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Abstract: The rapid development of highway engineering has made slope stability an important
issue in infrastructure construction. To meet the needs of green vegetation growth, ecological
recovery, landscape beautification and the economy, long-term monitoring research on high-slope
micrometeorology has important practical significance. Because of that, we designed and created
a new slope micrometeorological monitoring and predicting system (SMMPS). We innovatively
upgraded the cloud platform system, by adding an ARIMA prediction system and data-fitting system.
From regularly sensor-monitored slope micrometeorological factors (soil temperature and humidity,
slope temperature and humidity, and slope rainfall), a data-fitting system was used to fit atmospheric
data with slope micrometeorological data, the trend of which ARIMA predicted. The slope was
protected in time to prevent severe weather damage to the slope vegetation on a large scale. The
SMMPS, which upgrades its cloud platform, significantly reduces the cost of long-term monitoring,
protects slope stability, and improves the safety of rail and road projects.

Keywords: micrometeorological monitoring; ARIMA model prediction; slope; data-fitting system;
atmospheric meteorological

1. Introduction

An important issue in infrastructure construction is slope stability [1–3], which in-
volves ecological restoration, economy and landscaping, and slope protection with vegeta-
tion technology [4–6], usually building green slopes by planting trees and grass between soil
beams and frames. Slope micrometeorology determines the growth trend of the protection
vegetation, which affects the stability of the slope [7].

The national weather station can provide regional meteorological data, but microm-
eteorology is affected by many factors [8], so standardized global weather station data
cannot accurately describe the slope micrometeorological data. Tall trees and vegetation
on the slope can block sunlight and significantly reduce the temperature and humidity
of shaded areas. Extreme weather and an abrupt change in micrometeorology have an
important influence on the growth of slope vegetation [9,10], resulting in its destruction
and a large number of exposed soil and rock slopes. Soil erosion causes an ecological
imbalance, which greatly raises the requirements of slope protection design and ecological
protection [11–14]. Therefore, the long-term monitoring of slope micrometeorology is
important for maintaining slope stability.

Climate monitoring produces a lot of data about climate change, and meteorological
trends. Talakh [15] used climate monitoring information technology, which combined
satellite observation methods with climate station observations, to form an array of input
data by considering their spatio-temporal characteristics, specifically the location, altitude,
and type of the underlying surface. Based on remote-sensing space technology, Liu [16]
combined airborne remote sensing and ground observation to conduct real-time moni-
toring and climate prediction to prepare for extreme weather events in China’s “Belt and
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Road” region. This type of climate monitoring combines weather stations with some new
science and technology that can effectively monitor climate in real time, but it is expensive,
technically complicated and only available to countries and large enterprises. Wild [17] de-
veloped a new temperature and humidity recorder that simulated small herbaceous plants,
from which data were collected every 15 min and stored for 15 years. Holden [18] used a
low-emission radiation shield to measure temperatures in harsh outdoor environments and,
in contrast to a nearby remote automatic weather station, considered this low-cost climate
monitoring suitable for the outdoor monitoring of surface air temperatures. The cost of
this type of climate monitoring instrument is low and is suitable for small enterprises and
individuals to monitor the climate, but the operation is complicated. The data need to be
read and processed manually, which greatly increases the difficulty of the work [19,20], as.
accuracy and actual situations have certain deviation. Therefore, how to reduce the cost
and difficulty of slope micrometeorological monitoring has become an urgent problem to
be solved at the present stage.

Slope micrometeorological monitoring includes a series of data such as air tempera-
ture, humidity, wind speed and soil temperature and humidity [21–23]. Monitoring sensors
and hardware are used to provide valuable information about the behavior of slope plants
and their requirements in real time [24]. For this, wireless sensors do not require cable con-
nections, and this can effectively reduce costs. Through the flexible deployment of wireless
monitoring sensor equipment, it is possible to monitor challenging environments such as
high-tree crowns and high slopes for better data monitoring. Therefore, the wireless sensor
is considered to be one of the most effective instruments for slope micrometeorological
monitoring [25–27].

In this article, we innovated and upgraded the cloud platform system of wireless
sensors. We built an ARIMA time-series prediction system and data-fitting system onto
the sensor cloud platform. The data-fitting system can fit and process meteorological and
slope-micrometeorological data to obtain a comparison between them. The ARIMA pre-
diction system can realize high-precision predictions of partial slope micrometeorological
data, reducing the long-term sensor monitoring time. Compared with traditional climate
monitoring sensors, the SMMPS system monitors and records slope micrometeorology data
in real time and better realizes unmanned automatic monitoring and data analysis, thereby
greatly reducing labor and monitoring costs.

2. Structure of SMMPS

In this part, we describe the structure of the slope micrometeorological sensor process-
ing system in detail. Figure 1 provides the operation process of the SMMPS. It explains
the working principle and operation mode of the slope micrometeorological monitoring
module, and introduces the micrometeorological data-fitting and ARIMA prediction system
of the cloud platform server.

2.1. Slope Micrometeorological Monitoring Module

The slope micrometeorological monitoring module includes a bracket, acquisition
device, monitoring sensors and solar-power supply system. To maintain the stability and
safety of the system, we chose a portable and stable tripod bracket. We fixed the bottom of
the fixing bracket to the top of the slope without shelter manually using expansion screws.
The top of the fixed bracket was equipped with a horizontal vacuole indicator, through
which the bracket was levelled to ensure more accurate monitoring results.

The environmental monitoring system comprises the following sensors: rainfall, soil
temperature and humidity, wind speed, atmospheric temperature and humidity, and
solar radiation. All sensors are GPRS/4G models manufactured by Prysons. The rainfall
sensor model is the pulse type; the diameter of the rain gauge tube is Φ 200 mm; the
rain mouth is made of ABS engineering plastic; and the lag water produces small errors.
The soil temperature measurement range is from −40 to about 80 ◦C; the declaration
accuracy is 0.5 ◦C, and the protection class is IP68. The measurement range of the wind
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speed sensor is 0–70 m/s, and the accuracy is ± 0.2 m/s. The temperature range of the
atmospheric temperature sensor is from −40 to about 60 ◦C; the declaration accuracy is
0.5 ◦C; and the protection class is IP65. The air humidity sensor ranges from 0 to 100%
RH, and the declaration accuracy is ±2% RH. Solar radiation sensor adopts high-precision
photosensitive element, wide spectrum absorption, measuring range of 0–800 W/m2.
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Real-time environmental data are collected through multiple sensors in the monitoring
system. Some sensors collect data for upload to the acquisition instrument through the
data line. Considering the cost saving and data transmission difficulty, other sensors use a
4G LTE module to upload. Compared with the 3G module, LTE takes the OFDMA as the
core, reduces the delay in data uploading, eliminates the wireless network controller, and
adopts a flat network architecture. This structure can make data transmission more stable
and reduce the transmission failure rate. The data uploaded by the sensor will be sent to
the cloud platform server by a wireless communication module at a regular time every day.
The staff can view and download the test data remotely by accessing the cloud platform
server on the client computer. The ARIMA system and micrometeorological fitting system
of cloud platform server are also used to fit data and forecast trends to obtain the long-term
monitoring and prediction of slope vegetation growth environment.

In addition, to ensure that the wireless communication system in the acquisition device
uploads data to the cloud server stably and regularly, the whole monitoring module is
equipped with a solar-powered supply system.

2.2. Cloud Platform Server

The cloud platform server is composed of s micrometeorological analysis system,
ARIMA prediction system and data uploading and storage system.

2.2.1. Micrometeorological Analysis System

The micrometeorological analysis system automatically processes the slope-monitoring
data and the data downloaded from the China Meteorological Data Service Centre (CMDSC),
an authoritative and unified shared-service platform for China’s Meteorological Adminis-
tration to open up its meteorological data resources to domestic and global users.

The analysis system includes a library of fitting models, including linear-regression
Fourier-series models. The correlation between micrometeorology and meteorology can be
analyzed, and then the slope micrometeorology can be predicted according to the CMDSC
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data, and the relationship between meteorological and micrometeorological data can be
established. Finally, the monitoring meteorological data of the CMDSC are input into
the fitting formula to obtain the slope micrometeorological data. In this way, the field
monitoring time and cost is greatly reduced.

The time series of meteorological data has obvious short-term fluctuations with a
period of one day, so temperature data are processed by a central moving average. If
the sampling frequency of the series is k hours per time, a total of n (n = 24/k) times are
collected at each measuring point every day for n number of periods.

After processing the original data with the central moving average formula, a smooth
time series of meteorological and micrometeorological parameters can be obtained, after
which the parameter database is established on the cloud platform server. Finally, the data
in the database are imported into the micrometeorological analysis system for fitting, and
the trend term model and formula can be obtained.

2.2.2. ARIMA Prediction System

The Autoregressive Integrated Moving Average (ARIMA) model, first proposed and
described by Box Jenkins in 1976, is a time-series prediction method that can be applied
to small samples [28]. It is constructed by obtaining a stationary time series through
differences, including an autoregression (AR) model, moving average (MA) model and a
difference method (I). ARIMA showed the advantages of strong robustness, short time-
series predictability, simplicity and practicality, and is widely used in the prediction of
various disciplines [29–31]. ARIMA has three features: p, d and q, where p is the order of
the AR term; q is the order of the MA term; and d is the difference-order model required
to make time series stable. To establish an ARIMA model, the equations of AR and MA
should be determined according to the values of p, d and q. We input meteorological
data collected from CMDSC into Matlab to establish the appropriate ARIMA model and
predicted trends for temperature, humidity and other data. These were combined with the
micrometeorological analysis system, and the trend of each slope in the micrometeorological
database was obtained. Since the test site was located in the eastern coastal area, the
vegetation planted should be able to resist strong typhoons and withstand short-term
strong solar radiation as well as high and low temperature effects. According to the ARIMA
prediction results, it accurately gave 5–10 days advanced warning of severe weather such
as high-temperatures above 35 ◦C, low temperatures below 5 ◦C, strong solar radiation
above 35 MJ/m2 and typhoons with a wind speed greater than 8 m/s at the slope.

The premise of establishing a time-series ARIMA model was to maintain the station-
arity of data so that it could be tested by the autocorrelation function (ACF) and partial
autocorrelation function (PACF). The ACF reflects the correlation between time series data
of two different moments, which are affected by a variety of random variables, whereas the
PACF excludes the influence of other random variables and simply measures the correlation
between current time-series data and the hysteresis value.

After time-series stability is determined, the ARIMA model needs to be established,
and the p and q values ordered. The purpose of model selection is to strike a balance
between the model’s complexity its ability to describe the data set. The Akakpool infor-
mation criterion (AIC) and Bayesian information criterion (BIC) are the most commonly
used methods for determining p and q values of hierarchical models. They are composed
of a model sample number and penalty term. When training the model, an increase in the
number of samples increases the complexity of the model; however, if the model becomes
too complex, overfitting can result, so the penalty term is added to limit over-complexity.
Of the two criteria, the BIC added a larger penalty when the amount of data was large.
Therefore, a better model can be selected by combining the AIC and BIC.

Figure 2 is the operation flow chart of the ARIMA model. According to the specific
flow, a relatively stable ARIMA time-series prediction model of temperature, humidity and
micrometeorological characteristics can be obtained.
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Figure 2. Slope micrometeorological ARIMA model flow chart and judgment formula. Where the lag
k refers to the correlation between the observed data with an interval of k time periods. logL

(
θ̂
)

is the
likelihood function; K is the total number of model parameters; N is the number of observations; ŷi is
the model’s predicted value; yi is the actual value. The established regression model was evaluated
according to the mean absolute error (MAE), mean squared error (MSE) and root mean square
error (RMSE).

The Quantile–Quantile Plot (QQ-Plot) test and Dubin–Watson test were used to carry
out a residual test on the model. QQ-plot added a normal distribution test line to determine
if the sample data fell near the normal distribution line. If it deviated too much from the
straight line, the model was unreasonable. The Dubin–Watson test is a test statistic to
diagnose whether the residual ARIMA model had autocorrelation.

Finally, the prediction accuracy of the ARIMA model was evaluated by the mean
absolute error (MAE), mean absolute percentage error (MAPE), mean squared error (MSE)
and root mean square error (RMSE).

3. Experimental Verification

To validate the accuracy of the SMMPS, we need to apply it to a slope-engineering
project that required long-term micrometeorological slope monitoring. To stabilize the slope,
beautify the environment, and optimize the vegetation scheme with good environmental
adaptability, a slope vegetation protection and micrometeorological monitoring system
was applied.

3.1. Project Summary

We established a micrometeorological monitoring system on a high slope (29◦8′ N,
120◦49′ E) with an elevation difference of 8.2 m and a slope angle of 58.4◦. The experimental
area belongs to the subtropical monsoon climate zone, which has high temperature and rain
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in summer and mild and little rain in winter. It also has good biodiversity: forest, ocean
and wetland ecological systems. The forest is rich in vegetation, and the tall vegetation has
a great influence on the temperature and humidity and solar radiation monitoring; how-
ever, typhoons and rainstorms disturb its stability. Therefore, a project with significantly
different slope micrometeorology and meteorology was selected as the experimental object
to research the practical effect of the SMMPS on engineering.

3.2. System Layout

Figure 3 is a partial diagram of the environmental monitoring system. The environ-
mental temperature and humidity sensor, wind-speed and direction sensor, and solar
radiation sensor in the slope micrometeorological monitoring module were installed on the
top of the slope using a tripod bracket. The surrounding trees affected the monitoring of
solar radiation, wind speed, rainfall and other factors. The atmospheric temperature sensor
was placed at the top, and to accurately monitor soil salinity, temperature and humidity,
a sensor was put inside a 50 mm diameter, 2 m deep hole and covered with soil. The
rainfall sensor was placed at the top of the slope without shelter. The solar-power supply
system consisted of photovoltaic panels, controllers, battery banks, debuggers and DC/AC
inverters. The photovoltaic panels were tilted to the south to maximize energy capture. A
controller protected the charge and discharge of the colloidal battery, which was placed in
a stainless steel box and fixed to the ground. Because it is maintenance-free and has lower
environmental effects, this battery was suitable for the solar-power supply system in the
unattended slope area.
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wireless communication system and solar energy supply system. The facility is located at Hangzhou
Meteorological Station 58,457 (30◦14′ N, 120◦10′ E). (a) Slope micrometeorological environment mon-
itoring system instrument and local schematic diagram. (b) Slope micrometeorological environment
monitoring point layout.
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3.3. Micrometeorological Monitoring Data

We began to monitor the slope micrometeorological data on 26 July 2019 and continued
until 30 August 2020. Monitoring was done every half an hour every day for the long-
term monitoring of the environmental temperature, humidity, wind speed and direction,
rainfall, solar radiation, soil temperature and humidity, and salinity of the slope project.
We plotted an average value of 48 pieces of monitoring data a day into a data graph.
Figure 4 shows that the sensors collected data on soil moisture, dew point temperature,
and solar radiation. To analyze the data better, the atmospheric meteorological data
of Hangzhou Station 58,457 (30◦14′ N, 120◦10′ E) from July 2019 to August 2020 were
collected from the CMDSC. The atmospheric meteorological data was monitored every 3 h,
and the atmospheric data was compared with the slope micrometeorological monitoring
data. Figure 5 shows a comparison of data from the slope micrometeorological sensor
with atmospheric meteorological data, including relative humidity, mean temperature,
accumulated rainfall, and instantaneous wind speed.
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Figure 5. Atmospheric data from the Hangzhou station were collected for one year and the image was
contrasted with the slope micrometeorological data. Each image represents a single meteorological
unit of monitoring data. From top to bottom are relative atmospheric humidity, mean atmospheric
temperature, instantaneous wind speed, and cumulative rainfall.

3.4. Micrometeorological and Atmospheric Data Fitting

Figure 6 shows the fitting image of slope micrometeorological and meteorological data.
The smoothed temperature series as a whole showed a change rule of a quasi-trigonometric
function. After various fitting results, the Fourier series was found to be the best fit. The
Fourier series expansion is expressed as

Tt = a0 +
∞

∑
n=1

[an cos(nωt) + bn sin(nωt)]
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where Tt is the temperature obtained after smoothing ◦C; t is serial number of the data
point, with 00:00 on 26 July 2019 as the first serial number (t = 1) and 00:30 on 26 July as the
second (t = 2) and so on; a0, an, bn, ω was the fitting parameter.
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Figure 6. The data-fitting system of cloud platform server is used to fit the slope micrometeorological
temperature monitoring data and atmospheric temperature data, in which the blue curve represents
the Fourier function fitting curve, and the black represents each data point. (a) Fitting curve and
fitting deviation of slope micrometeorological temperature monitoring data; (b) Fitting curve and
fitting deviation of atmospheric temperature monitoring data.

The micrometeorological slope temperature and air temperature data were put through
Matlab2019 software after the smooth sequence of curve fitting. In Table 1, the meteoro-
logical slope data in first-order Fourier goodness-of-fit (R2) was above 0.95, and the air
temperature data was above 85%. Therefore, the first-order Fourier was used for fitting;
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that is, n = 1. The circular frequencyω of the micrometeorological temperature series was
about 0.0003868, and the circular frequencyω of the atmospheric temperature data series
was about 0.01823, and the goodness of fit R2 was better.

Tt = a + b · cos(ω · t) + c · sin(ω · t)

b · cos(ω · t) + c · sin(ω · t) =
√

b2 + c2 · sin(ωt + ϕ)

Tt(t) = Tm − ∆TR sin(ωt + ϕ)

where, a, b and c are fitting parameters; and Tm = a; ∆TR =
√

b2 + c2; ϕ = tan−1(b/c).

Table 1. First-order Fourier function records fitting parameters of micrometeorological slope temper-
ature data and atmospheric temperature data.

First-Order Fourier
Fitting Parameters a b c ω (Calculate) Tm ∆TR ϕ

Micrometeorological
slope temperature data

24.27
(24.23, 24.32)

9.165
(9.134, 9.196)

−1.224
(−1.348, −1.1) 0.000359 24.27 9.246 −82.39

Atmospheric
temperature data

17.93
(17.42, 18.44)

10.26
(9.712, 10.81)

1.487
(−0.0174, 0.0190) 0.01823 17.93 10.367 81.75

The above formula is the trend-fitting function of the temperature time series. Accord-
ing to the above formula, the smoothed sequence fitting function is

Tt(slope microclimate) = 24.27− 9.246 sin(0.0003868 t− 82.39) R2 = 0.9549

Tt(air data) = 17.93− 10.367 cos(0.01823 t− 81.75) R2 = 0.8681

The relationship between micrometeorological slope trend-fitting function and atmo-
spheric data-fitting function was constructed.

Tt(sm) = 24.27− 9.246 sin

0.0003868
cos−1

(
Tt(ad)−17.93
(−10.367)

)
+ 81.75

0.01823
− 82.39


Due to the disordered fluctuation of hourly variation values of the other atmospheric

meteorological data, the relationship between mathematical functions and meteorology
could not be effectively fitted. Therefore, a linear relationship between meteorological
and micrometeorological data was established, and their linear models are discussed. The
research method was the unitary linear regression model

Y = a + bx

where, a and b are unknown fitting parameters. Set
(
Ta,1, Tµ,1

)
,
(
Ta,2, Tµ,2

)
, · · · ,

(
Ta,n, Tµ,n

)
as samples.

Tµ,i = a + bTa,i i = 1, 2, · · · n

Micrometeorological data and atmospheric meteorological data from 26 July 2019 to
26 July 2020 were taken as samples, in which the trend term Ta of atmospheric meteorology
was x, and the micrometeorological Tµ was y. The correlation equation of the various
meteorological data was as follows:

Relative humidity: Tµ,i(RH) = 30.35 + 0.6565Ta,i (RH) i = 1, 2, · · · , n
Wind speed: Tµ,i(IWS) = 0.4089 + 0.3501Tα,i(IWS) i = 1, 2, · · · , n
Accumulated rainfall: Tµ,i(AR) = −0.08381 + 0.5137Ta,i (AR) i = 1, 2, · · · n

Tµ,i(IWS) = 0.4089 + 0.3501Tα,i(IWS) i = 1, 2, · · · , n
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The above is the correlation between micrometeorological and meteorological data.
Based on this result, if the daily change in meteorological data in the atmosphere were
known, the micrometeorological data of the slope on that day could be preliminarily predicted.

3.5. Prediction Based on ARIMA Time Series

We selected the slope-monitoring micrometeorological temperature as an example
and input it into the ARIMA prediction system. The temperature data of the monitoring
module from 26 July 2019 to 30 July 2019 were downloaded from the cloud platform server
before prediction. The collected data were used to establish a monitoring temperature
database that could can be easily and quickly imported into the software for modeling.

Figure 7 shows the specific process and a series of tests for establishing the ARIMA
time-series monitoring temperature model. First, the stationarity test of ACF and PACF
was carried out on the input monitoring temperature. The ACF image of the monitoring
data showed that the automatic correction value of the sample data was too large, and the
trailing did not tend to 0. Therefore, it was judged that the input monitoring temperature
needed to be differentiated to ensure that the data belonged to stable time-series data, so
the ARIMA model cold be effectively established.
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temperature model include ACF, PACF, AIC, BIC and QQ-plot test images.

After the first-order difference, the non-stationary trend of the model difference image
was eliminated, and all the data oscillated around the mean. At this point, it could be
judged that the slope monitoring temperature data had all been converted into a stable
time series, and the value of d was determined to be 1. The generated model needed to test
the performance of the model by explaining the relationship between variables. We used
information criteria to determine how well the model interpreted the relationship. The p
and q values of the model were determined by using AIC and BIC grading methods. At
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this time, the modeling process was completed, and the p, d and q values of the model
were all determined.

To ensure that the fixed order of the model could accurately predict the future temper-
ature trend, ACF and PACF were used for verification. It could be seen from the verified
images that the automatic correction value of the sample data of the ACF and PACF
images fluctuated slightly around 0 after the first-order difference, and the ACF image
was extremely consistent with the PACF image. Therefore, the fixed order and difference
order of the model were in line with the requirements, and there was no need to make
another difference.

The QQ-plot test and Dubin–Watson residual test were the last tests conducted before
model prediction. A normal distribution line was used as the main annotation position for
QQ-plot test, and the sites with low front-end significance in the figure kept approaching
the normal distribution line. Most of the data values in the middle were close to the straight
line, and the linearity of the residuals of the quantiles followed a linear relationship. We
think this is a reliable predictive model.

Figure 8 shows 28 prediction images of slope temperature monitoring, in which
Figure 8a is the machine learning training data, and Figure 8b is the prediction image
of actual slope temperature monitoring. Through machine learning training for the first
8500 groups of data and simulation prediction, it could be seen that the prediction curve of
machine learning almost completely fit the actual slope monitoring data, and the accuracy
of the prediction was greatly improved through the machine learning of a large amount of
data. Figure 8b shows the comparison images of actual predicted values and monitored
values, in which the blue line represents the machine learning of predicted data; the red
line represents the prediction data of the ARIMA model built by machine; the green line
represents the monitoring data of slope; and the pink area represents the 95% confidence
interval. As can be seen from the figure, the predicted data were basically consistent
with the actual monitoring data, which predicted the rising and falling temperature trend.
Though the prediction data can roughly get the temperature change trend and change
size, it can effectively advance the protection of slope planting vegetation to a certain
extent, and prevent extreme weather conditions from damaging vegetation, which can
affect slope stability.
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4. Discussion
4.1. Meteorological Data Analysis and Siscussion

According to Figures 4 and 5, the comparison between the slope micrometeorological
monitoring data and the CMDSC shows that meteorological data and the slope micromete-
orological monitoring data had the same change trend, which verifies the completeness
and good quality of the slope micrometeorological monitoring module.

From the comparison of daily accumulated rainfall and instantaneous wind-speed
monitoring, the fluctuation of the monitoring data from the CMDSC was significantly
higher than the slope micrometeorological. The daily average temperature and relative
humidity measured from the CMDSC were obviously lower than those measured at for
the slope micrometeorological data. This is because for rainfall and instantaneous wind
speed, slope micrometeorological sensor monitoring was limited to the influence of the
nearby environment. There is a forest ecosystem near the selected experimental site, and
a large number of trees can slow down the wind speed and intercept rainfall to a certain
extent, resulting in significantly larger values measured by the slope micrometeorologi-
cal sensor. The relative humidity and average temperature of the slope were obviously
higher than that of the atmosphere because of the slope soil and forest. The forest has high
relative humidity, and in the daytime, the open-space drop rate of the relative humidity
and average temperature is significantly higher than that of the forest environment where
the sensor is located. Water and heat are difficult to volatilize, and a small part of them
is deposited near the slope, resulting in higher relative humidity and average tempera-
ture monitored by the slope micro-meteorological sensor than those monitored by the
atmospheric weather station.

4.2. Error Analysis of Micrometeorological Fitting System

Table 1 shows the record of fitting parameters of micrometeorological slope tempera-
ture and atmospheric temperature data by a first-order Fourier function. According to the
discussion and analysis of the micrometeorological and atmospheric data-fitting system,
we know from meteorology that the variation cycle of atmospheric temperature is 1 tropic
year—365 or 366 days. Since the slope micrometeorological and atmospheric temperature
change rules are basically the same, the uniform variation cycle of slope micrometeoro-
logical temperature is T = 365 days. Sampling was taken 48 times every day, so the circle
frequencyω = 0.000359 = 2π/(365 × 48), while the circle frequencyω of the actual fitting
was 0.0003868. This was due to the maintenance and inspection of the sensor equipment,
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which meant that the sensor did not normally monitor the micrometeorological data for
several days; therefore, the actual circle frequency was high. We used the actual fitted
circular frequency as the standard value.

Table 2 shows the recorded Fourier function fitting and fitting errors between the two
sets of data. The sum of squares error (SSE), determination coefficient (R-Square) and root
mean square error (RMSE) were used for error analysis. The determination coefficient
represented the quality of the fitting through the change of data. The closer it was to 1, the
stronger the variable of the equation for explaining y, and the better the model fit the data.
The R-square fitting degree of atmospheric data and slope monitoring data was 85% and
over 95%, which was a very good fit for large volume data. From 00:00 on 26 July 2019,
atmospheric temperature data was monitored every four hours and slope data every half
hour, so the amount of atmospheric temperature data was lower than slope temperature
monitoring data. As a result, the SSE for the slope monitoring data was significantly greater
than for the atmospheric data, but the slope monitoring data’s R-square and RMSE were
much better than those of the atmospheric data. This was because the slope monitoring
data of the meteorological measurement time interval was short for such a large amount of
data, so it was obvious that the trend term of the Fourier function fit better.

Table 2. Fourier function is used to fit the fitting error between micrometeorological slope temperature
data and atmospheric temperature data.

First Order Fourier
Fitting Error SSE R-Square RMSE ω (Actual)

Micrometeorological
slope data 3.297e+04 0.9549 1.423 0.0003868

Air data 3150 0.8681 2.946 0.01823

4.3. Error Analysis of ARIMA Prediction System

We present the forecast data and monitoring data in Table 3, and the MAE, MAPE,
MSE, RMSE are shown in Table 4. In this way, the accuracy and merits of the model can be
judged intuitively.

Table 3. ARIMA time series model is used to compare the prediction of slope micrometeorological
monitoring temperature.

Frequency of Slope
Temperature Monitoring

Actual Temperature
Monitoring Value (◦C)

ARIMA Temperature
Prediction Value (◦C)

95% Confidence
Interval Maximum

Predicted Value (◦C)

95% Confidence
Interval Minimum

Predicted Value (◦C)

15,030 32.4 32.46 32.29 32.64
15,031 32.4 32.42 32.16 32.69
15,032 32.3 32.37 32.03 32.73
15,033 32.3 32.33 31.90 32.76
15,034 32.2 32.28 31.78 32.80
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
15,052 32 32.08 30.29 33.03
15,053 32.1 32.13 30.33 33.07
15,054 32.1 32.17 30.35 33.14
15,055 32.2 32.22 30.35 33.16
15,056 32.2 32.24 30.35 33.20
15,057 32.3 32.29 30.36 33.27

It can be seen from Table 4 that the values of the MSE, MAE, RMSE and MAPE of the
slope micrometeorological temperature monitoring data were very small, which indicated
that the slope temperature monitoring data was in good agreement with the predicted
value of ARIMA model with small deviation. This was mainly due to machine-learning
training and the difference of a large amount of data, so the ARIMA model had a good
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optimization effect. Such good prediction results can be effectively combined with the
fitting system. The long-term monitoring and prediction of slope weather station data were
completed with data from the national weather station.

Table 4. ARIMA time series model is used to compare the prediction of slope micrometeorological
monitoring temperature.

Slope Micrometeorological to Predict ARIMA (p,d,q) MSE MAE RMSE MAPE D–W

Prediction of Slope temperature (7,1,7) 0.00671 0.0611 0.082 0.00191 2.0001

5. Conclusions

The slope micrometeorology is usually affected by various environmental factors,
resulting in a partial difference from national atmospheric data. Therefore we developed a
new slope micrometeorological monitoring system. The SMMPS innovates and upgrades
the cloud platform with the addition of an ARIMA prediction system and a data-fitting
system. The whole system can obtain the slope meteorological monitoring data through
the slope micro-meteorological monitoring module in the early stage and finally use the
data-fitting and ARIMA prediction systems to gain advanced warning of danger to the
slope micro-climate, such as from high temperature and low temperature, to protect the
growth of slope vegetation.

Applying the SMMPS to engineering projects, the following conclusions were obtained
through an analysis of the results:

(1) In the early stage, the SMMPS can log into the cloud platform server through the
remote computer client to obtain data that had been automatically monitored and
uploaded by sensors, which do not need to read the data on site, thereby reducing
labor costs.

(2) There was a strong correlation between slope micrometeorological and atmospheric
data, but the fluctuation of some slope micrometeorological factors were much lower
than those of the atmospheric data due to various environmental factors.

(3) The meteorological fitting system of the SMMPS can establish the relationship between
atmospheric meteorological and slope micrometeorological data, so that the slope
does not need long-term sensor monitoring. The system can effectively reduce the
labor and instrument costs of long-term sensor monitoring, and only need CMDSC
data to be input to get the relevant slope micrometeorological data.

(4) The ARIMA prediction module of the SMMPS can accurately predict future slope
meteorological data. It can effectively protect the slope from the advent of harsh
conditions, such as high temperature and low temperatures, which result in further
slope instability or even damage, causing engineering construction delay.

In the following research, we found many areas to be improved, including contin-
uously optimizing the system architecture of the cloud platform server, improving the
accuracy of the data-fitting and ARIMA prediction systems, and providing more methods
for the effective prediction of uncommon events. This requires us to continue to upgrade
and innovate the cloud platform to ensure that the data-fitting system continuously im-
proves the filtering of the uploaded data. To improve prediction accuracy, we also need
to import atmospheric data into the data-fitting system in real time. When the difference
between slope microclimate and atmospheric climate is too large, the automatic feedback
sensor will re-monitor the microclimate, which can greatly reduce interference caused by
systematic errors.

The whole system has been fully applied and run in some projects and has achieved
success and recognition. We also hope to apply the SMMPS to more projects to achieve full
automation and low-cost monitoring.
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