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Abstract: Cryptococcal meningoencephalitis, a disease with poor patient outcomes, remains the most
prevalent invasive fungal infection worldwide, accounting for approximately 180,000 deaths each
year. In several areas of sub-Saharan Africa with the highest HIV prevalence, cryptococcal meningitis
is the leading cause of community-acquired meningitis, with a high mortality among HIV-infected
individuals. Recent studies show that patient disease outcomes are impacted by the genetics of the
infecting isolate. Yet, there is still limited knowledge of how these genotypic variations contribute to
clinical disease outcome. Further, it is unclear how the genetic heterogeneity of C. neoformans and the
extensive phenotypic variation observed between and within isolates affects infection and disease. In
this review, we discuss current knowledge of how various genotypes impact disease progression and
patient outcome in HIV-positive populations in sub-Saharan African, a setting with a high burden
of cryptococcosis.

Keywords: Cryptococcus neoformans; genetic diversity; fungal disease; cryptococcosis; cryptococcal
meningitis; HIV-associated; genotypic; advanced HIV AIDS

1. Introduction

Cryptococcus neoformans causes cryptococcal meningitis (CM) and is a major cause
of mortality throughout the developing world, especially among individuals living with
advanced HIV/AIDS [1]. Cryptococcosis is a common AIDS-defining illness and a leading
cause of mortality among adults with HIV [1]. Despite the advent of antiretroviral therapy,
which drastically reduced the number of HIV cases in the developed world, CM remains a
major problem in resource-limited regions [2].

Due to the burden of HIV in Africa, CM is the most common cause of adult meningitis
in Sub-Saharan Africa, with 70% of all cases of CM globally occurring in sub-Saharan
Africa [1,2]. Survival after cryptococcosis in sub-Saharan Africa is often ≤40% [3,4]. A
number of clinical adverse prognostic markers in HIV-associated CM have been identified,
including high fungal burden at CM diagnosis, poor rate of cryptococcal clearance from
patient cerebrospinal fluid (CSF) during antifungal treatment, and altered mental status
at presentation [5]. Patient-to-patient differences in clinical phenotype likely reflect a
complex interplay between host factors (level of immunosuppression, immune response
phenotype [6]), pathogen virulence [7], and health system factors such as delays in diagnosis
and treatment [8,9]. Furthermore, long-term natural selection of C. neoformans within
individuals by human antimicrobial defenses is proposed to occur [10,11], with the resultant
likelihood that virulence factors will demonstrate natural variation within and amongst
lineages [5].

Previous studies in other pathogenic microorganisms and fungi have shown evi-
dence of genetic lineages associated with strain phenotype and clinical outcome [12,13].
Both multi-locus sequence typing (MLST) [5,14,15] and genome-wide association studies
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(GWAS) [7,16] with isolates from Uganda and Malawi provide the first evidence for dif-
ferences in Cryptococcus neoformans virulence across clades in both humans and mouse
models of cryptococcosis. In other studies analyzing South African clinical isolates, patient
survival was associated with clinical isolate macrophage phagocytosis and mitochondrial
fragmentation [17]. Finally, both small and large-scale variation, including aneuploidy, is
associated with alternate growth phenotypes that may impact the course of infection [18].

2. Molecular Classification of Cryptococcus spp.

Cryptococcus is a genus of basidiomycetous fungi with more than 30 species found
in the environment. Within this genus, a number of species are known to cause human
disease, with the species most commonly associated with human disease being Cryptococcus
neoformans, Cryptococcus deneoformans and the five species that compose the Cryptococcus
gattii species complex (Figure 1) [19]. Recently proposed taxonomy based on molecular and
genetic studies divided the major human pathogenic Cryptococcus species from the original
single Cryptococcus neoformans designation into these seven more clearly defined species.
At present, these seven major human pathogenic Cryptococcus species are sub-divided
into two species complexes: the Cryptococcus neoformans species complex that contains
C. neoformans (serotype A; genotypes VNI, VNII, VNB) and C. deneoformans (serotype D;
genotype VNIV) and the Cryptococcus gattii species complex that contains an additional five
species—C. gattii, C. bacillisporus, C. deuterogattii, C. tetragattii, and C. decagattii (serotypes B
and C; genotypes VGI-IV) (Table 1) [20,21]. The molecular taxonomy of the Cryptococcus
genus is a vibrant area of research that is enhancing our understanding of specific strain
characteristics, including fitness, predilection for certain environmental niches, and associ-
ation with human disease outcomes. Several molecular methods are used for taxonomic
analysis of the C. neoformans and C. gattii species complexes, including restriction fragment
length polymorphism (RFLP), microsatellite fingerprinting, multi-locus sequence typing
(MLST), and whole-genome sequencing (WGS) [22–25]. Genome sequencing has identi-
fied only minor discordance between phylogenies produced using the previously defined
VN/VG clade designations or MLST-defined sequence types (STs); thus, the field largely
uses VN/VG or sequence type as a standardized system to classify genotypes within the
human pathogenic Cryptococcus spp.
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Figure 1. Factors that may contribute to individual isolate variation in Cryptococcus species.
(A) Variation in pathogen genetic diversity. (B) Selection of isolate-specific genetic alterations with
the host or environment. (C) Gene expression variation across isolates.

Most clinical and environmental isolates within the human pathogenic Cryptococcus spp.
are haploid, although diploid and aneuploid isolates are observed [26–28]. Genomes range
in size from 16 to 19 Mb and contain variable numbers of chromosomes. The C. neoformans,
C. deneoformans, and C. gattii species complex reference strains all have 14 chromosomes
along with the mitochondrial genome [29]. The human pathogenic Cryptococcus spp. have
a bipolar mating system encoded by the MAT locus, with strains designated as either
MATa or MATα [30,31]. The two mating types are morphologically similar in appearance
and thus must be distinguished using molecular methods (e.g., PCR, sequence analysis,
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etc.) or by using a mating assay [28,32]. Interestingly, MATα isolates predominate and
this mating type also appears to undergo monokaryotic mating more readily than MATa
isolates, possibly explaining the reason for their increased prevalence [28].

Table 1. Clinically relevant sequence types within the seven human pathogenic Cryptococcus spp.
isolated from sub-Saharan African cryptococcosis patients.

Genus Cryptococcus

Species
C. neoformans Species Complex C. gattii Species Complex

C. neoformans C. deneo-
formans

C.
gattii

C. deutero-
gattii

C. bacil-
lisporus

C.
decagattii

C. tetra-
gattii

Lineages VN1 VNII VNBI VNBII VNIII VNIV VGI VGII VGIII VGIIIVGIV VGIV

Clinically relevant
sequence types
(ST)

2 *
3

4 *
6 *
9 *
23
31
36
39
58

63 *
69
77
80
89

93 *
20
22
90
311
317
379
380
449
450
483

40
42
43
207
208
233
262
334
467
555
576

9
18–21

43
210
245
249
261
263

384–387
392
394
396

409–411
415–417

419
421
424
428
429

432–434
436
438
447
451
460
464
465
472
478
504
537

N/A

11
112
121
160
260
557

578–580

51
58

106
162
208
215
490

5
7
8

12
20
25
31
44
46
75

172
173

321–324
445

59
64
75
79

84–86
89
93

142
164
209

N/A

69
70
221
491
492
493

* Bold indicates several sequence types that are observed frequently among clinical isolates in various
geographical regions.

3. African C. neoformans Strains Have Unique Characteristics

There are a number of possibilities for the high mortality rates observed with African
cryptococcosis. The rates of cryptococcosis in Africa are consistent with HIV prevalence
in this region of the world [1,33], showing a positive association between HIV and the
prevalence of C. neoformans co-infection. However, along with high incidence, mortality
in sub-Saharan Africa is also higher than many other regions of the world. Currently, the
reason for this higher mortality is unclear. Clinical trials performed in Uganda that utilize
the same standard-of-care as in the United States show lower mortality rates compared to
general care, suggesting that clinical practices in sub-Saharan Africa may impact patient
mortality [34–36]. Similarly, flucytosine, which is recommended to be used in conjunction
with amphotericin B, is not available currently in much of sub-Saharan Africa [37,38]. The
regimen of amphotericin B and fluconazole that is typically used in Africa was recently
shown to be inferior to the amphotericin and flucytosine regiment [39,40]. Interestingly,
this study found that the completely oral regimen of flucytosine and fluconazole was
as effective as amphotericin B and flucytosine in African patients [40]. These data were
surprising and suggest that optimal drug treatment strategies for African patients should
be explored further [38].

Whether there is a genetic basis for the high cryptococcosis mortality rates in Africa
is less well defined. Human genetic factors that influence cryptococcosis have been iden-
tified [19,41], but whether these genetic factors could account for the increased mortality
observed in African patients has not been extensively investigated. Instead, early reports
suggest that differences in C. neoformans genotypes could contribute to the high mortality
observed in Africa [42]. A study performed by Litvintseva et al. on isolates from 200 HIV-
seropositive patients in Botswana identified novel genotypes that differed from isolates
found globally and thus were referred to as the VNB lineage. Analyses of mating types in
this population indicated that 12% of these strains possess the MATa mating type, higher
than among non-African isolates [43]. While it was originally proposed that this VNB
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lineage was geographically confined to sub-Saharan Africa, later studies identified VNB
isolates in other regions of the world [43,44]. Interestingly, while the global VNI and VNII
lineages appear to be highly clonal, the VNB lineage is not and led to speculation that
sub-Saharan Africa could be the origin of C. neoformans [5,45].

Importantly, other common sequence types found in Africa can be globally distributed.
For example, the most common sequence type in Uganda, ST93, is also frequently observed
in South America, where it is also associated with high mortality rates [46]. In a study in
South African pediatric patients, the most prevalent sequence type (ST8) was also global.
In South Africa, ST8 was associated with male patients, the isolates exhibited high genetic
diversity, and a high percentage of the strains were diploid [39,47]. In a study carried
out in Yaoundé, Cameroon, 24% of HIV-infected patients with cryptococcal meningitis
co-infections had infection with multiple genotypes [48]. At least two isolates with different
antifungal susceptibilities were identified within a single patient sample, despite lack of
antifungal treatment prior to sample collection [49]. These studies highlight the increased
rates of genetic variability in Africa, even within globally distributed sequence types.
In vivo microevolution has been reported and the frequency of mixed infections in African
patients, whether due to microevolution or co-infection, may be higher than reported
globally [50,51].

4. Disease Manifestations and Epidemiology

Successful disease initiation and progression likely rely on numerous genotypic and
phenotypic factors of both the host and the fungus. More simply, a host must be susceptible
and exposed to a Cryptococcus isolate that is sufficiently pathogenic before disease can
occur. Most human exposure begins with inhalation of aerosolized cells, most likely spores,
from the environment [52] into the lungs where the yeast cells are either cleared by the
immune system or establish a latent pulmonary infection [53–58]. The timing of this
initial environmental exposure to Cryptococcus may vary by geographic region and may
depend on other socio-cultural factors, but by adulthood approximately 70% of people
have developed antibodies to the C. neoformans species complex [59–61].

Infections with Cryptococcus are predominantly classified based on the site of infec-
tion. Clinically, cryptococcosis typically presents as cryptococcal meningitis (CM), although
pulmonary or disseminated cryptococcosis is also frequently observed. Recently, classi-
fication based upon Cryptococcus species complex has also become more prevalent due
to an outbreak of C. deuterogattii in North America and Europe, but a better understand-
ing of the role that Cryptococcus species play in disease epidemiology is needed [62].
While latent pulmonary cryptococcosis is the most common infection due to Cryptococ-
cus, it is predominantly asymptomatic [63]. Cryptococcus is also one of the yeasts most
frequently described as members of the pulmonary mycobiome, as demonstrated in a
study by Rubio-Portillo et al. [64]. Thus, initial pulmonary infection is acquired almost
exclusively from the environment via inhalation of infectious, aerosolized basidiospores or
desiccated yeast cells [52,65,66]. Extra-pulmonary infections are thought to be secondary
to the primary pulmonary infection, even in cases where the latter is not readily evident.
Disseminated cryptococcosis, particularly to the central nervous system (CNS), where it
can produce meningoencephalitis and cryptococcomas during CM, is often observed in
severely immunocompromised individuals. Cryptococcosis is classically seen in patients
with advanced HIV and/or in individuals with CD4+ T-cell counts below 100 [67].

Susceptible hosts may experience an asymptomatic latent pulmonary infection that be-
comes acute pulmonary cryptococcosis (PC) during an immunosuppressive event and/or dis-
seminate throughout the body to the CNS to ultimately cause cryptococcal meningitis [67,68]
Alternatively, in a host that is susceptible upon exposure to the yeast, acute infection may
manifest and disseminate without a latent stage. Current theories propose that many of
the traits that promote Cryptococcus survival within its environmental niche also act as
virulence factors in humans and contribute to fungal survival, disease initiation, immune
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evasion and dissemination of the infection from the lungs to the predominant site of disease
in the brain [69].

In general, Cryptococcus preferentially localizes to the lungs and brain during infection;
however, most organs have been reported as secondary sites of infection (e.g., skin, prostate)
due to dissemination [70–73]. The epidemiology of human pathogenic Cryptococcus spp. has
been studied since the 1980s. Disease due to the C. neoformans species complex is pre-
dominantly observed in immunocompromised individuals, but is also observed in some
individuals that have no known immune deficiencies [74]. The C. gattii species complex, con-
versely, was historically regarded as a pathogen of apparently immunocompetent patients.
However, pre-existing conditions and immunocompromised states, including subclinical
immune defects, are also frequently observed in patients with C. gattii infections [75–77].
Thus, it is unclear whether a better understanding of the subpopulations within each
species will explain the apparent patient variability, or whether the species differences in
clinical presentation are primarily determined by variable host predilections [78–80].

As described in a recent review by Altamirano et al. [46], the various Cryptococcus spp.
also display different disease epidemiology and clinical manifestations. C. neoformans is
the most common species to cause infections globally, accounting for 95% of infections
overall, and 99% of infections in individuals with advanced HIV [81]. While the majority
of C. neoformans infections occur in patients with an immunocompromising condition,
infections by the C. gattii species complex predominantly occur in immunocompetent
individuals [46]. CM is a common disease manifestation in patients with C. neoformans
species complex infections, with over 80% of patients displaying meningitis symptoms [82].
In contrast, CM is less common in C. gattii species complex infections, with patients typically
presenting with pneumonia [79,83]. While rare globally, C. deneoformans infections are more
frequently observed in Europe, often in the context of hybrids with C. neoformans, and in
approximately 14% of infections where skin lesions are observed [84].

While less frequent, a few other species of Cryptococcus have been documented to cause
disease in severely immunocompromised individuals. Cryptococcus laurentii is associated
with fungemia, lung abscesses, and meningitis [85]. Cryptococcus albidus is another very rare
species associated with ocular infections and meningitis [86,87]. Cryptococcus uniguttulatus
is associated with ventriculitis and was first isolated from a human nail [88]. Given that
the vast majority of human infections are caused by C. neoformans, we will predominantly
focus our discussion on this species.

5. Host–Pathogen Interactions during Cryptococcus Infection

Many fungal species kill mammalian tissue culture cells upon in vitro co-culture [89,90].
Surprisingly, Cryptococcus exhibits minimal toxicity to mammalian cells in culture, leading
to the suggestion that growth within mammalian cells may be beneficial for fungal cell sur-
vival or dissemination [91,92]. IFNγ-producing CD4+ T-cells are required for the activation
of myeloid cells, especially macrophages, to enable fungal killing and clearance. However,
macrophages may also act as a reservoir of the fungal yeast cells, shielding them from
host immune detection and thus promoting latent infection or persistent chronic inflamma-
tion [93]. In a previous study, macrophage cell lines with phagocytosed C. neoformans were
capable of growth and cell division, with the fungal cells able to transmit to the daughter
macrophage [94]. These in vitro studies lead to the hypothesis that some C. neoformans
isolates do not produce high levels of cytotoxic factors, promoting their survival within
the phagocyte.

The outcome of the C. neoformans–macrophage interaction is a critical determinant for
the fate of the pathogen and host during infection. The ability of C. neoformans to replicate
inside macrophages correlates with infection susceptibility in animal models [95]. Similarly,
the capacity of C. neoformans isolates to replicate in macrophages is correlated with worse
human clinical outcomes [17,96]. These data suggest that factors and interventions that
modulate macrophage function, especially in patients where adaptive immunity from
T-cell function is impaired, could reduce disease, whereas the capacity of the pathogen
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to efficiently replicate intracellularly could be associated with progression of infection.
Reduced macrophage activation impairs the antifungal capacity of these cells, which in
turn facilitates intracellular Cryptococcus growth [97,98]. Finally, damage to mitochondria,
reduced phagosome maturation, and induction of programmed cell death pathways in
host cells during Cryptococcus infection directly aid in fungal cell survival in vivo and
in vitro [99].

Consistent with these observations, Cryptococcus infections are not associated with
large amounts of tissue necrosis, in contrast to infections caused by other fungal pathogens
such as Aspergillus spp. or Mucorales. Instead, cryptococcosis infections tend to have fea-
tures consistent with a chronic infection, with host death frequently resulting from physical
compression of tissue, such as meningoencephalitis, or the presence of fungal masses, called
cryptococcomas, in the brain that are associated with minimal to no inflammation [97].
The cryptococcomas have a distinctive appearance in magnetic resonance imaging that
are sometimes referred to as “soap bubbles” and are composed of gelatinous pseudo cysts
containing Crytococcus cells with large amounts of capsule polysaccharide. The cryptococ-
comas displace or destroy brain tissue to create the space for the fungal mass. Combined
with the observation that C. neoformans replicates inside host cells, the cryptococcomas may
be the result of progressive lysis of host cells during the host–pathogen interaction [97].
Alternatively, the cryptococcomas may compress surrounding brain tissue [100]. Defects in
the resorption of the cerebrospinal fluid (CSF), thought to be due to its increased viscosity
due to the presence of the capsule polysaccharide being released into CSF, are also known
to cause overwhelming brain edema [101].

These observations lead to the conclusion that C. neoformans infections are associated
with minimal host damage, but several reports indicate that C. neoformans is able to cause
direct damage to host cells and tissues, with the damage attributed to both the fungus and
the host immune response. For example, Immune Reconstitution Inflammatory Syndrome
(IRIS), an exaggerated inflammatory response causing a subset of persons with recent CM
to deteriorate with improving immune function, often occurs in the absence of culturable
fungus and is due to inappropriate immune system activation in response to residual
Cryptococcus antigen [102–107].

The blood–brain barrier (BBB) is a highly selective semipermeable border of endothe-
lial cells that prevents solutes in the circulating blood from non-selectively crossing into
the extracellular fluid of the central nervous system [108]. For Cryptococcus to invade
the central nervous system, it must cross the BBB. Studies have provided evidence that
C. neoformans crosses the BBB using at least three mechanisms—active transcytosis, passive
transcytosis, and within host cells using a Trojan Horse-like mechanism. During active tran-
scytosis, the Cryptococcus cells induce uptake by the BBB endothelial cells, crossing this cell
layer without damaging the BBB integrity [109,110]. Alternatively, in passive transcytosis,
the fungal cells are trapped in the brain capillaries because of their size, resulting in a lesion
that ruptures the capillary and disrupts the BBB integrity [110–112]. In Trojan Horse BBB
penetration, the Cryptococcus cells are first phagocytosed by monocytes or macrophages,
and then are thought to transit across the BBB within the phagocyte [113–115]. It is currently
unclear whether a fourth mechanism for BBB penetration exists that requires an interaction
with host phagocytes, but this interaction does not occur at the BBB [115,116].

Thus, disease is likely a complex balancing act between fungal virulence potential
and host susceptibility [97]. Several mechanisms of host–pathogen interaction come into
play to cause maximum damage during infection. These host–pathogen interactions
have been previously reported to occur at molecular, cellular, tissue and organism levels.
Damage at the molecular level in C. neoformans infections has been shown to be the result
of secretion of various enzymes, such as proteases, nuclease, urease, and phospholipase,
that result in degradation of host molecules, such as antibodies, and/or modification of cell
membranes [97]. At the cellular level, host damage involves modification of host cellular
compartments, fungal cell shape, organelles and accumulation of fungal materials in the cell
leading to cellular damage. At the tissue level, disruption of host intracellular organization
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and accumulation of fungal cells leading to the creation of fungal masses has been reported.
Finally, at the organismal level, damage is due to fungal growth and dissemination and the
host immune response that often leads to intracranial hypertension ending in death [97].
A damage–response framework for Cryptococcus pathogenesis has also been proposed
where disease occurs at one extreme due to lack of appropriate immune response and at
the other extreme when aberrant or excessive host immune responses directly cause host
damage and exacerbate disease [117].

6. C. neoformans Virulence Factors/Mechanisms

Extensively characterized in vitro, the classic Cryptococcus virulence factors include
the polysaccharide capsule, melanin formation, growth at host body temperature, and
secretion of enzymes such as phospholipase, laccase, and urease [10,53]. Many of these
virulence factors are involved in the inhibition of phagocytosis or survival within phago-
cytes [118,119]. Thought to be a result of its role in confounding host defenses, the polysac-
charide capsule has been shown to be a major and essential virulence factor. At least
35 Cryptococcus genes are needed for capsule synthesis [120]. Capsule formation involves
carbohydrate metabolism that turns sugar into the polysaccharide backbone of the cap-
sule [120]. Once the basic polysaccharide backbone is generated within the cell, the capsule
polysaccharide is excreted and attached to the cell wall, requiring at least 40 additional
gene products [120]. Owing to the critical role of capsule in virulence, and the fact that
many genes are involved in capsule synthesis and secretion/attachment, these capsule
genes are under active investigation.

Because the polysaccharide capsule is crucial for virulence and sugars are an important
precursor for capsule formation, sugar intake genes are also associated with virulence.
Recently, researchers have uncovered an important role for a specific sugar alcohol, inositol,
in C. neoformans virulence. Mutant C. neoformans strains deficient in two inositol transporter
genes (ITR1 and ITR3) exhibited a reduced ability to cross the blood–brain barrier both
in vitro and during in vivo animal model studies [111]. Further, a microarray study of the
response of wild-type Cryptococcus cells to inositol treatment revealed overexpression
of genes for breaking down inositol [111]. Studies with itr1a∆ itr3c∆ mutants in a mouse
model of cryptococcosis showed an increased immune response compared to infection
with the wild-type strain [121]. These inositol mutants have decreased capsule production,
indicating that inositol is a critical building block for proper capsule production [121].

In addition to polysaccharide, other cellular components are embedded in the capsule.
Two components of the capsule shown to be important for virulence are mannoproteins
and hyaluronic acid. T-cells obtained from mice immunized with C. neoformans manno-
protein proliferate in vitro when stimulated with mannoprotein in the presence of antigen-
presenting cells (APC). When separated by SDS-PAGE, the fraction with an apparent molec-
ular mass of >60 kDa contains the majority of the stimulatory activity [122]. Cryptococcal
mannoproteins account for a large percentage of the secreted and cell-associated material
from C. neoformans and are thus likely to be encountered frequently during the course of
a cryptococcal infection [115]. In preliminary experiments by Levitz et al., C57BL/6 mice
immunized with cryptococcal mannoproteins are partially protected from a subsequent
intravenous challenge with live C. neoformans [123]. Hyaluronic acid is also embedded in
the capsule and has been shown to be involved in penetration of the blood–brain barrier
and subsequent cryptococcal meningitis [120].

Despite its importance for Cryptococcus virulence, the capsule is not the only virulence
factor. Liu et al. [118] screened 1201 C. neoformans gene deletion strains in a mouse model of
cryptococcosis and identified an additional 40 potential virulence factors that included repli-
cation factors, chromatin regulators, and immune response modulators. In addition, over
38 genes associated with melanin production were identified in a similar study. Melanin is
thought to help protect the cells from oxidative stresses both in the host and in the environ-
ment [124]. The study identified novel genes involved in melanin production in vivo that
were not previously linked to in vitro melanin production or Cryptococcus pathogenesis.
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C. neoformans is also known to secrete a large number of enzymes with the potential to
degrade host molecules [125]. The major enzymes involved in host toxicity are proteases,
urease, phospholipase, and nuclease. C. neoformans can metabolize immunoglobulins
and complement proteins, presumably through degradation by released proteases [126].
Thus, proteases may interfere with host defense mechanisms by cleaving immunologically
important molecules or directly damaging effector cells. Furthermore, cryptococcal serine
proteases promote increased BBB permeability [127], which may facilitate dissemination
and subsequent brain infection.

Although gene deletion studies can test for the requirement of specific genes and
their products in Cryptococcus pathogenesis, natural variation within the Cryptococcus
population can also modulate gene sequences on a finer scale, affecting gene expression,
RNA processing, or the function of the subsequent protein product. The role for fine-scale
genetic differences is exemplified by studies that show differences in virulence between
environmental and clinical isolates, as well as differences in both human and animal model
virulence between clinical isolates within the same STs [128,129]. These results suggest
that fine-scale variation can impact virulence, but studies that use limited sequencing to
differentiate isolates, such as MLST, likely lack the resolution necessary to detect this fine-
scale variation. Instead, whole-genome sequencing approaches will be critical to identify
the role of fine-scale allelic differences, such as SNPs, that impact virulence.

7. C. neoformans Mixed Infection Genetic Diversity and Disease Outcome

To better understand the dynamics of initiation and progression in cryptococcal dis-
ease, it is important to study genetic and phenotypic differences in the context of human
infection to identify the human and fungal risk factors that contribute to pathogenesis
and poor clinical outcomes [19]. Of particular importance is the different clinical pre-
sentations and health outcomes that are associated with pathogenicity and virulence of
Cryptococcus strains with respect to specific genotypes and phenotypes. Genetic diversity
and analyses of susceptibility to antifungals in Cryptococcus isolates from patients are
usually performed on single-colony isolates. The rationale behind this method is that the
vast majority of patients are infected with a single genotype [130,131]. However, several
studies have identified mixed infections in which individuals are infected with multiple
genotypes [132,133]. However, our understanding of changes in Cryptococcus populations
within patients throughout the course of treatment is still poorly understood.

A recent study analyzing five randomly selected single-colony isolates from 13 HIV pa-
tients showed that while the majority of patients harbored a single sequence type, 4 patients
had mixed infections [133]. The patients with mixed infections experienced up to four
shifts in isolate genotype at both the species and ST level across the course of the infection.
This genetic diversity led to the co-existence of up to three Cryptococcus species and four
different STs within the same individual during the infection [133]. An earlier study by
Desnos et al. had similar results. In this study, analysis of between 4–33 single-colony
isolates from each patient, as well as isolates from different organs, revealed mixed infec-
tions with different species or mating type were present in over 18% of the patients [132].
Another study also reported mixed infections within the same patient, with differences
observed using microsatellite genotyping or AFLP fingerprinting [134]. All of these studies
highlight that analysis of several isolates for each patient sample may be necessary to
understand the diversity of genotypes and phenotypes that lead to disease presentation in
patients. Assessment of genetic diversity is important, as studies in the human pathogenic
fungal Candida spp. show that mixed infections can lead to treatment complications or
failures, as well as the emergence of isolates resistant to antifungal drugs [135,136]. It is still
unknown how much of the genetic diversity observed during mixed human Cryptococcus
infections is due to co-infections with multiple different environmental strains or in vivo
micro-evolution due to immune pressure or selection for antifungal drug resistance.
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8. Associations between C. neoformans Genotypes and Clinical Presentation

As a preface to this section, it is important to clearly state that Cryptococcus pheno-
types vary greatly across individual isolates. Differential attributes can be observed in
association with genotype across broad phylogenetic relationship designations such as
species, but also among more narrow designations such as molecular type or sequence type.
For example, broadly comparing the species complexes, C. neoformans primarily causes
infections in immunocompromised individuals, while C. gattii primarily causes infections
in immunocompetent individuals [80]. However, under the umbrella of each species or
sequence type are individual isolates with highly variable phenotypes. For example, some
C. deneoformans clinical isolates exhibit higher virulence in mice than C. neoformans isolates
even though in general C. neoformans isolates tend to cause more disease in both humans
and in mouse models of cryptococcosis [19,46,133] Similarly, while the C. gattii species
complex as a whole is generally associated with causing infection in immunocompetent
individuals, some isolates predominantly cause disease in immunocompromised and
HIV-infected individuals [80].

The mechanism underlying this large amount of individual isolate diversity in the hu-
man pathogenic Cryptococcus spp. remains unknown, but a few possibilities exist (Figure 1).
First, each of the human pathogenic Cryptococcus spp. may have varying degrees of genetic
diversity (for example, non-recombining vs. recombining sub-populations) which endow
isolates with variable phenotypic or physiological attributes that could result in deviation
from the broader species trends (Figure 1A). Alternatively, phenotypic differences between
isolates could be due to micro-evolutionary events occurring in the human host or environ-
mental niche that result in selection of isolate-specific genetic alterations that contribute
to pathogenicity (Figure 1B). Finally, it is also possible that the high variability between
isolates could be due to epigenetic differences between isolates that impact gene expression,
virulence-related molecular functions and biological processes (Figure 1C). Importantly,
even with this variability between individual isolates, MLST and GWAS analyses have
begun to uncover evolutionary genetic relationships associated with human disease as well
as traits associated with Cryptococcus survival within the environment.

Phylogenic studies using clinical isolates have found that various molecular types
within the C. neoformans species, specifically VNB, exhibit vast genetic diversity [46]. In
contrast, some of the species within the C. gattii species complex show minimal evidence of
recombination [5,137,138]. With the advent of GWAS, evolutionary genetic changes that
are associated with disease have been identified [7]. Similarly, a GWAS across cohorts of
VNB isolates revealed sequence differences between clinical and environmental isolates in
genes associated with virulence factors and stress responses [19]. Some of these genetic
differences between molecular types may contribute to Cryptococcus phenotypes and
clinical presentation.

Studies with C. neoformans African isolates have shown that isolates within the VNI
molecular type are phenotypically associated with the production of “micro” cells that
contribute to increased dissemination to the CNS [19,138]. Supporting this notion, patients
infected with VNI isolates often present clinically with neurological symptoms, including
vomiting and increased intracranial pressures [138]. In addition, both the VNI and the
VNB subtypes are associated with differences in capsule shedding that can affect the host
immune response [138]. For example, the VNB clade is associated with fever, whereas
VNI is not. Interestingly, patients infected with VNB isolates have negative associations
with neck stiffness and diastolic blood pressures but are positively associated with lumbar
puncture opening pressures (increased intracranial pressures). Similar to VNI, VNB are both
associated with lower CD4 counts, in agreement with the general trend of C. neoformans
causing infection in immunocompromised patients [138]. In addition to cryptococcal
meningitis, patients with VNB infections also tend to present with skin lesions and have
higher mortality [5].

Sequence types (STs) have also been shown to influence infection through differences
in phenotype, patient mortality and other clinical parameters of disease. Initial evidence of
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a relationship between host mortality and STs was observed among C. neoformans isolates
collected during the Ugandan Cryptococcal Optimal ART Timing (COAT) trial [14]. The
COAT isolates were categorized into three “virulence groups” based on human survival
time and virulence in an animal model of cryptococcosis: (1) high virulence (ST93, ST40,
ST31); (2) intermediate virulence (ST5, ST77, ST93); and (3) low virulence (ST5, ST40,
ST31) [14]. Additional studies show that differential clustering of STs by severity of viru-
lence phenotype is linked to an evolutionary divergence between the genetic sequences of
the isolates [15]. For instance, clustering genetically similar clinical isolates into nonredun-
dant evolutionary “burst groups” identified an association between ST93 mortality and
immune response. In this analysis, Wiesner et al. [15] found that the ST93 Burst group 1
and Burst group 2 were associated with high patient mortality, while Burst group 3 had
greater patient survival [15]. In addition, they found that Burst group 1 was also associated
with increased capsule shedding, a known virulence factor in Cryptococcus [15].

Similarly, a study carried out in Zimbabwe demonstrated that C. neoformans genotypes
demonstrated a high level of genetic diversity by microsatellite typing, and 51 genotypes
within the molecular types VNI, VNB and VNII were identified. This study demonstrated
that C. neoformans in Zimbabwe has a high level of genetic diversity when compared to
global isolates [50]. Furthermore, genetic analysis showed that Cryptococcus strains found
in Southern Africa represent a hotspot of genetic diversity. By combining this genetic data
with microbiological analysis to assess virulence traits, the authors showed that genetic
diversity is associated with differences in Cryptococcus phenotype. Finally, the authors
analyzed detailed patient clinical data and showed that one genetic lineage (VNB) is
significantly associated with survival [5].

To identify the specific single nucleotide polymorphisms (SNPs) or insertions/deletions
(INDELs) that underlay this genetic diversity, Gerstein et al. performed the first genome-
wide association study (GWAS) using Ugandan C. neoformans clinical isolates in 2019. This
GWAS investigated genetic differences between ST93 isolates that were associated with
patient outcome (Figure 2). The authors identified 145 non-synonymous SNPs and indels
associated with 40 genes. Surprisingly, only two of these genes were previously known to
be virulence determinants [7]. The fact that the majority of polymorphisms identified in this
study were not in the canonical virulence factors highlights that the factors characterized to
date allow Cryptococcus to be a pathogen, but that other undefined factors/genes differen-
tiate isolates with high virulence from those with low virulence in humans. Finally, Clark
et al. leveraged clinical, in vitro growth and genomic data for 284 C. neoformans isolates in
a more recent GWAS to identify clinically relevant pathogen variants within patients with
HIV-associated cryptococcosis in Malawi [46,137] (Figure 2).

These investigators also found both small and large-scale variations, including aneu-
ploidy, which may impact the course of infection. Genes impacted by these variants were
involved in transcriptional regulation, signal transduction, glycolysis, sugar transport, and
glycosylation. The study went on to show that growth within the CNS was reliant upon gly-
colysis by using an animal model, and likely impacts patient mortality via CNS burden [18].
This study illustrates links between genetic variation and clinically relevant phenotypes,
shedding light on survival mechanisms within the CNS and pathways involved in clinical
persistence [7,18] Taken together, these findings demonstrate that there are associations
between virulence traits (capsule phenotype and host mortality) and groups of STs that are
genetically related [19].
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9. Conclusions

Patient outcome depends on the interaction between the pathogen and the host. In
sub-Saharan Africa, cryptococcal meningitis predominates as the cause of AIDS-related
mortality. While it is known that the C. neoformans genotype impacts patient outcome,
the main mechanisms underpinning this interaction are still not well understood. Un-
derstanding the mechanisms used by C. neoformans to facilitate virulence and adaptation
to the host is necessary to better predict disease severity and establish proper treatment
strategies. Importantly, we note that few of the studies elucidating these mechanisms, and
using African isolates and patient data, were actually performed in African basic science
laboratories. Thus, there remains a critical need to build the basic science infrastructure
in Africa that will facilitate the rapid translation of these studies on the mechanism of
Cryptococcus virulence into new strategies for clinical care.
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