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Abstract

Background: Although inflammation within adipose tissues is known to play a role in metabolic syndrome, the causative
connection between inflamed adipose tissue and atherosclerosis is not fully understood. In the present study, we examined
the direct effects of adipose tissue on macro-vascular inflammation using intravital microscopic analysis of the femoral
artery after adipose tissue transplantation.

Methods and Results: We obtained subcutaneous (SQ) and visceral (VIS) adipose tissues from C57BL/6 mice fed normal
chow (NC) or a high fat diet (HF), then transplanted the tissues into the perivascular area of the femoral artery of recipient
C57/BL6 mice. Quantitative intravital microscopic analysis revealed an increase in adherent leukocytes after adipose tissue
transplantation, with VIS found to induce significantly more leukocyte accumulation as compared to SQ. Moreover, adipose
tissues from HF fed mice showed significantly more adhesion to the femoral artery. Simultaneous flow cytometry
demonstrated upregulation of CD11b on peripheral granulocyte and monocytes after adipose tissue transplantation. We
also observed dominant expressions of the inflammatory cytokine IL-6, and chemokines MCP-1 and MIP-1b in the stromal
vascular fraction (SVF) of these adipose tissues as well as sera of recipient mice after transplantation. Finally, massive
accumulations of pro-inflammatory and dendritic cells were detected in mice with VIS transplantation as compared to SQ, as
well as in HF mice as compared to those fed NC.

Conclusion: Our in vivo findings indicate that adipose tissue stimulates leukocyte accumulation in the femoral artery. The
underlying mechanisms involve upregulation of CD11b in leukocytes, induction of cytokines and chemokines, and
accumulation of pro-inflammatory cells in the SVF.
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Introduction

Abdominal obesity has been shown to be strongly related to

systemic inflammatory state, including the development of vascular

diseases and metabolic complications such as dyslipidemia,

hypertension, and diabetes mellitus. Recent studies have provided

ample evidence to support the importance of low-grade but

sustained inflammation in this process. Adipose tissue produces a

wide variety of pro-inflammatory cytokines and chemokines,

including IL-6 and monocyte chemoattractant protein-1 (MCP-1).

These locally produced cytokines recruit immune cells such as

monocytes/macrophages, lymphocytes, and dendritic cells (DCs)

toward adipose tissues, which aggravate systemic inflammation.

Simultaneously, macrophages recruited to adipose tissues then

produce pro-inflammatory cytokines or chemokines to further

develop and sustain the inflammatory status. This inflammatory

cascade in turn may advance atherosclerosis in the large artery.

As previously reported, the phenotypic variety of macrophages

is quite diverse, and dependent upon the properties of inflamma-

tion and activation in situ [1–3]. In the stromal vascular fraction

(SVF) of adipose tissues, macrophages are generally classified into

M1 (F4/80+/CD11c+) or M2 (F4/80+/CD11c2) state [4–7].

Classically activated M1 macrophages, induced by proinflamma-

tory mediators such as lipopolysaccharide, secrete high levels of

proinflammatory cytokines (TNFa, IL-6, IL-12) [8–10]. In

contrast, alternatively activated M2 macrophages induced by

exposure to IL-4 and IL-13 secrete high levels of anti-

inflammatory cytokines [11–13]. Therefore, the balance between

these 2 types of macrophages can regulate the inflammatory status

of adipose tissues. In a more recent study, another inflammatory

M1 macrophage with a high level of CD11b was identified in the

SVF of adipose tissues obtained from individuals who consumed a

high fat diet (HF), which correlates with the inflammatory status

seen in obese individuals [14–15].

Given the close connection between adipose tissue and

inflammation, it is critical to assess the role of adipose inflammation

in vascular dysfunctions such as atherosclerosis. However, it is not

known whether a direct link between inflammation in adipose tissue
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and that in vasculature is present in the context of atherosclerosis. In

the present study, we used a real-time imaging device to visualize

vascular inflammation in mice and were able to document that

inflammatory adipose tissue directly induces vascular inflammation,

as manifested by leukocyte recruitment to the femoral artery. Our in

vivo findings provide critically important evidence of a mechanistic

link between obesity and atherosclerosis.

Materials and Methods

Animals
Male C57BL/6J mice (7 weeks of age; day 0) were obtained

from Oriental Yeast (Tokyo, Japan), and fed with normal chow

(NC) (Clea Japan, Inc., Japan) or a high fat diet (HF) (20% tallow,

1.25% cholesterol, Clea Japan, Inc., Japan). Both food and water

Figure 1. Leukocyte adhesive interactions in arteries of mice with transplanted adipose tissue. Shown are representative images from
A: sham operated mouse, B: skeletal muscle muscle (SM) transplanted mouse, C: subcutaneous adipose tissue (SQ) transplanted mouse, and
D: visceral adipose tissue (VIS) transplanted mouse. E: The numbers of adherent cells were quantitated as described in Methods. Values are shown as
the mean 6 SEM of 10 mice in each group. *P,0.01 vs. sham operation group, #P,0.01 vs. SQ group.
doi:10.1371/journal.pone.0019871.g001
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were provided ad libitum. The all animal experiments were

approved by the ethical committee for animal experimentation of

Tokyo Medical and Dental University, Tokyo and conducted

according to the institutional guidelines.

Adipose tissue transplantation
We transplanted 0.05 g of subcutaneous (epidermal adipose

tissue, SQ) or visceral (epididymal adipose tissue, VIS) adipose tissue

and skeletal muscle (anterior compartment of the hind limb muscle)

harvested from donor mice (day 0, 7 weeks of age) into the

perivascular area of the right femoral artery of recipient mice (day 0,

7 weeks of age). In the experiments using HF-feeding, adipose tissue

was taken from mice under HF or NC for 18 weeks and transplanted

to the recipient mice at 7 weeks of age (HF 18w, NC 18w).

Intravital microscopy
Intravital microscopic (IVM) examination of the contralateral

femoral arteries was performed 1 week after adipose tissue

transplantation, as described previously [16–17]. In brief, mice

were anesthetized with pentobarbital and mechanically ventilated

so as to maintain a normal acid-base balance. Rectal temperature

was kept at 36.0–37.0uC with a heating pad and infrared heat

lamp. After injection of rhodamine 6G chloride [Molecular Probe;

0.3 mg/kg in 300 ml of PBS (2)] into the right femoral vein, the

left femoral artery was visualized using a fluorescent microscope

(BX51WI, Olympus, Tokyo) equipped with a water immersion

objective (620). Epifluorescence was illuminated by a 100 W

fluorescent lamp source and images were directly captured to a PC

via a CCD camera (CoolSnap HQ, Olympus, Tokyo, Japan).

Each experimental group consisted of at least 8 mice. Serum

samples and injured femoral arteries were obtained and

immediately frozen, then stored at 220uC until the time of study.

In some experiments, a rat anti-mouse CD11b antibody (M1/70,

Southern Biotechnology) and isotype-matched control IgG (rat

IgG2b, k, Biolegend) were intravenously injected (50 mg/mouse)

at 2 hours before IVM analysis.

Figure 2. Leukocyte adhesive interactions in arteries of mice with transplanted adipose tissue from donor mice fed a high fat diet.
Shown are representative images from mice with A: transplanted subcutaneous adipose tissue (HF SQ), B: transplanted visceral adipose tissue (HF
VIS). C, D: The numbers of adherent cells in the vasculature of animals at day 0 and fed NC or HF for 18 weeks from day 0 were quantified as
described in Methods. Values are shown as the mean 6 SEM of 10 mice in each group. *P,0.05 vs. day 0 and NC groups.
doi:10.1371/journal.pone.0019871.g002
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Figure 3. Cytokine and chemokine levels in subcutaneous (SQ) and visceral (VIS) adipose tissue of donor mice at 7 weeks of age
(day 0) and fed a high fat diet for 18 weeks (HF), and recipient serum samples. A, D: IL-6, B, E: MCP-1, C, F: MIP-1b Those levels were
quantified by ELISA. Values are shown as the mean 6 SEM of 6 mice in each group. *P,0.05 vs day 0 SQ group.
doi:10.1371/journal.pone.0019871.g003
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Image analysis
Leukocyte adhesion was clearly visualized on the anterior half of

the vessel portion facing the objective. All images were analyzed

using an image analysis program (Meta morph) in accordance with

the manufacturer’s protocol, as previously described [16–17]. In

brief, the number of adherent cells (i.e., those that did not move for

3 sec during the 1 minute recording period) was counted along the

region of interest (ROI), a 1006100-mm rectangle segment of the

vessel, and expressed as the number of adherent cells/104/mm2 of

the vessel surface.

Quantification of inflammatory cytokines and
chemokines by ELISA

To detect the levels of inflammatory cytokines and chemokines

in serum of recipient mice transplanted adipose tissue of mice at 7

weeks of age (day 0) or fed HF diet for 18 weeks (HF 18w) and

adipose tissue removed from donor mice at day 0 or fed HF diet

for 18 weeks (HF18w), we conducted ELISA assays. Anti-mouse

IL-6 (Endogen), and MCP-1 (R&D) and MIP-1b (R&D)

monoclonal antibodies in PBS were adsorbed in microtiter-plate

wells overnight at room temperature. Plates were washed with

0.02% Tween 20 in PBS and blocked with 5% normal goat

serum in PBS for 1 hour at room temperature, then washed 3

times with 0.02% Tween 20 in PBS. Samples of murine serum

and lysates from subcutaneous or visceral adipose tissue were

added to the wells, and incubated for 1 hour at room

temperature. After washing the plates 3 times, biotinylated anti-

mouse IL-6 (Endogen), MCP-1 (R&D), and MIP-1b (Life Span

Biosciences) monoclonal antibodies were diluted with PBS, and

added to each well. After 1 hour of incubation at room

temperature, horseradish peroxidase-streptavidin was added and

the plates were incubated at room temperature for 30 minutes.

After another wash, immunoreactive protein was developed by

addition of tetramethylbenzidine peroxidase substrate. After

30 minutes, the reaction was stopped by addition of 0.6 N

H2SO4, and absorbance was measured at 450 nm. A sample

concentration was also obtained for comparison with use of a

standard curve.

Flow cytometric analysis of circulating leukocytes
To detect the expression intensity of cell surface CD11b and

intracellular oxidative stress, white blood cells were prepared from

2 recipient mice per each condition (sham, SQ, and VIS) by

hemolyzing whole blood. The cells were incubated with anti-

mouse CD11b (Serotec, USA) for 45 minutes on ice, followed by

an FITC-conjugated secondary antibody (R&D Systems, Inc.,

USA) for 45 minutes on ice, and finally incubated with

dihydroethidium (DHE) (1:250) for 25 minutes. After 3 washings,

fluorescence activity was detected from cell fractions containing

5000 cells using a FACS caliber at 480 nm (CD11b) or 580 nm

(DHE), and the data were analyzed with CellQuest software

(Becton Dickinson). When fluorescence activity was detected, data

was obtained for granulocytes and monocytes using gating

definitions as previously reported [18–19].

Flow cytometric analysis of cell population in stromal
vascular fraction of adipose tissue

The stromal vascular fraction (SVF) of adipose tissue was

isolated from SQ and VIS adiose tissue of donor mouse at 7 weeks

of age (day 0) or fed HF diet for 18 weeks (HF 18w). The obtained

adipose tissue was minced and incubated in PBS with heparin

(5 U/ml) for 30 seconds to remove circulating blood cells. Next,

the suspension was centrifuged at 10006 g for 8 minutes and

collected adipose tissue was incubated with type 2 collagenase in

Tyrode’s buffer (137 mM NaCl, 5.4 mM KCl, 1.8 mM CaCl2,

0.5 mM MgCl2, 0.33 mM NaH2PO4, 5 mM HEPES, 5 mM

glucose). The digested adipose tissue solution was centrifuged at

10006 g for 8 minutes, and pellets containing SVF were

resuspended in PBS and filtered through a 36-mm nylon mesh,

then washed twice. Isolated cells were incubated with anti-mouse

antibodies (FITC-F4/80, PE-CD11c, Alexa488-CCR7, Bio Leg-

end; CD11b, Alexa647-CD86, Alexa647-CD204, Serotec) for

45 minutes on ice. After 3 washings, fluorescence activity was

detected from 5000 cell fractions using a FACS caliber and the

data were analyzed with CellQuest software (Becton Dickinson).

When fluorescence activity was detected, data were obtained from

monocyte/macrophage and dendritic cells (DCs) subsets using

gating definitions as previously reported [14,18–20]. The cell

population in SVF consisted of M1 (F4/80+/CD11c+) and M2

(F4/80+/CD204+) macrophages, activated monocytes (CD11b+/

CD11c+), and 2 subpopulations of mature dendritic cells (DCs)

(CD11c+/CCR7+, CD11c+/CD86+), as previously reported

[5,8,14,21–27].

Statistical analysis
Data are expressed as the mean value 6 SEM. One-way

ANOVA with a Tukey post-hoc test or two-tailed unpaired t test

was used to estimate statistical significance at p,0.05.

Results

Transplantation of adipose tissue induced leukocyte
adhesion to mouse femoral artery

Seven days after transplantation of either SQ or VIS adipose

tissue, we observed the left femoral artery of recipient mice and

noted that the number of adherent leukocytes was significantly

increased as compared with mice that underwent a sham

operation (Sham) or those with skeletal muscle transplantation

(SM) (Figure 1A, B). Between the 2 types of transplanted adipose

tissues, VIS induced more prominent leukocyte recruitment than

that observed with SQ transplantation (Figure 1C, D).

Transplantation of both types but not sham operation enhanced

leukocyte recruitment in a time-dependent manner (Figure S1).

HF accelerated inflammatory property of mouse adipose
tissue

We then examined the effect of an HF on adipose tissue-

induced vascular inflammation. Mice were fed an HF or NC for

18 weeks (HF18w or NC18w). The HF feeding for 18 weeks

significantly increased body weight as compared to NC (Figure

Figure 4. Determination of expression level of cell surface CD11b and oxidative stress in leukocyte subpopulations [granulocytes
(Gr), monocyte/macrophage (Mo)]. A: Dot plot about gating definition (R1 = granulocyte, R2 = monocyte/macrophage fraction, respectively).
B: CD11b expression was determined by flow cytometry using the anti-CD11b monoclonal antibody as described in Methods. Each line represents
the IgG control, CD11b expression of sham operation group, SQ transplantation group and VIS transplantation group. C: Oxidative stress. DHE-
associated fluorescence activity was determined in leukocyte subpopulations as described in Methods. Each line represents the DHE intensity of the
sham operation group, SQ transplantation group and VIS transplantation group. Data shown are representative of 5 independent experiments.
doi:10.1371/journal.pone.0019871.g004
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S2). Adipose tissues (VIS or SQ) were taken from these mice and

transplanted into recipient mice. IVM analysis of the recipient

mice was carried out 7 days after transplantation. As shown in

Figure 2, SQ prepared from HF18w significantly enhanced

leukocyte recruitment when compared to those from NC 18w.

Interestingly, VIS prepared from HF18w increased leukocyte

recruitment, though not statistically significant.

Levels of inflammatory chemokines and cytokines in
donor adipose tissue, and recipient serum

To elucidate the molecular mechanisms underlying adipose

tissue-induced inflammatory response, cytokine levels were

measured using adipose tissue lysates prepared from mice at day

0 and HF18w. The levels of MCP-1 and IL-6 were significantly

elevated in VIS adipose tissue from HF18w (Figure 3A, B), that

were not changed in SQ from HF18w. The level of MIP-1b was

significantly elevated in both SQ and VIS from HF18w

(Figure 3C). We then examined whether these inflammatory

profiles in donor adipose tissues reflected vascular inflammation

present in the recipient mice. As shown in Figure 3D, E, F, VIS

transplantation increased the serum levels of MCP-1, IL-6, and

MIP-1b in the recipient mice which was not observed in SQ

transplantation. Furthermore, VIS-triggered MIP-1b induction

was significantly enhanced in HF18w.

Integrin expression and oxidative stress in granulocytes
and monocytes after adipose tissue transplantation

Since leukocyte integrin expression plays an important role in

leukocyte adhesion in vivo, we determined the expression of

CD11b in granulocytes and monocytes taken from recipient mice

after adipose tissue transplantation. As shown in Figure 4B,

Transplantation of VIS and SQ, to a lesser extent, enhanced

CD11b expression in both granulocytes and monocytes. In

contrast, DHE-associated oxidative stress was not significantly

altered by either type of adipose tissue transplantation in

granulocytes or monocytes (Figure 4C). To address a causative

role of CD11b in leukocyte recruitment induced by adipose tissue

transplantation, we injected an anti-CD11b blocking antibody

into recipient mouse prior to IVM. The anti-CD11b blocking

antibody significantly reduced the number of adherent cells in

mice transplanted with SQ and VIS group when compared to

control IgG injected group (Figure S3).

Effects of HF on phenotypes of macrophages and
monocytes in SVF

The characteristics of the SVF determine the inflammatory

phenotype of adipose tissues. Therefore, we isolated SVFs from

SQ and VIS, and performed flow cytometric analysis to check the

distribution of M1 and M2 macrophages. The number of

‘‘classical’’ M1 macrophages, characterized by F4/80+/CD11c+,

was increased in VIS as compared to SQ. HF 18w significantly

enhanced the number of M1 macrophages in both SQ and VIS

(Figure 5B). In contrast, the number of M2 macrophages,

characterized by F4/80+/CD204+, was not different between the

SQ and VIS with or without HF feeding (Figure 5C). The total

number of infiltrated macrophages (M1+M2) was not so

dramatically changed in VIS and SQ with or without HF (Figure

S4). HF18w also increased the number of activated monocytes

(CD11b+/CD11c+) in the SVF from SQ and VIS (Figure 5D).

Effects of HF on phenotypes of dendritic cells in SVF
The number of DCs, characterized by CD11c+/CD86+, was

increased in VIS adipose tissue but not in SQ adipose tissues of

mice fed HF for 18 weeks (Figure 6A), while that of those

characterized by CD11c+/CCR7+ was increased in both SQ and

VIS adipose tissues of mice fed HF for 18 weeks (Figure 6B).

When we compared the numbers of macrophages and DCs in the

SVF under these conditions, DCs but not macrophages were

significantly regulated by HF consumption (Figure S5).

Discussion

Novel findings of this study are: (1) visceral adipose tissue

induces more macro-vascular leukocyte adhesion than does

subcutaneous adipose tissue; (2) high-fat diet enhances leukocyte

adhesion and cytokine expression more prominent in subcutane-

ous adipose tissue when compared to those in visceral adipose

tissue; (3) underlying mechanisms of high-fat diet-induced

inflammation in adipose tissue involves recruitment of activated

monocytes, M1 macrophages, and DCs.

Leukocyte adhesion is a multi-step complex cascade induced by

various factors, including activation of adhesion molecules,

production of oxidative stress, and secretion of inflammatory

cytokines or chemokines from pro-inflammatory cells, and a

crucial mechanism for vascular inflammation and following

atherosclerosis. We recently developed a novel IVM system to

directly monitor leukocyte recruitment to athero-prone arteries in

vivo. In the present study, we examined the direct effect of adipose

tissue on macro-vascular inflammation using IVM analysis of the

femoral artery after adipose tissue transplantation, and noted the

possibility of a contribution by adipose tissue in inflammation

caused by diet-induced obesity. Our results showed that

transplantation of adipose tissue induced leukocyte adhesion to

femoral artery with elevation of a pro-inflammatory cytokines and

chemokines such as IL-6, MCP-1, and MIP-1b.

Though obesity and vascular inflammation is closely influenced

one another and lead to develop atherosclerosis, the direct

association between adipose tissue and macro-vascular inflamma-

tion such as leukocyte adhesion to femoral artery was not

experimentally addressed despite previous studies addressing more

chronic effect of adipose tissue in atherosclerosis [28–29]. In this

regard, our data is the first experimental documentation of pro-

inflammatory property of adipose tissue on large blood vessels in

vivo. The transplantation of adipose tissues in dorsal area failed to

induce comparable leukocyte adhesion to those induced by contra-

lateral femoral artery transplantation (data not shown), there may

be a distinct and strong pro-inflammatory mechanisms between

adipose tissue and vasculature.

As previously reported [30–34], high-fat diet induces insulin

resistance and various inflammatory conditions in adipose tissues.

In our study, SQ was more sensitive to enhance high-fat-triggered

leukocyte adhesion when compared to VIC suggesting that the

inflammatory status of SQ adipose tissues may contribute to the

systemic inflammation under diet-induced obesity.

Figure 5. Flow cytometric analysis of monocyte/macrophage subpopulations accumulated in donor mice adipose tissues. A: Dot
plot about gating definition. The representative dot plots show SQ and VIS adipose tissues from mice at 7 weeks of age (day 0) or fed HF diet for 18
weeks (HF), and the relative amounts of B: M1 macrophages (F4/80+/CD11c+), C: M2 macrophages (F4/80+/CD204+), and D: activated monocytes
(CD11b+/CD11c+). Values are shown as the mean 6 SEM of 8 mice in each group. *P,0.05 vs. SQ group, #P,0.05 vs. each day 0 group.
doi:10.1371/journal.pone.0019871.g005
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Figure 6. Flow cytometric analysis of subpopulations of mature dendritic cells (DCs) accumulated in donor mouse adipose tissue.
The representative dot plots show SQ and VIS adipose tissues from mice at 7 weeks of age (day 0) or fed HF diet for 18 weeks (HF), and relative
amounts of A: CD11c+/CCR7+ DCs, B: CD11c+/CD86+ DCs, and C: total DCs. Values are shown as the mean 6 SEM of 8 mice in each group. *P,0.05
vs. SQ group, #P,0.05 vs. each day 0 group.
doi:10.1371/journal.pone.0019871.g006
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The accumulation of M1 macrophages and activated mono-

cytes were prominent in VIS as compared to SQ adipose tissues,

which were further enhanced by high-fat diet. We also

documented an involvement of DCs in adipose tissue inflamma-

tion.

Recently, free fatty acid was shown to recruit DCs from bone

marrow to adipose tissues via Toll-like receptor 2/4 [35–36], while

another study reported that adipose tissue is one of the main

source of DCs in the body [37]. Therefore, DCs may play a major

role in adipose tissue inflammation in close coordination with

macrophages in dyslipidemia. Our data are consistent with these

reports and confirm the importance of monocytes, macrophages

and DCs accumulated in adipose tissues to regulate local

inflammation. These findings extend current understanding of

relationship between adipose tissue and vasculature in the context

of metabolic syndrome and atherosclerosis.

In conclusion, adipose tissue transplantation induced produc-

tion of inflammatory cytokines and chemokines, resulting in

leukocyte adhesion. HF intake enhanced adipose inflammation,

including an increase in inflammatory molecules and accumula-

tion of inflammatory cells such as DCs in adipose tissue. Our

findings suggest that inflammation caused by adipose tissue

directly induces vascular inflammation. Additional studies of the

mechanisms that link adipocyte inflammation to vascular inflam-

mation may shed new light on the complex mechanism of

atherosclerosis.

Supporting Information

Figure S1 Time-dependent analysis of leukocyte adhe-
sive interactions in femoral arteries of mice at 0, 1, 3, 5,
and 7 days after SQ or VIS adipose tissue transplanta-
tion or sham operation. Mice that underwent a sham

operation without transplantation. Values are shown as the mean

6 SEM of 5 mice in each group. *P,0.05 vs. sham group at each

time points.

(TIF)

Figure S2 Body weights of mice before (day 0) and after
feeding with normal chow (NC 18w) or high fat diet (HF
18w) for 18 weeks. *P,0.05 vs. baseline, #P,0.05 vs. NC fed

group.

(TIF)

Figure S3 Effects of anti-CD11b antibody (Ab) in
leukocyte adhesive interactions in arteries after adipose
transplantation. The number of adherent cells were quantitat-

ed as described in Methods. Values are shown as the mean 6

SEM of 4 mice in each group. *P,0.01 vs IgG group.

(TIF)

Figure S4 Flow cytometric analysis of total macrophag-
es accumulated in donor mice adipose tissue. The relative

amounts of the total numbers of macrophages (M1 macrophages +
M2 macrophages) in SQ and VIS adipose tissues from mice at 7

weeks of age (day 0) or fed HF diet for 18 weeks (HF 18w). Values

are shown as the mean 6 SEM of 8 mice in each group. *P,0.05

vs. SQ group, #P,0.05 vs. day0 SQ.

(TIF)

Figure S5 Flow cytometric analysis of total DCs accu-
mulated in donor mice adipose tissue. The relative

amounts of the total numbers of DCs (CD86+ DCs + CCR7+
DCs) in SQ and VIS adipose tissues from mice at 7 weeks of age

(day 0) or fed HF diet for 18 weeks (HF 18w). Values are shown as

the mean 6 SEM of 8 mice in each group. *P,0.05 vs. SQ group,

#P,0.05 vs. each day 0 group.

(TIF)
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