
1 Supplementary methods

1.1 Inferring spatial gene regulation from Smart-seq3D data
Smart-seq3D quantifies (i) the number of Unique Molecular Identifiers (UMIs) ngc of gene g in the cell c, and
(ii) the radial position rc ∈ [0,1] of that cell. From this, we wish to infer the spatial regulation functional fg(r) which
indicates the fractional abundance of mRNAs from gene g in the transcriptome of cells found at position r of the
spheroid.

The challenge in inferring fg from ngc is that ngc is a stochastic quantity: it is related to fg with random
noise due to (i) stochasticity in gene expression and (ii) the single cell transcriptomics sampling process (here by
Smart-seq3xpress) [1, 2, 3].

We address this using probabilistic inference [4]. Specifically, from the Smart-seq3D data ngc and rc, we seek
to determine the likeliest spatial regulation function, parameterized as fg(r) = α + β r + γr2. Here, α = fg(0)
represents the fractional abundance of gene g in cells located in spheroid core. β is the linear spatial regulation trend.
γ represents the quadratic spatial regulation trend. Note that, in this section, we use α,β ,γ instead of a,b,c for the
gene expression in the core a, the linear trend b and the quadratic trend c so as not to confuse the quadratic trend c
with the cell c.

Using Bayes’ theorem, the probability of the parameters α,β ,γ given the Smart-seq3D data ngc,rc can be written
as

P(α,β ,γ|ngc,rc) =
P(ngc,rc|α,β ,γ)P(α,β ,γ)

P(ngc,rc)

Here, P(ngc,rc) does not depend on the parameters α,β ,γ . Because of this, inferring the likeliest parameters α,β ,γ
by maximizing the left side of the above equation can ignore the term P(ngc,rc).

To define P(ngc,rc|α,β ,γ), we initially explored a Poisson distribution

P(ngc,rc|α,β ,γ) =
µngce−µ

ngc!

with mean µ = fg(r|α,β ,γ)Nc with Nc = ∑g ngc the total number of UMIs in cell c, following previous work [3].
However, upon simulating genes from best-fitted distributions, we observed that modeling ngc as a Poisson dis-
tribution underestimates the variance in gene expression. Following previous work on stochasticity in gene
expression [1, 2], we thus model ngc as a negative binomial distribution,
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with σ the variance of gene g. In addition, we employ a flat, non-informative prior on α and Gaussian priors on β

and γ ,
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where k is a constant independent of α,β ,γ . This prior assumes no spatial trend (mean 0) until we see the Smart-
seq3D data and formalizes that most genes have spatial trends smaller than 10−3. The reason for this is that mRNAs
from genes with highest expression have fractional abundance less than 10−3 (Fig. 2a-b). Thus, the difference in
expression between radial positions where the gene is most and least expressed cannot exceed 10−3. We find that
this prior helps stabilize numerical parameter optimization, in particular for genes with too little UMIs to identify
spatial regulation with high confidence levels.

Numerically, we optimize L := logP(ngc,rc|α,β ,γ,σ)+ logP(α,β ,γ) for α,β ,γ,σ one gene at a time using the
Nedler-Mead algorithm implemented in the optim() function of the R software. To facilitate stable convergence to
optimal likelihood, we first maximize L under the constraints γ = 0 (no quadratic trend, only linear trend) and σ = 1
(Poisson distribution). From the resulting optimal (α,β ) as a starting point, we then optimize the full parameter set
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(α,β ,γ,σ) using the same approach. Simulating gene expression using the best-fitted negative binomial distribution
produces spatial UMI counts that faitfully mimick UMI counts observed in the data (Fig. 2).

Only genes with an average of at least 1 UMI per cell are used for inference: genes with an average of less than
1 UMI per cell provide too little data to estimate spatial regulation.

To obtain confidence intervals on the parameters α,β ,γ , we compute the Hessian of the log-likelihood for the
best fitting parameters. The inverse square root of the diagonal terms of the Hessian estimates the standard deviation
of the parameters — the uncertainty on these parameters — following Wilks’ theorem [4].

The standard deviation of the parameters estimated in this fashion is used to compute a p-value to test that the
quadratic and linear trends of each gene is non-zero. For the quadratic trend γ , for example,

p = 2
(
1−Φ(|γ|/σγ)

)
with Φ(x) the cumulative standard Gaussian distribution function. The factor 2 accounts for bi-lateral testing of
upward or downward trends.

To control for the false discovery rate (fdr) in multiple hypothesis testing, we apply the Benjamini-Hochberg
correction to the concatenation of all p-values from all genes. Spatial genes are defined as genes with a log likelihood
L >−7500 (following visual examination of the goodness of fit of genes with different log likelidhoo, Fig. S2a),
a fdr < 10% for either linear or quadratic trends, and at least a 30% difference in gene expression across radial
positions.

1.2 Classifying genes’ spatial expression pattern
We classify genes into core, peripheral, intermediate and extrema spatial expression patterns based on the spatial
regulation function fg(r) = a+br+ cr2 inferred for each gene g. For a core-expressed gene g, fg(r) is maximal in
the core r = 0 and decreases with increasing r. Therefore,

d f
dr

< 0,r ∈ [0,1]⇔ b < 0∧b+2c < 0.

Conversely, for a peripheral gene,

d f
dr

> 0,r ∈ [0,1]⇔ b > 0∧b+2c > 0.

We define a gene expressed in intermediate layers as a gene whose expression peaks at a radial position 1/3 < r∗ < 2/3

d f
dr

∣∣∣∣
r=r∗

= 0,
d f 2

dr2

∣∣∣∣
r=r∗

< 0,1/3 < r∗ < 2/3

which implies
c < 0∧1/3 <−b/2c < 2/3.

Conversely, we define an extrema-expressed gene as a gene with minimal expression at a radial position 1/3 < r∗ < 2/3

d f
dr

∣∣∣∣
r=r∗

= 0,
d f 2

dr2

∣∣∣∣
r=r∗

> 0,1/3 < r∗ < 2/3

which implies
c > 0∧1/3 <−b/2c < 2/3.
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