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Tendon is a fibro-elastic structure that links muscle and bone. Tendon injury can be

divided into two types, chronic and acute. Each type of injury or degeneration can

cause substantial pain and the loss of tendon function. The natural healing process

of tendon injury is complex. According to the anatomical position of tendon tissue,

the clinical results are different. The wound healing process includes three overlapping

stages: wound healing, proliferation and tissue remodeling. Besides, the healing tendon

also faces a high re-tear rate. Faced with the above difficulties, management of tendon

injuries remains a clinical problem and needs to be solved urgently. In recent years, there

are many new directions and advances in tendon healing. This review introduces tendon

injury and sums up the development of tendon healing in recent years, including gene

therapy, stem cell therapy, Platelet-rich plasma (PRP) therapy, growth factor and drug

therapy and tissue engineering. Although most of these therapies have not yet developed

to mature clinical application stage, with the repeated verification by researchers and

continuous optimization of curative effect, that day will not be too far away.

Keywords: tissue engineering, platelet-rich plasma therapy, growth factor and drug therapy, stem cell therapy,

gene therapy, tendon healing, tendon injury, tendon

INTRODUCTION

As an anatomical structure connecting muscle and bone, tendons are highly resistant to mechanical
loads, and capable of transferring, distributing and regulating the forces exerted by muscles to the
connected structures. In this way, tendonsmaintain posture or generatemovement (1–3). Tendons,
which connect muscles to bones, have high tear resistance and tensile strength and play a crucial
role in the stable movement of bones. But in fact, tendons composed of cells and parallel arrays
of collagen fibers are often injured and even ruptured (2). The total incidence rate of tendon or
ligament injuries is about 1/1,000 per year. Up to 46% of musculoskeletal injuries are reported as
tendon injuries, including tendinopathy (4). Due to the lack of sufficient cells and growth factors,
tendon healing is slow and the quality is unsatisfactory (5, 6).

The arrangement of tendons is hierarchical. The fibers composed of triple helix type I collagen
molecules form fibers, bundles and tendon units in turn. Type I collagen is the most abundant
ingredient of the extracellular matrix (ECM) in all soft tissues, including tendons. The special
framework of the tendon is counted on the specific parallel organization of type I collagen fibrils,
instead of the expression of type I collagen. So far, little is known about the mechanism by
which type I collagen fibers drive specific spatial structures in tendons. Growth factors, such
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as transforming growth factors (TGF)-β and fibroblast growth
factors (FGFs), are beneficial to improve the expression of
collagen and promote the synthesis of collagen in tendon
tissue. The synthesis of type I collagen in tendons also involves
mechanical forces: increased load leads to increased collagen
content in the tendons and reduced load results in reduced
collagen content (1).

Collagen fibers densely arranged in ECM are considered as
the primary force transfer unit of the tendon (1). A variety of
ECM molecules are involved in the formation of type I collagen,
including collagen, elastin and glycoprotein (7). Human tendon
tears at 8% strain and plastic deformation occurs at 4% strain (8).

Based on previous surveys, tendon injuries are considered as
the most common musculoskeletal disorder for patients seeking
medical treatment (9, 10). For example, 1 of every ten people and
1 of every two runners are afflicted with Achilles tendinopathy
before the age of 45 (11). Tendon injuries can be caused by
sudden rupture orchronic process, which is widely known as
tendinopathy (2, 3).

Acute mechanical load tends to result in the outbreak of
tendon tears (2, 3). In contrast, the pathogenesis of tendinopathy
or chronic tendon injury is still controversial and has different
definitions, degenerative disease or failure of the healing process
(12–14). Chronic tendon injury or tendinopathy refers to the
clinical symptoms of affected tendons, including pain, focal
tendon tenderness, decreased strength and reduced activity.
There is no macroscopic tear at the time of tendinopathy in
comparison with partial or complete tendon tears. The following
histological features can characterize tendinopathy: disordered
collagen fibers, increase of proteoglycan and glycosaminoglycan
content, increase of non-collagenous ECM, cell proliferation and
neovascularization (15–18).

Both chronic and acute tendon injuries have many extrinsic
and intrinsic factors (14). Common inherent risk factors for
tendon diseases include sexual distinction, age, type 2 diabetes
and obesity (14, 19). The main extrinsic factor of tendon injury
is abnormal tendon load related to physiological exercise and
specific working environment. Tendinopathy is thought to be
caused by repeated eccentric mechanical loading, while acute
tendon injury usually occurs after a single overloading event
(2, 3, 13, 19–22).

Tendon injuries could bring a high burden to patients leading
to a significant loss in individual production capacity. Moreover,
the quality of patients’ life is impaired, and the whole society’s
healthcare system suffers huge losses (23).

The natural healing process of injured tendons is complex
and varies in clinical outcomes according to the anatomical
location of the tendon tissue. The wound healing process
comprises three overlapping phases: the wound healing process,
proliferative phase, and tissue remodeling phase (24). In the
inflammatory stage, red blood cells infiltrate into the wounded
area, accompanied by white blood cells (leukocytes), and platelets
equipped with important growth factors. Tendon cells, also
known as tenocytes, recruited to the wound site are stimulated
to multiply, especially in the epitenon (24). Inflammatory cells
secrete a variety of cytokines to promote tendon healing,
stimulate cell migration and angiogenesis. These cytokines

include insulin-like growth factor-1 (IGF-1), transforming
growth factor-beta (TGF-β), platelet-derived growth factor
(PDGF) and basic fibroblast growth factor (bFGF) (25–27).
The second stage, known as the proliferative or repair stage, is
characterized by a large amount of synthetic activity under the
guidance of macrophages and tenocytes. Macrophages that alter
from phagocytic to reparative release growth factors (16, 28).
The synthesis of collagen I begins to play a leading role in
the third and final stage known as the remodeling phase. This
phase starts 1–2 months after injury and spans more than 1
year. The repaired tissue is similar to a scar in appearance. The
biomechanical properties of the repaired tissue can never restore
entirely because of an increase in the water content and a decrease
in the quantity and quality of collagen (16). As a result, rupture
may occur later, and sometimes a reduction in load capacity
is observed, which is due to the tendency of tendons to form
adhesions (29, 30). The healing process of injured tendons is
often longer and the healing intensity is weak in the early stage
owing to the lack of cells and the low activity of growth factors
(5, 31). In addition, the mechanical properties of the healed
tendon were only 70% of that of the pre-injured tendon (32, 33).

The development of new treatments is imminent. In this
review, we introduce various therapies’ research progress and
achievements in recent years from various aspects.

TREATMENT OF TENDON INJURIES

The first-line treatment options are different facing acute and
chronic tendon injuries. The main purpose of chronic tendon
injury treatment is to reduce pain, mainly through local or
systemic anti-inflammatory drugs, while treatment of acute
tendon injuries aims to repair broken tendons with surgical
techniques (3, 34, 35).

In terms of tendon treatment, the management of minor
injuries may be relatively straightforward and a combination of
moderate rest and/or medical intervention is usually enough.
Surgery is considered the last resort for tendon disease. The
type and location of the injury determine the outcome of
reconstruction surgery (3). There are many suture techniques
including four-strand cross-lock repair, U-shaped repair, four-
strand Kessler type repair and etc. The four-strand cross-lock and
U-shaped repair methods may be better (36). Even though, more
than 40% of surgical patients still have complications and limited
functionality after tendon surgery (37–40).

Faced with such situation, it is urgently needed to find out
advanced therapies. Several methods have been investigated to
enhance the healing process including drugs, growth factors, gene
therapy, stem cell therapy, platelet-rich plasma (PRP) therapy,
and tissue engineering.

Drugs
In tendon tears, the ruptured tendons generally do not require
medical treatment. But it seems to be about to change. In
2012, Bryan et al. found that within 6 weeks, compared with
conventional sutures, the tendon repaired with Butyric Acid
(BA)-impregnant suture showed better biomechanical properties
(41). Although the U.S. Food and drug administration has
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not yet approved clinical use, BA is a natural carboxylic acid
that has been proved to enhance angiogenesis in appropriate
concentrations (42). In the early biological healing of tendon
repair, the BA-impregnant suture can improve the biomechanical
strength of repaired tendon, so as to play a protective role in
early rehabilitation. Curcumin contributes to complete tendon
healing not only histologically but also biomechanically. That is
the reason why it may be an additional drug for the surgical repair
of tendon injury (43).

In chronic tendinopathy, the main purpose of drug therapy
is to relieve pain, such as NSAIDs (Non-steroidal Anti-
inflammatory Drugs), but it does not alter long-term outcomes.
However, as one of the drugs, glucocorticoid injection has been
proved to have significant long-term damage to tendon tissue
and cells. A 2014 study showed that the local application of
glucocorticoid had obvious adverse effects on tendon cells in
vitro, including decreased cell viability, cell multiplication as well
as collagen synthesis (44).

Besides, there are also some potential discoveries in recent
years. A study in 2018 showed that tendons could acutely
alter glucose metabolism, increasing glycolysis and lactic acid
synthesis to deal with injury. This study also demonstrated that
lactic acid synthesis inhibitors could promote the recovery of
biomechanical properties of injured tendons (45). In 2017, Tack
et al. demonstrated the role of direct (synthesis rate modification)
and indirect (antioxidant) mechanisms in tendon healing in
animal models by studying the effects of amino acids and
vitamins, effects of amino acids and vitamins (46).

Growth Factors
As mentioned above, growth factors can be used independently
or be involved in other kinds of therapies (47). These growth
factors control tendon healing with the help of many regulators
(2, 48). So far, there is a lot of knowledge about growth factors,
such as TGF-β, bFGF, VEGF (vascular endothelial growth factor),
and PDGF, through various studies both in vivo and in vitro (49).

There are three major isoforms of TGF—β, which is involved
in a variety of cellular pathways (49). It is well-known that
TGF—β is engaged in a series of reactions, including initial
inflammatory response, collagen synthesis, neovascularization
and fibrosis/excessive scar formation (49). TGF—β1 is one
of three isoforms expressed by tenocytes, inflammatory cells
and infiltrating fibroblasts (50, 51). According to the present
understanding, TGF—β1 is closely related to the occurrence
and development of excessive scar formation. It is worth
mentioning that after flexor tendon injury, when TGF—β1
signaling pathway is blocked by antibody or miRNA, the range
of finger movement is improved, but the mechanical strength
of tendon is downregulated (50, 52, 53). Type 2 and type 3 of
transforming growth factor are vital for tendon formation and
have the potential to induce tendon progenitor cells (54, 55).

Basic fibroblast growth factor (bFGF), also known as FGF2,
is a member of heparin-binding growth factor family. As a
single chain polypeptide, bFGF promotes a variety of mitotic and
angiogenic activities (5, 56). FGF2 is related to inflammation, cell
proliferation, angiogenesis and collagen synthesis during tendon
healing (57–62). The role of exogenous FGF in tendon injury

remains controversial. Ectopic FGF2 is considered to be able to
promote cell proliferation and angiogenesis during tendon repair,
but the improvement of mechanical strength is still unclear
(62, 63). However, some studies indicating that exogenous
administration of FGF2 through a fibrin-heparin-based delivery
system cannot improve the mechanical or functional properties
of flexor tendon injury in dogs (60).

The VEGF family comprises several isoforms that linked to
three tyrosine kinase receptors and their isoforms determine
the bioavailability for each receptor (64). During the process
of tendon development, VEGF levels ascend. The presence of
VEGF in human fetal tendon is considered to be the cause
of the differentiation of vascular and non-vascular regions in
the tendon (65). Then VEGF levels descended to a steady state
in the adult Achilles tendon (66). The lowest increase level
of VEGF in adults means a long-term overuse tendon injury
(67). It has been confirmed for a long time that the levels of
VEGF increase early during tendon healing. VEGF promotes
neovascularization by stimulating matrix metalloproteinases,
which may degrade connective tissue and enhance angiogenesis
(66, 68–70). Ectopic VEGF delivery can improve the strength
of tension injured Achilles tendon. However, VEGF did not
significantly up-regulate the expression of the collagen gene.
Therefore, it is not necessarily the most critical factor in the
synthesis of collagen during intrasynovial tendon healing, it
just plays a vital role in angiogenesis during the repair and
regeneration of injured tendons.

As a 30-kDa dimer, PDGF contributes to the migration
and proliferation of fibroblasts, tenocytes and mesenchymal
stem cells related to tissue homeostasis (71). PDGF signaling
pathway may be essential to tendon homeostasis. It has been
proved that downregulation of PDGF signal inhibited the normal
growth response of tendon tissue to mechanical stimulation
in adult mice (72). The role of PDGF in tendon development
is not well-understood. In many animal and tendon models,
exogenous delivery of PDGF contributes to the morphological
and biomechanical properties, indicating that PDGF may help to
enhance tendon healing (73–77).

In addition to the above four, many growth factors also play
a role in tendon healing, such as CTGF, IGF and EGF (49).
Moreover, multiple factors can be applied simultaneously to
achieve better results. Recently, growth factors are more likely to
be used in conjunction with gene therapy, cell therapy and tissue
engineering than in isolation.

Gene Therapy
Despite recent medical advances, tendon tissue repair and
regeneration remained a relatively unattainable challenge (78). In
the past few decades, many surgeons and researchers have tried
some methods to accelerate tendon healing and prevent tendon
adhesion, such as biodegradable synthetic biomaterial barrier,
inhibitors and gene therapy (79–83). Among these therapies,
gene therapy is considered as a promising method (84).

Gene therapy is the treatment of disease by introducing a
foreign nucleic acid (such as DNA or RNA) into a specific
cell/tissue. Considering their negative charge and considerable
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size, these molecules require gene vectors to mediate their
transfer (85).

The basic principle of gene therapy in tendon healing is that
when a tendon is damaged, genes critical for collagen production
cannot be activated in time. In addition, genes that cause
excessive scarring during tendon healing may be overexpressed
after injury, leading to an unbalanced tendon healing process.
For more than a decade, the approach behind gene therapy has
been to correct this balance to achieve early healing strength
with the lowest possible adhesion around the tendon after direct
end-to-end surgical repair (86).

Founded on the concept of offering therapeutic gene
sequences, gene transfer procedures can be used to promote
tendon healing, because these gene sequences can persistently
increase the healing response and restore the tendon function
before injury as completely as possible. Due to a deeper
understanding of tendon biology, physiology, pathophysiology
and tendon repair mechanism, there has been researches for the
advantages of gene therapy (87).

The advantage of gene therapy is that the continuous
expression of genes can increase the endogenous gene products in
target tissues, such as signal molecules and transcription factors
(3). Compared with stem cell therapy, gene therapy has a lower
incidence of immune responses (88). Gene therapy can produce
continuous local production and secretion of proteins. This
distinguishing feature allows the restriction of protein delivery
associated with short half-lives to be bypassed and makes it
possible to regulate the timing of bioactivity cues in tissue sites.
Therefore, gene therapy is a promising approach for tendon
regeneration (78).

As is shown in Figure 1, there are three essential factors in
gene therapy: target gene, gene carrier and target cell. Genes
usually have a large molecular weight and a high negative
charge density, so cell permeability is low, and gene therapy is
limited (89, 90). In addition, the safe and effective delivery of
nucleic acids into tendon tissues still needs to be considered.
Basing on the consideration of biocompatibility and further
improving the efficiency of gene therapy, a variety of vectors have
been developed, including nanospheres, viral vectors and other
delivery systems (91–94).

The selection of gene delivery vectors for tendon tissue repair
and regeneration is an important parameter. Gene delivery vector
dramatically affects the efficacy of gene therapy (95, 96). Many
vectors have been tested for gene therapy, both viral and non-
viral. Generally speaking, viral vectors are efficient in gene
transduction, but there are safety hazards that are caused by virus
insertion mutation and quality control (85, 97, 98). Although
non-viral vectors are relatively safe, there is still an urgent
requirement for them to improve transfection efficiency and
expression of the transgene to be applied in clinical trials (99).

Many viral vectors such as adenovirus, adeno-associated virus
(AAV), and lentivirus have been applied in animals to treat
tendon injuries (100–102). As a typical viral vector, Adenovirus
(Ad) can transduce many dividing and non-dividing cells,
with solid but transient gene expression. Ad carrier is still
the most familiar carrier in clinical trials (103, 104). In 2003,
Ad became the basis for the first approved commercial gene

therapy drug in China. Shenzhen GenTech has developed a
modified Ad carrier Geneticine that encodes the p53 tumor
suppressor gene and has been approved to treat head and neck
cancer. Because of the lack of available information on clinical
outcomes, the outcomes associated with this therapy remain
controversial (105, 106). Although Ad is typical in clinical trials,
it has several fundamental limitations. First, proteins in the
viral capsid activate a strong immune response, and second,
cell transduction is dependent on the presence of the CAR
(coxsackie and adenovirus receptor) on the cell membrane, which
leads to preferential hepatocyte transduction after intravenous
injection. Finally, biological activity in the body is limited over
time (107, 108).

Due to the side effects of viral vectors, non-viral vectors
have been paid more and more attention because of their low
immunogenicity, safety, flexibility of chemical design, stability
and high gene capacity. In addition, non-viral vectors are
easily created and chemically altered extensively. Finally and
most importantly, the non-viral vector system is not limited
by the size of the introduced gene molecule (85). Plasmid
DNA (pDNA) is a circular, double-stranded DNA that replicates
independently of chromosomal DNA. Based on the specific
application, pDNA can be easily designed to express one or
more genes. Compared with viral delivery systems, pDNA
offers several advantages, including the ability of plasmids to
hold significant genes (109). PLGA poly(lactic-co-glycolic acid)
nanospheres have been shown to deliver plasmids efficiently
to cultured muscle cells and injured tendons. Nanospheres
ensured the high level of transgene expression in tendons for
at least 6 weeks, and almost no tissue reaction was observed
in tendons. It may be a promising non-viral vector for gene
therapy (110). Nanospheres can achieve efficient gene-targeted
delivery and protect gene sequences from degradation owing to
its subcellular structure, which makes it easy to penetrate into
the cell through endocytosis, enter the cytoplasmic chamber, and
release the contained substances for long, so as to break through
the absorption barrier of cell membrane (111–113). Cationic
lipids and cationic polymers can also be used as non-viral vectors
to carry DNA to form lipoplex and polyplex (114, 115). Many
natural and synthetic polymers have been successfully used as
delivery vectors. Since naturally occurring polymers are isolated
from plant, animal or human tissues, vehicles usually developed
from these polymers have the advantage of reproducing the
critical structure and/or biochemical characteristics of ECM
due to their natural derivation. Therefore, naturally occurring
polymers have the advantages of low immunogenicity, relatively
high abundance and easy processing. Fibrin and collagen are
examples of such polymers (116, 117). Hydrogels and scaffolds
can be formed in a mild manner to encapsulate more sensitive
genetic vectors and cells. Synthetic polymers have the unique
advantages of repeatability and controllable production, allowing
precise operation (117–119). In addition, nuclear targeting
of non-viral vectors can improve transfection efficiency by
the application of SV40DNA-targeting sequences (DTS). DTS
stimulates nuclear entry by binding nuclear localization signals
to transcription factors, thereby encapsulating plasmid DNA and
guiding nuclear entry (85).
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FIGURE 1 | Different vectors in gene therapy and the procedure of gene delivery.

Each vector has its inherent advantages and disadvantages,
but the combination of biomaterial carriers can help
to make up for the defects. Some studies have used
surface coating and/or hydrogel encapsulation to
mask Ad from host immune responses in order to
compensate for the deficiency of viral vector Ad (78).
Some researchers have tried to combine biomaterials such
as fibrin and collagen with physical methods to treat
musculoskeletal injury and have shown the potential of this
approach (120–125).

Integration of biomaterial systems that appear in gene delivery
strategies is central to most MS tissue engineering strategies
and plays a role in the delivery system of both viral and non-
viral vectors (78, 126). These biomaterials offer a combination
of mechanical structure, cell support and biochemical signal
control. In order to achieve this goal, biomaterial structures have
been designed to be similar to natural extracellular matrix in
structures (78).

As is shown in Table 1, gene delivery strategies have
concentrated on sequences that are significant to tendon
healing, such as growth factors, matrix molecules, transcription
factors, anti-inflammatory molecules, and signaling molecules
(145). It has been proved that bFGF and vascular endothelial
growth factor A(VEGFA) are the most effective stimulants
(146, 147). The transfer of bFGF and VEGFA genes
can correct the deficiency of tendon intrinsic healing
ability, and promote tendon healing, respectively (62, 94).
In addition, it is worth mentioning that fibromodulin
may be a good substitute for tendon healing growth
factor (130).

In conclusion, gene therapy is an attractive strategy to
promote tendon healing. The study of adaptive preclinical animal
model has proved the feasibility of using this gene-based therapy
in the treatment of tendon injury, which provides a reasonable
hope for its transformation to patients as soon as possible.

Stem Cell Therapy
In the management of chronic musculoskeletal diseases,
regenerativemedicine is a newmodality which attracts increasing
interest (148, 149). Stem cells have been widely used in
the treatment of musculoskeletal diseases (150, 151). Current
evidence suggests that stem cell therapy is highly effective on
musculoskeletal disorders (152, 153). Stem cells are considered
as cells that have the ability to divide and self-renew over a long
period of time and capable of differentiating in all cell lines (154,
155). Stem cells have been assumed to promote regeneration
during tendon healing (156, 157). The application of stem
cell helps regulate inflammation, organize ECM regeneration,
and promote tissue regeneration over scarring (158, 159).
Identification of cell origin and characterization is necessary to
achieve more effective repair or regeneration (160).

Stem cell-based therapies have attracted massive attention in
the regeneration of defective tissues or organs. At present, stem
cell-based regenerative treatment mainly includes isolation and
screening, in vitro culture and amplification, and transplantation
with or without directional differentiation, which is shown in
Figure 2 (161–164). The success of gene therapy with relevance
to applications for tendon healing can be improved with the role
of the antiaging gene Sirtuin 1 that is critical for healing and
regeneration. The activation of this genes is critical to the success
of stem cell therapy (165–168). However cell transplantation
has encountered many obstacles in therapeutic translation,
including immuno-rejection, pathogen transmission, potential
tumorigenesis, problems related to packaging, storage and
transportation, and tissues in clinical application and regulatory
approval (162, 169–173).

One of the fundamental problems limiting cell-based therapy
is how to deliver cells to their targets and how they are
implanted (174). Stem cells are either injected throughout the
body into the circulation or injected locally at the injury site.
Systemic administration of stem cells is limited by inefficient
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TABLE 1 | Research on gene therapy in recent years.

Year System Gene References

2007 Adenovirus BMP-14 (100)

2008 Adeno-Associated Virus-2 bFGF (94)

2009 Bone marrow-derived mesenchymal

stem cells (BMSCs) transduced with a

type-five, first-generation adenovirus

TGF-β1, VEGF (127)

2010 Mesoporous silica nanoparticles PDGF (77)

2014 Non-viral vectors Scleraxis (128)

2015 Non-viral vectors CXCL13 (129)

2015 Plasmid complexed with histidylated

liposomes.

Fibromodulin (130)

2016 RV retroviruses/LV lentiviruses, shRNA TOB1 (131)

2017 Plasmid Tenomodulin (132)

2018 PLGA nanoparticles bFGF, VEGFA (133)

2019 Gene-Loaded Nanoparticle-Coated

Sutures

bFGF, VEGFA (134)

BMP, bone morphogenetic protein; bFGF, basic fibroblast growth factor; TGF-β1, transforming growth factor-beta 1; VEGF, vascular endothelial growth factor; PDGF, platelet derived

growth factor; CXCL13, chemokine (C-X-C motif) ligand 13.

FIGURE 2 | Two approaches in stem cell therapy. (A) Stem cells are injected directly into the injured tendon. (B) Stem cells are grown in vitro to differentiate into

tenocytes and then injected into the injured tendon.

targeting of the injured area. At the same time, local injection
may additionally do harm to the injured tissue. Because of
implantation problems, survival rate of stem cells after local
injection is low (174). With simple drug administration, tendon
ruptures provide an attractive opportunity to target the site
needed for treatment. Granulation tissue (i.e., the early loose

connective tissue formed between the ends of the broken tendon)
is composed of new capillaries (175). These newly formed
capillaries have special molecular frameworks on surfaces,
targeting ligands binding in an organ-specific manner (176).
Therefore, in the proliferation phase, a random peptide library is
filtered by phage display in vivo on the ruptured Achilles tendon
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and patellar tendon to look for the systemic administration
peptide that is able to home to the injury site (176). At present,
the best vascular peptide can home to damage tendons up to 200
times, and has been successfully used to deliver therapeutic agents
that promote tissue regeneration (176–179). After these vascular
targeting peptides were applied, the delivery and implantation
of MSC to infarcted myocardium increased by four times (179).
Therefore, a sizeable microvascular network resulted from a
strong angiogenesis reaction at the rupture sites of tendons
provides a large number of molecular targets for systemic
administration of ligands, and transports the goods to the injured
tendon (180). Neovascularization is a sign of tendinopathy Since
these vascular targeting peptides can home to ruptured tendons,
the platform for transporting stem cells to tendon injuries by
using vascular homing peptide technology is basically already in
place (174, 179).

There are many kinds of stem cells with different
characteristics. Table 2 lists some of the categories. Some
differences between stem cell populations must be noted.

MSCs have recently been shown to possess more significant
and possibly more crucial therapeutic functions in the injury
response, such as immune modulation and nutritional activity.
Therefore, they are defined as “drugstores” (181). In fact,
they can enter the site of inflammation or tissue damage
and begin to secrete immunomodulatory and nutritional
substances, such as cytokines and growth factors, to rebuild
physiological homeostasis to cope with the environment (181).
Therefore, whether as a direct participant in the process or
the “Drugstore” of bioactive molecules, BMSCs may enhance
tissue repair and regeneration, thus restoring normal intra-
articular homeostasis. These characteristics, together with
the relatively easy isolation and amplification process, make
MSCs have great potential in many clinical applications in
recent years.

In 2003, 6.4 × 105 of autologous bone marrow mesenchymal
stem cells (BMSCs) were transplanted into SDFT of horses
injured by strain for the first time (160). Isolated from bone
marrow, BMSCs are applied and studied most commonly of
all adult stem cells. BMSCs have been proven effective in
regenerating different tissues, including tendons, either on their
own or in combination with scaffolds (182, 183).

Adipose tissue-derivedmesenchymal stem cells (ASCs) are the
most abundant source of mesenchymal stem cells. Additionally,
the higher number of mesenchymal stem cells extracted from
the same amount of fat compared with bone marrow is another
advantage of using ASCs. Because ASCs can produce and
secrete components of ECM and cytokines, ASCs, as the most
potential cells for cell therapy, have attracted much attention
(184). In addition, compared with other mesenchymal stem
cells, ASCs have the highest expression level of tendon ECM
component and can be a hopeful cell source for the treatment
of tendinopathy (185).

A recent study has shown that Tendon-derived MSCs
(TDSCs) also known as tendon stem/progenitor cells (TSPCs)
is an ideal cell type. Compared with other mesenchymal stem
cells, TDSCs can display tendon-like phenotype and express the
most tendon-related markers (186, 187). TSPCs are pluripotent

TABLE 2 | Research’s on tendon stem cell therapy in recent years.

Year Stem cell Strategy References

2015 MSC Hypoxia (135)

2016 TDSC/TSPC Co-culture System (136)

2018 ASC Physical Stimuli (137)

2018 TDSC/TSPC Biomaterial (138)

2019 MSC Growth Factors (139)

adult stem cells involved in tendon healing (188, 189). It has been
reported that TSPCs have clonality, differentiative potential and
express specific surface markers of stemness (190). In addition,
these TSPCs also express tenogenic markers making them a
unique stem cell population. The number of TSPCs decreases
with age, which may be the reason for the high prevalence of
tendinopathies in the elderly (190, 191). In vitro and animal
experiments, TSPCs are capable of differentiating in tenocytes
(136, 192). TSPCs account for about 4% of the total number
of tendon cells, (193). However, their use may be limited
due to donor site lesions, an insufficient number of long-term
cultured cells, and phenotypic drift during in vitro amplification,
expansion is required before injection to in vitro (194).

The clinical potential of embryonic-like stem cell (ESC) to
treat tendon injuries has been revealed, and the non-tumorigenic
bias of these cells remains to be studied in more extended follow-
up studies. Still, they require destruction of embryos to be isolated
(195–197). Moreover, it has been demonstrated that they can
differentiate into tendon cells (4).

Stem cells can be utilized to enhance the repair and
regeneration of injured tendons. Different techniques can
be applied to induce tendon differentiation and a gradual
process can be avoidable to accidental differentiation. As shown
in Table 2, there are many different strategies for tendon
differentiation, such as hypoxia, biomaterials, growth factors,
physical stimuli and co-culture system (198).

Despite many expectations, stem cell therapy has also been
questioned. As is shown in a review in 2017, stem cell therapy
still needs a lot of practice research before clinical application.
Furthermore, there are also concerns about the long-term safety
of stem cell therapy (199).

Platelet-Rich Plasma (PRP)
The application of PRP is based on changing the molecular
environment by providing a super-physiological concentration
of platelets (and optional white blood cells) at the
lesion/pathological site to simulate the initial stage of healing.
The core of PRP research is composed of the molecular
complexity of PRPs and their interactions with different
forms of host tissue. PRP can manipulate and boost healing
if we integrate the molecular knowledge of PRP and healing
mechanism that PRP involved in,. Another layer of complexity,
which is very challenging for researchers, describes the state
of the host tissue: the stage of the disease and the mechanism
of pathological tendon changes with which PRP is obliged to
interact (200). There is such a probability that PRP composed of
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high concentrations of platelets, growth factors and cytokines,
mainly by changing the molecular microenvironment, may
contribute to healing.

One of the early effects of PRP on rats is intermittent
inflammation. The activation of pro-inflammatory TNF alpha
and NFκB pathways following PRP exposure, along with the
expression of genes related to cell proliferation and tendon
collagen remodeling have been observed (201). In chronic tendon
diseases, the induction of acute inflammation may be a crucial
factor in triggering the subsequent regeneration reaction (145).
The inflammatory process seems to be under control of PRP
from one of the key elements, hepatocyte growth factor (HGF).
It is recognized that PRP has anti-inflammatory effect on human
chondrocytes by inhibiting NFκB activation (202).

In the past two decades, PRPs have emerged in different
medical fields as biotherapy for repairing or regenerating
damaged or non-functional tissues. From the beginning, they
have been used by highly expected sports medicine physicians
and orthopedic surgeons to accelerate tissue healing (203).
Anecdotal results from media coverage in elite athletes and other
celebrities have increased the appeal of the public (204).

However, scientific understanding of how PRP works and
clinical evidence to specific indications are not available yet
and the process is time-consuming (200). A recent systematic
review has underlined the controversial results of PRP applied in
different pathologies. The authors assert that, in terms of current
evidence, patellar and lateral elbow tendinopathy are benefited
from PRP treatment, while in the treatment of Achilles tendon
and rotator cuff, it seems that PRP do not help the conservative
treatment or surgery (205). On the other hand, many studies have
shown that PRP is conductive to Achilles tendon and rotator
cuff disease (206, 207). Recently, a trial in the British Medical
Journal (BMJ) disappoints PRP-related researchers reported that
platelet-rich plasma did not provide any benefit after acute
Achilles tendon rupture. PRP as an autologous whole-blood
product composed of high concentrations of platelets, growth
factors and cytokines is extensively used in sports medicine.
The study included 230 adults from 19 British hospitals who
suffered from acute Achilles tendon rupture in the previous 12
days without surgery. Patients were randomly given platelet-rich
plasma injection or placebo and received standard rehabilitation
care. At 24 weeks, there were no differences in tendon function,
patient-reported function, pain, goal achievement, or quality of
life between the two groups (208).

In summary, the future of PRP in tendon pathology remains
open. At least, its role in the early stage of tendon healing has
been proved by basic science studies. Still, a lot of preparation,
for example, the preclinical premise and specific standardized
clinical protocols is needed before it can be used in the
clinical stage.

Tissue Engineering
In 1997, Charles Vacanti Laboratory of the University of
Massachusetts Medical Center created a mouse with the human
ear on its back. The idea of manufacturing renewable tissue
from in vitro has ushered in a new epoch in biomedical
science, which is known as tissue engineering. As is first

TABLE 3 | Research’s on tissue engineering treatment of tendon in recent years.

Year Graft References

2015 Autograft (140)

2015 Xenograft (141)

2015 Allograft (142)

2018 Biomaterial (143)

2020 Scaffold (144)

introduced in 1987, the concept of tissue engineering was
defined to apply the principles and methods of engineering
and life sciences to basically understand the structure-function
relationship of normal and pathological tissues in mammals, and
develop biological substitutes that can restore, keep or improve
function (209).

Tissue engineering is a multidisciplinary approach aimed
at inducing tissue repair, replacement, or regeneration. Tissue
engineering involves using a combination of cells, scaffolds, and
bioactive molecules to produce functional tissue (210).

The torn tissue will be replaced with tendons from other parts
of the body in the early stage, tendons from another person,
tendons from different species, or artificial tendons. As shown
in Table 3, these grafts include autograft, allograft, xenograft
and synthetic grafts (211). The main drawback of autografts is
donor site complications. Allografts and xenografts are limited
by the availability of donor tissues and the potential risk of
immune rejection and pathogen transmission (3). A clinical
trial has shown that the application of xenograft still needs to
reduce its high infection rate (212). Early synthetic grafts have
some disadvantages, such as early re-tear, decrease of mechanical
strength with time, insufficient tissue that grows inward and
graft debris deposition (213). Although the new generation of
grafts shows better performance, the application of these artificial
grafts remains controversial because clinical reports have not yet
reached a unified and precise conclusion (214).

Because of the problems above, there has been increasing
interest in the preparation of tissue-engineered tendons in the
past decade. The concept of tissue engineering is to create a
safe and effective substitute for tissue injured in the biological
environment (215). Tissue-engineered grafts consist of two or
all of the three main components: cells, biomaterials/scaffolds,
and biomolecules (216). The fabrication of an engineered scaffold
is a method of tissue-engineering grafts, which provides a
physical environment to regulate the repair and regeneration of
damaged tissue. Figure 3 shows the preparation and use of the
scaffold. The main function of scaffolds is to offer a physical
environment to regulate the healing and regeneration of injured
tissues (217).

Stem cells are usually implanted into engineered scaffolds
to promote tissue repair and regeneration. Mesenchymal stem
cells are natural cells of tendons, so they are widely used.
Mesenchymal stem cells are easy to obtain from various
tissue sources. Besides, they have the characteristics of anti-
inflammatory, reducing tissue inflammation, secreting a large
number of trophic factors and promote tissue regeneration.
That may explain why they are widely used in tendon and
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FIGURE 3 | Schematic diagram of tissue engineering.

ligament tissue engineering (218–220). Cell secretory products
such as exosomes, secretory bodies and platelet-rich plasma
(PRP) can also be implanted into engineering tissues to improve
the therapeutic effect (189, 221, 222).

CONCLUSION

Tendon is a complex tissue with unique structure, function and
mechanical properties. Damage to this vital connective tissue can
lead to severe pain and disability. For this reason, improving
tendon healing is an urgent need. There are many research
topics in the field of tendon healing and repair. At present,
gene therapy, stem cell therapy and others have made some
achievements, although they are not up to the standard of
clinical application. Although many other studies have focused
on tendon healing, there are still many problems to be clarified
about this complex process.

A recent review found a strong link between cancer and
wound healing (223). Maybe we can further understand of

tendon healing and thus find ways to accelerate tendon healing
from some cancer studies. For example, some signs show that
the temporary closure of the apoptosis regulation pathway can
accelerate regular repair (223).
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