated interpretation,
making widespread screening feasible, with a reasonable perfor-
mance, even if below that of a well-trained screening radiologist,
would be better than no screening at all.

Another scenario in which stand-alone performance below that
of radiologists could still be acceptable would be if that incorpo-
ration would make introduction of other improvements feasible.
Specifically, let’s consider the scenario of replacing digital
mammography as the screening imaging modality for a higher-
performing technique, e.g., digital breast tomosynthesis (DBT).
Over a number of prospective screening trials, DBT has been found
to result in higher detection performance, but with a doubling of
the reading time [21—29]. Therefore, introduction of DBT-based
screening, which has already taken place in the US, where
screening is institution-based [30], is also of intense interest in
countries where screening is regional- or national-program based.
However, if the resources, economic and/or human, are not avail-
able to introduce DBT screening due to its increase in reading time,
again, perhaps DBT + a sub-human stand-alone computer, in at
least a portion of screening, results in an overall better performance
than mammography + only human interpretation.

It is in the spirit of these realities and possibilities that, since the
introduction of the new generation of algorithms for medical image
interpretation, the potential for stand-alone interpretation of
breast screening images is again being studied and discussed.
Although, currently, we have evidence that the performance of
these algorithms is approaching that of breast radiologists, there is
yet no definitive evidence that this level has been reached.

Stand-alone Al performance: how does a computer compare
to a human radiologist?

So, where do we stand? How good are the current cutting-edge
Al algorithms in interpreting breast images? A few studies have
evaluated the stand-alone performance of Al algorithms, some of
them commercial, in reading digital mammography or DBT images
and compared it to that of radiologists [31—34]. All involve retro-
spective reading of enriched case sets, using receiver operating
characteristic (ROC) methods.

In the largest study so far, Rodriguez Ruiz et al. aimed to
compare the performance of an Al algorithm for interpretation of
digital mammograms, using as varied a data set as possible [31]. To
be able to perform this comparison including a multitude of con-
ditions, the investigators gathered nine different data sets that
included the mammographic images and the interpretations of
these images from multiple breast radiologists. These sets had been
assembled and used in other, previously-published ROC observer
studies, in which the original investigation was to compare digital
mammography to a different modality (mostly, DBT). Ignoring the
data from the competing modality, Rodriguez Ruiz et al. gathered
the digital mammography information (images and reader
probability-of-malignancy ratings), and compared the reader
detection performance to that of the Al algorithm. In total, the nine
sources of data included over 2600 exams, acquired with systems
from four different vendors, installed in both the US and countries
across Europe, which included over 650 cancer cases. The total
number of interpreting radiologists, that involved breast radiolo-
gists from both the US and across Europe, was 101, which,
considering the number of exams each radiologist read, resulted in
an analysis of over 28,000 interpretations. After obtaining the
probability-of-malignancy present for each case estimated by a
commercial Al system, the authors compared the resulting ROC
curves, both between the Al and the average of the radiologists for
all nine data sets pooled together, and against each individual
radiologist. The area under the ROC curve (AUC) of the Al system
was found to be non-inferior to that of the average radiologist (Al
AUC: 0.840 [95% CI: 0.820—0.860] vs. radiologist AUC 0.814
[0.787—0.841]) (Fig. 1). Compared to individual readers, again in
terms of AUC, the Al outperformed 61% of the radiologists.
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Fig. 1. ROC curves of the reader-averaged radiologist (solid line) and of a commercial
Al system (dashed line) for detection of cancer in over 2600 digital mammograms. The
Al system performance was found to be non-inferior to that of the radiologists.
Adapted from Rodriguez Ruiz et al. Stand-Alone Artificial Intelligence for Breast Cancer
Detection in Mammography: Comparison With 101 Radiologists. ] Natl Cancer Inst.
2019; 111 (9):916—922.

However, interestingly, the Al algorithm performed worse than the
highest-performing radiologist of all of the nine data sets.

In a slightly more recent study, Conant et al. reported the stand-
alone performance of a different commercial Al system when
analyzing a DBT data set consisting of 260 cases acquired at seven
different sites, with systems from a single vendor, all across the US
[32]. The performance of 24 radiologists interpreting this same data
set without access to the Al system was also reported. The Al system
was set to operate at a high sensitivity (actual sensitivity achieved
with the evaluated data set was 91% [95% CI: 81%—96%]), which
resulted in a specificity of 41% [95% Cl: 34%—48%]. The mean
sensitivity and specificity of the radiologists was found to be 77.0%
(min/max: 38.5%—93.8%) and 62.7% (22.1%—84.6%), respectively.
Although the AUC of the Al system was not specified in this pub-
lication, the ROC curves of the Al system and of the average of the
radiologists can be seen to be very similar (Fig. 2).

These two examples of comparisons of the stand-alone perfor-
mance of commercially available Al systems to that of radiologists
interpreting digital mammography and DBT images show the po-
tential for these systems to achieve human-like performance for
this clinical task. The particular strength of the Rodriguez Ruiz et al.
study is the comprehensive nature of the data, covering multiple
image acquisition systems, and the images interpreted by radiolo-
gists from various countries from both sides of the Atlantic. At the
same time, the Conant study showed that an Al system for DBT
seems to be at similar performance levels compared to radiologists
as systems for digital mammography.

However, both of these studies do not allow for the conclusion
that stand-alone Al interpretation of x-ray breast images is at a par
with screening breast radiologists in the real screening setting. In
the first place, the data sets were enriched, resulting in a much
higher prevalence of cancer than that found in a screening data set.
In addition, they were all retrospectively read, in a research setting.
Furthermore, both Al algorithms are not able to compare the
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Fig. 2. ROC curves of the reader-averaged radiologist (dashed line) and of a com-
mercial Al system (solid line) for detection of cancer in over 260 digital breast
tomosynthesis images. The sensitivity/specificity pairs for each radiologist are shown
with circles, whose size represents the average reading time per case. The red star
indicates the operating point of the Al system. Adapted from Conant et al. Improving
Accuracy and Efficiency with Concurrent Use of Artificial Intelligence for Digital Breast
Tomosynthesis. Radiology: Artificial Intelligence. 2019; 1 (4):e180096. (For interpre-
tation of the references to colour in this figure legend, the reader is referred to the Web
version of this article.)

current images to any prior examination images. Although this
comparison is an important source of information for the inter-
preting radiologist, Al systems are for now unable to take this in-
formation into account. In the data sets included in the Rodriguez
Ruiz et al. study, some of the human reader results included
providing the radiologists with the prior images, and some did not.
Interestingly, a difference in how the Al results compared to these
data sets vs. how it compared to the data sets that excluded prior
images, cannot be easily seen. The Conant et al. study excluded the
use of priors. Therefore, although the exclusion of priors allows for
a comparison of performance when given the same amount of in-
formation to both the Al and the radiologists, this may underesti-
mate the accuracy of radiologists during real screening.

As mentioned, the Al algorithm evaluated by Rodriguez Ruiz
et al. did not achieve the same performance as any of the best
radiologist in each set included in the study. Similarly, two of the 24
radiologists in the Conant et al. study had a higher sensitivity/
specificity pair than that obtained by the Al system. In the absence
of information not available to the Al system, such as prior images,
further improvements of the Al algorithms, in order to achieve, or
even surpass, the performance of the best human readers, are
theoretically possible. Due to the self-learning nature of this tech-
nology, continued training of the network with additional cases can
continuously increase its performance. Of course, performance
improvement with additional cases undergoes diminishing returns,
but, given the variability across images, in terms of system vendors,
acquisition techniques, image post-processing algorithms and
versions, lesion variability, etc., the training with a large number of
cases across all these variations may potentially further improve
performance. This helps highlight the main difference, and most
powerful aspect, of this new Al technology compared to
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conventional CAD algorithms; improvement in performance can be
achieved by simply continuing the training of the network with
additional data, whereas any improvement in conventional CAD
software would require human revision of the software with new
or improved algorithms.

The one algorithmic change that could be expected to improve
the performance of Al systems would be the ability to consider
temporal information within a case, by being able to compare the
current images to priors, as done by human readers. However,
somewhat surprisingly, the introduction of such an improvement
in one Al algorithm did not result in any significant performance
improvement [35]. Of course, further work on this aspect is needed.

Further performance evaluation studies

Beyond any further improvements in the Al systems that might
take place in the future, further evaluation studies to determine the
actual stand-alone performance of Al systems when reading breast
cancer screening images are needed. Specifically, large scale
studies, comparing the performance of these systems when reading
actual screening data sets, containing a large number of cases, need
to be performed. In addition, the Al performance with these data
sets needs to be compared to the actual, prospective, radiologist
readings at screening. Only with such studies will the potential for
these algorithms to have a role as a stand-alone option in screening
for breast cancer be clear.

Assuming that these studies will also show at least equal overall
performance of Al systems and radiologists, it is safe to assume that
neither will detect all cancers present in the screening set, and that
they will likely not detect exactly the same cancers either. There-
fore, it would still be important to determine if there are any dif-
ferences between the biological and molecular profiles of the
cancers detected by Al systems and those detected by interpreting
radiologists. If Al systems detected, overall, an equal or higher
number of cancers (assuming same specificity), but there tended to
be an increase in the number of indolent cancers detected, while
the fraction of more aggressive cancers declines, then all that would
be gained would be an increase in overdiagnosis, and a decrease in
the benefit of the screening program. To date, the retrospective
enriched data sets used for Al performance evaluation studies have
been too small to investigate this matter. Future large-scale studies
with actual screening data sets, therefore, need to include an
analysis of the characteristics of the human- and Al-detected tu-
mors to be able to estimate the actual impact on patient outcomes
of using these systems.

Options for use as stand-alone

But what could be the role of Al algorithms, when used in stand-
alone mode, in breast cancer screening? The answer that screening
will be performed automatically by Al algorithms, with no role by
human radiologists seems currently still too simplistic, albeit this
may be achieved when Al algorithms clearly outperform even the
best human readers. For the moment, published studies have
proposed more sophisticated strategies for incorporating auto-
mated reading of images into screening.

Currently, the most common approach being investigated is the
automated identification of normal cases that either do not need to
be evaluated by radiologists at all, or that could be single read
instead of double read (in the common double reading screening
scenario in Europe) [36—39]. In this light, Rodriguez Ruiz et al., in
another study with the same dataset mentioned earlier, evaluated
the impact on the overall outcome when the cases with the lowest
Al-generated probability-of-malignancy scores are pre-designated
as normal and therefore not interpreted by radiologists. In a more

aggressive setting, with a threshold for human-reading that results
in pre-designating about 50% of cases as normal, the investigators
found that 7% of cancer cases would be incorrectly flagged as
normal. With a more conservative setting that results in a reduction
in the workload of 20%, only 1% of cancer cases would be mis-
labeled. At the same time, these two thresholds would reduce the
false positive recalls by 27% and 5%, respectively. Therefore, the
slight loss in sensitivity is compensated by the gain in specificity,
resulting in an unchanged AUC. This, of course, means that
adjustment of the operating point after pre-selection could result in
equal sensitivity and specificity as without pre-selection, but with a
considerably reduced workload.

Lang et al. [38], using the same Al system but on a subset of cases
from the prospective Malmo Breast Tomosynthesis Screening Trial
[24,25], found very similar results. Interestingly, radiologist review
of the cancer cases that the Al scores incorrectly labelled as normal
determined that the missed lesions were clearly visible. This points
to the possibility that there is still “low-hanging fruit” that would
allow for improvement in the stand-alone performance of Al al-
gorithms, reducing the proportion of mislabeled cancer cases.

In a third study evaluating the same strategy, Yala et al. devel-
oped an Al algorithm specifically to identify normal cases to be used
for this pre-designation strategy, and evaluated what its impact on
performance would be [37]. The investigators found that the use of
this software would result in a reduction of 20% in the workload,
with non-inferior sensitivity and a statistically significant increase
in the specificity, from 93.5% to 94.2%. If these results were to be
confirmed, though slight, this scenario would increase the overall
performance in terms of accuracy, in addition to the reduction in
workload.

Finally, Kyono et al. also developed an Al algorithm optimized
for this purpose [39]. Using a portion of the TOMMY tomosynthesis
trial dataset [28], the authors determined the proportion of non-
cancer cases that would be correctly labelled as normal by their
developed algorithm. Interestingly, they evaluated this using data
sets enriched to three different cancer prevalence levels: 15%, 5%,
and 1%. As is necessary for this task, maintaining a very high
negative predictive value (NPV), the system was able to reduce the
workload to be human-read by 34% in the set with highest preva-
lence, and by 91% at a screening-like 1% prevalence.

With these studies, the current scenario for incorporation of
stand-alone Al in screening mammography would result in an
equal performance to a completely human-read screening scenario,
but with a reduction in workload. Such a reduction, be it by 20%,
50%, or even 90%, in number of cases to be reviewed, could still
result in an improvement in the screening performance in the cases
read by humans in ways that are not captured by these four studies.

In the first place, since these studies simulated outcomes using
retrospective reading results, the impact on radiologist perfor-
mance of reading a pre-selected case set is ignored. Would radiol-
ogists’ performance vary when they know that an Al algorithm
scored the cases they are reading as being above a certain suspi-
ciousness threshold? Although the actual cancer prevalence within
the human-read cases would, of course, be increased, in absolute
terms the prevalence would still be low. Would the reduction in
workload allow for an increase in the reading time per case, and
therefore improved performance, or would the pre-designation of
the cases as at somewhat more suspicious cause an increase in the
false positive recalls? Answer to these questions could only be
arrived at with prospective studies, in which reader performance
after pre-selection could be gauged.

More indirectly, incorporation of an Al technology that allows
for a reduction in workload could allow for introduction of other
imaging technology for screening. Specifically, as discussed earlier,
reduction in the cases to be human-read would ameliorate the
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increase in reading time required by DBT reading. This would allow
for replacement of mammography-based screening with DBT,
presumably resulting in improved performance, as shown by the
prospective DBT screening trials. Hence, incorporation of an Al
technology that results in equal performance but a reduction in the
workload, could indirectly impact the outcomes of screening.

Ethical issues

Can we do this? Even if the answer from a technical point of
view is yes, how about the answer from an ethical point of view? Is
it acceptable, or will the screened population accept, that some of
their images will not to be reviewed by any human? Anecdotally,
discussion with women that regularly participate in screening
programs, including breast cancer survivors and volunteer patient
advocates, have expressed their support for mechanisms that result
in improved outcomes, whatever their nature. An Al algorithm that
is stable and always performs at the same high level may, in the
end, achieve this. It can be safely assumed that an Al algorithm does
not have attention deficits due to disturbing phone calls or the need
for a cup of coffee, albeit, of course, quality assurance protocols will
need to be devised.

Importantly, automated analysis of health information is already
prevalent in current healthcare. Red blood cell count, for example,
during a blood test, is not performed by a human using a micro-
scope to count each and every single cell in a blood sample, of
course. Rather, a machine performs the count. We are all used to
this, and thinking about still doing such tasks by hand seems un-
thinkable. Although interpreting a screening mammography ex-
amination may be a more complex task than counting cells in
blood, performing the latter task automatically was years ago also
regarded as challenging. Hence, once the performance of algo-
rithms interpreting mammography images is shown to be equiva-
lent, or superior, to that of screening radiologists, perhaps with
time applying this technology to improve screening outcomes will
seem normal and expected.

Of course, a discussion of the various non-technical aspects
involved in automated screening interpretation will first be
necessary, before such incorporation is possible. These involve not
only ethical issues, but also, legal, social, and even economic con-
siderations. For a comprehensive discussion on these topics, the
reader is referred to a recent review of these issues by Carter et al.,
included in this special issue [40].

Conclusions

We seem to be at the doorstep of a revolution in breast cancer
screening. The developments in Al interpretation of medical images
over the last few years seem to have opened the door for incor-
porating stand-alone computer interpretation of images into breast
cancer screening programs. Current evidence shows that these al-
gorithms are approaching, if not yet have reached, expert human
performance, although definitive studies that compare their per-
formance to actual screening results are not yet available. If and
when such performance levels are achieved and demonstrated, it
seems feasible that, at least, an important reduction in the work-
load for human interpretation could be achieved, with no decrease
in performance. Even if future improvements are not achieved, and
therefore the impact on performance discussed earlier remains
unchanged, there might be subsequent changes down- and up-
stream that could result in an improvement in the quality of the
screening program. A reduction in workload with an unchanged
AUC could allow more time for interpreting radiologists to spend on
the cases that do need human review, presumably improving ac-
curacy. In addition, a reduction in human workload could ease the

challenge of transitioning to a more accurate but slower to inter-
pret, imaging technology, such as DBT, again resulting in an overall
improvement in performance.

Further improvements in algorithms and training sets, com-
bined with evidence from more definite, prospective, actual-
screening-prevalence trials, could finally usher in the age of com-
puters having a direct role in breast cancer screening. The next few
years will be very dynamic in this field.
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