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Approximately 2% of de novo single-nucleotide variants (SNVs) appear as part of clustered mutations that create multi-

nucleotide variants (MNVs). MNVs are an important source of genomic variability as they are more likely to alter an

encoded protein than a SNV, which has important implications in disease as well as evolution. Previous studies of MNVs

have focused on their mutational origins and have not systematically evaluated their functional impact and contribution

to disease. We identified 69,940 MNVs and 91 de novo MNVs in 6688 exome-sequenced parent–offspring trios from

the Deciphering Developmental Disorders Study comprising families with severe developmental disorders. We replicated

the previously described MNVmutational signatures associated with DNA polymerase zeta, an error-prone translesion po-

lymerase, and the APOBEC family of DNA deaminases. We estimate the simultaneous MNV germline mutation rate to be

1.78× 10−10 mutations per base pair per generation.We found that mostMNVs within a single codon create a missense chan-

ge that could not have been created by a SNV. MNV-induced missense changes were, on average, more physicochemically

divergent, were more depleted in highly constrained genes (pLI≥0.9), and were under stronger purifying selection com-

pared with SNV-induced missense changes. We found that de novo MNVs were significantly enriched in genes previously

associated with developmental disorders in affected children. This shows that MNVs can bemore damaging than SNVs even

when both induce missense changes, and are an important variant type to consider in relation to human disease.

[Supplemental material is available for this article.]

In genomic analyses, single-nucleotide variants (SNVs) are often
considered independent mutational events. However, SNVs are
more clustered in the genome than expected if they were indepen-
dent (Seidman et al. 1987; Amos 2010;Michaelson et al. 2012). On
a finer scale, there is an excess of pairs of mutations within 100 bp
that appear to be in perfect linkage disequilibrium in population
samples (Stone et al. 2012; Harris and Nielsen 2014; Ségurel et al.
2014). Although some of this can be explained by the presence
of mutational hotspots, natural selection, or compensatory mech-
anisms, it has been shown that multinucleotidemutations play an
important role (Schrider et al. 2011). Recent studies found that
2.4% of de novo SNVs were within 5 kb of another de novo SNV
within the same individual (Besenbacher et al. 2016) and that
1.9% of de novo SNVs appear within 20 bp of another de novo
SNV (Schrider et al. 2011).Multinucleotide variants (MNVs) occur-
ring at neighboring nucleotides are the most frequent of all MNVs
(Besenbacher et al. 2016). Moreover, analysis of phased human
haplotypes from population sequencing data also showed that
nearby SNVs are more likely to appear on the same haplotype
than on different haplotypes (Schrider et al. 2011).

Themutational origins ofMNVs are not as well understood as
for SNVs; however, different mutational processes leave behind
different patterns of DNA change that are dubbedmutational “sig-
natures.” Distinct mutational mechanisms have been implicated
in creating MNVs. Polymerase zeta is an error-prone translesion
polymerase that has been shown to be the predominant source
of de novo MNVs in adjacent nucleotides in yeast (Harris and
Nielsen 2014; Zhu et al. 2015; Besenbacher et al. 2016). The
most common mutational signatures associated with polymerase
zeta in yeast have also been observed to be the most common sig-
natures among MNVs in human populations (Harris and Nielsen
2014) and were also found to be the most prevalent in de novo
MNVs in parent–offspring trios (Besenbacher et al. 2016). It has
been suggested that translesion DNA polymerases play an impor-
tant role in the creation of MNVs more generally (Chen et al.
2015; Zhu et al. 2015). A distinct mutational signature has also
been described that has been attributed to the action of APOBEC
deaminases (Alexandrov et al. 2013).

AlthoughMNVs are an important source of genomic variabil-
ity, their functional impact and the selection pressures that oper-
ate on this class of variation has been largely unexplored. In
part, this is because ofmany commonly usedworkflows for variant
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calling and annotation of likely functional consequence annotat-
ingMNVs as separate SNVs (Sandmann et al. 2017).When the two
variants comprising an MNV occur within the same codon—as
occurs frequently given the propensity for MNVs at neighboring
nucleotides—interpreting MNVs as separate SNVs can lead to an
erroneous prediction of the impact on the encoded protein. The
Exome Aggregation Consortium (ExAC) systematically identified
and annotated more than 5000 MNVs that occurred within the
same codon in genes, including some within known disease-asso-
ciated genes (Lek et al. 2016). Although individual pathogenic
MNVs have been described (ClinVar; http://www.ncbi.nlm.nih
.gov/clinvar/), the pathogenic impact of MNVs as a class of varia-
tion is not yet well understood.

Here, we analyzed 6688 exome-sequenced parent–offspring
trios from the Deciphering Developmental Disorders (DDD)
Study to evaluate systematically the strength of purifying selection
acting on MNVs in the population sample of unaffected parents,
and to quantify the contribution of pathogenic de novo MNVs
to developmental disorders in the children.

Results

Identifying and categorizing MNVs

We identified 69,940MNVs transmitted from the 13,376 unaffect-
ed trio parents as well as 91 de novoMNVs in the trio children.We
defined MNVs as comprising two variants within 20 bp of each
other that phased to the same haplotype across >99% of all indi-
viduals in the data set in which they appear (Fig. 1A). This defini-
tion encompasses bothMNVs because of a singlemutational event
and MNVs in which one SNV occurs after the other. The variants
were phased using trio-based phasing, which meant that the abil-
ity to phase the variants was not dependent on the distance be-
tween them, and it also provided an additional layer of quality
assurance by conditioning on the variant being called in both par-
ent and child. MNVs tend to have lower mapping quality than
SNVs, and so, traditional variant filtering criteria based on quality
metrics would potentially miss a substantial number of MNVs.
This also enabled us to use the same filtering criteria for different
classes of variants to ensure comparability. The distance of 20 bp
between variants was selected as we observed that pairs of SNVs
that define potential MNVs are only enriched for phasing to the
same haplotype at this distance (Fig. 1B). De novo MNVs were de-
fined as two de novo SNVs within 20 bp of each other and were
confirmed to be on the same haplotype using read-based phasing.
Because of the small numbers, we were able to filter these by man-
ually inspecting these variants using the Integrative Genomics
Viewer (IGV) (Robinson et al. 2017). Ten of the de novo MNVs
fell within genes previously associated with dominant develop-
mental disorders. These were all validated experimentally using
MiSeq or capillary sequencing.

Differentmutationalmechanisms are likely to createMNVs at
different distances. To capture these differences, we stratified anal-
yses of mutational spectra based on distance between the variants.
The distance between the two variants that make up an MNV will
be denoted as a subscript. For example, adjacent MNVs will be re-
ferred to as MNV1bp. MNVs can be created either by a single muta-
tional event or by consecutive mutational events. For MNVs that
were created by a single mutational event, the pair of variants are
likely to have identical allele frequencies as they are unlikely to oc-
cur in the population separately (we assume recurrent mutations
and reversions are rare). The proportion of nearby pairs of SNVs

with identical allele frequencies that phase to the same haplotype
remains close to 100% even at a distance of 100 bp apart (Fig. 1B).
We canassumethat these variantsmost likely arose simultaneously
and will be referred to as sim-MNVs. The proportion of pairs of
SNVs with different allele frequencies that phase to the same hap-
lotype approaches 50% at around 20 bp. These probably arose con-
secutively and will be referred to as con-MNVs. We observed that
sim-MNVs account for 19% of all MNVs and 53% of MNV1bp. All
de novo MNVs are, by definition, sim-MNVs as they occurred in
the same generation.

We identified 888 trinucleotide variants (trinucleotide sim-
MNVs) that we defined as three SNVs within 20 bp with identical
allele frequencies.Onehundred fourteenof these occurred in three
adjacentnucleotides.WeobservedonedenovotrinucleotideMNV.

B
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Figure 1. Properties of MNVs. (A) Schematic showing how sim-MNVs,
two variants that occur simultaneously, are defined as having two variants
with identical allele frequencies, and con-MNVs, two variants that occur
consecutively, as having different allele frequencies. (B) Proportion of pairs
of heterozygous variants (possible MNVs) that phase to the same haplo-
type as a function of distance separated by sim and con. (C ) The number
of sim-MNVs and con-MNVs by distance between the two variants.
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Analysis of MNV mutational spectra confirms

mutational origins

Differences in mutational spectra across different subsets of MNVs
can reveal patterns or signatures left by the underlyingmutational
mechanism. We analyzed the spectra of both simultaneous and
consecutive MNV1bp, MNV2bp, and MNV3–20bp. For sim-MNVs,
the proportion of variants that fell into these groups were 51%,
12%, and37%, respectively. For con-MNVs,most variantswere fur-
ther away with the proportions being 10%, 7%, and 83% (Table 1;
Fig. 1C). We observed significant differences between the muta-
tional spectra of sim-MNVs and con-MNVs (Supplemental Fig.
S1A,C).

DNA polymerase zeta, a translesion polymerase, is a known
frequent source of de novo MNVs and has been associated with
the mutational signatures GC→AA and GA→TT (Harris and
Nielsen 2014; Besenbacher et al. 2016). These signatures, and their
reverse complements, account for 22% of all sim-MNV1bps
(Supplemental Fig. S1B). These two signatures made up 18% of
the de novo sim-MNV1bps, which is comparable to the 20% of
observed de novo MNVs in a recent study (Supplemental Fig.
S2B; Besenbacher et al. 2016). In the remaining 78% of
sim-MNV1bps, we observed 16 other mutations, after Bonferroni
multiple correction, that were significantly more prevalent in
sim-MNV1bps compared with con-MNV1bps. This suggests that
there are other unidentified mechanisms that are specific to creat-
ing sim-MNVs. The most prevalent sim-MNV1bp that is not attrib-
uted to polymerase zeta is TC>AT, which accounts for 4% of all
sim-MNV1bps. We observed two de novo sim-MNV1bps with this
signature; however, an extensive literature search has not yielded
any possible mechanism behind this mutation.

APOBEC are a family of cytosine deaminases that are known
to cause clustered mutations in exposed stretches of single-strand-
ed DNA. Thesemutational signatures are commonly found in can-
cer and more recently discovered in germline mutations (Roberts
et al. 2013; Pinto et al. 2016). The most common mutation
for sim-MNV2bp is CnC→TnT, where n is the intermediate
base between the two mutated bases, and is ∼8% of mutations
(Supplemental Fig. S1C). They are found primarily in a TCTC>
TTTT or CCTC>CTTT sequence context (Supplemental Fig.
S1D). CC and TC are known mutational signatures of APOBEC
(Alexandrov et al. 2013; Harris 2013; Pinto et al. 2016). However,
the APOBEC signature described previously in germlinemutations
was found in pairs of variants that were a larger distance apart
(10–50 bp). C…C→T…T was also the most prolific mutation in
sim-MNV3–20bp and had a significantly larger proportion of
APOBEC motifs in both variants compared with con-MNV3–20bp

(P-value 0.0056) (Supplemental Fig. S1E). The mutation C…C→
T…T was the most frequent de novo MNV2–20bp (Supplemental
Fig. S2C). However, only three of the 12 de novo MNV2–20bp had
APOBEC motifs.

There were six other mutations that are significantly more
common in sim-MNV2bp compared with con-MNV2bp. The most
prevalent of these is CnG>TnT, which accounts for 3% of
sim-MNV2bp.We did not observe any de novoMNVswith thismu-
tation, and we were not able to attribute a mutational mechanism
after reviewing the literature.

We analyzed the mutational signatures of the set of 114 adja-
cent trinucleotide sim-MNVs and found that the most prevalent
mutation was AAA>TTT (Supplemental Fig. S3); however, we
were not able to establish a possible mutational mechanism.

Mutational signatures in con-MNVs were primarily driven by
CpG sites. In humans, the 5′ C in a CpG context is usually meth-
ylated and has a mutation rate that is approximately 10-fold high-
er than any other context (Duncan and Miller 1980). For con-
MNV2–30bp, the most common mutation is C…C→T…T and is
driven by two mutated CpG sites CG…CG>TG…TG (S1d). For
con-MNV1bps, 24% are accounted for by the mutation CA→TG,
and its reverse complement (S1b). These adjacent consecutivemu-
tationsmost likely came about owing to a creation of a CpG site by
the firstmutation. If the firstmutation creates a CpG, then themu-
tations would be expected to arise in a specific order: CA>CG>
TG. We would therefore expect that the A>G mutation would
happen first and that variant would have a higher allele frequency
than the subsequent C>T. This was the case for 96% of the 1445
CA>TG con-MNV1bps. This was also the case for 96% and
92% of the other less common possible CpG creating con-MNVs
CC>TG and AG>CA. CA>TG is probably the most common var-
iant as it relies on a transition mutation A>G happening first,
which has a highermutation rate compared with the transversions
C>G and T>G. We identified 255 de novo con-MNVs, and 26 of
these were de novo con-MNV1bps. In half of these, the inherited
variant created a CpG site, which was then mutated de novo in
our data.

We also observed that for con-MNV1–3bps that were not as a
result of CpG creating sites, the first variant increases the mutabil-
ity of the second variant more than expected by chance. We com-
pared themedian difference inmutation probability of the second
variant based on the heptanucleotide sequence context before and
after the first variant occurred using a Wilcoxon signed-rank test
(Aggarwala and Voight 2016). The median increase in mutation
probability of the second variant was 0.0002 (Wilcoxon signed-
rank test P-value 9.8 × 10−17).

Misannotation of MNVs

When an MNV occurs within a single codon, the consequence of
thisMNV can be different to the consequences when the two com-
prising variants are annotated separately. We found that for ∼98%
of the intra-codon MNVs that we identified, the consequence
class (synonymous, missense, stop-gained, etc.) of the MNV
was the same as at least one of the SNVs annotated separately.

Table 1. Numbers of MNVs in each category type

MNV type Distance (bp) Intra codon Inter codon Noncoding Total (% of all MNVs)

sim 1 1893 863 3850 6606 (9.4%)
2 243 350 975 1568 (2.2%)
3–20 — 1832 2970 4802 (6.9%)

con 1 1155 735 3923 5813 (8.3%)
2 449 685 2649 3783 (5.4%)
3–20 — 15,316 32,052 47,368 (67.7%)

Total (% of all MNVs) 3740 (5.3%) 19,781 (28.2%) 46,419 (66.4%) 69,940

Pathogenicity of multinucleotide mutations
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For only 1% of the intra-codon MNVs was the consequence class
of the MNV more severe than the separate SNVs. For almost all of
these, the MNV caused a stop-gain. Most intra-codon MNVs re-
sult in a missense change (Table 2), and so, even though one
of the comprising variants is most likely annotated as a missense
separately as well, the MNV can create a different amino acid
change.

Functional consequences of MNVs

The structure of the genetic code is not random. The code has
evolved such that the codons that correspond to amino acids
with similar physicochemical properties are more likely to be sep-
arated by a single-base change (Wong 1975; Amirnovin 1997).
SNVs that result in amissense changewill only alter one of the bas-
es in a codon; however, MNVs that alter a single codon (“intra-co-
don” MNVs) will alter two of the 3 bp. Therefore, they are more
likely to introduce an amino acid that is further away in the codon
table and thus less similar physicochemically to the original amino
acid.Most intra-codonMNVs result in amissense change (Table 2).
Intra-codon missense MNVs can be classified into two groups:
“one-step” and “two-step” missense MNVs. One-step missense
MNVs lead to an amino acid change that could also have been
achieved by an SNV, whereas two-step MNVs generate amino
acid changes that could only be achieved by two SNVs. For exam-
ple, if we consider the codonCAC that codes for histidine (H), then
a single-base change in the codon can lead to missense changes,
creating seven possible amino acids (Y, R, N, D, P, L, Q) (Fig. 2A).
There are one-step missense MNVs within that codon that can
lead to most of the same amino acids (Y,R,N,D,P,L). However,
two-stepmissenseMNVs could also lead to an additional 11 amino
acids that couldnot be achieved by an SNV (F, S, C, I, T, K, S, V, A, E,
G). For some codons, there are also amino acid changes that can
only be created by a single-base change, for this histidine codon
this would be glutamine (Q). These will be referred to as exclusive
SNV missense changes. For this analysis, we only considered sim-
MNVs thatmost likely originated from the samemutational event.
This is because we were primarily interested in the functional ef-
fects ofmutations occurring simultaneously and inwhich the ami-
no acid produced would have changed directly from the original
amino acid to the MNV consequence and not via an intermediate
amino acid.

MNVs can create a missense change with a larger physicochemical

distance compared with missense SNVs

We assessed the differences in the amino acid changes between ex-
clusive missense SNVs, one-stepMNVs, and two-stepMNVs by ex-
amining the distribution of physicochemical distance for each
missense variant type across all codons (Fig. 2B). We used a dis-
tance measure between quantitative descriptors of amino acids

based on multidimensional scaling of 237 physical–chemical
properties (Venkatarajan and Braun 2001). We chose this measure
as it does not depend on observed substitution frequencies, which
may create a bias owing to the low MNV mutation rate making
these amino acid changes inherently less likely. We found that
the median amino acid distance was significantly larger for two-
step missense MNVs compared with one-step missense MNVs
(Wilcoxon signed-rank test, P-value 1.10×10−7). The median dis-
tance for one-step missense MNVs was also significantly larger
from exclusive SNV missense changes (Wilcoxon signed-rank
test, P-value 0.0008) (Fig. 2B–D).

Missense MNVs are on average more damaging than

missense SNVs

If the physicochemical differences between these classes of mis-
sense variants resulted inmore damagingmutations in the context
of the protein, then we would expect to see a greater depletion of
two-stepmissenseMNVs compared with one-stepmissenseMNVs
or missense SNVs in highly constrained genes. We looked at the
proportion of variants of different classes that fell in highly con-
strained genes, as defined by their intolerance of truncating vari-
ants in population variation, as measured by the probability of
loss-of-function intolerance (pLI) score (Fig. 3A). Highly con-
strained genes were defined as those with a pLI score ≥0.9
(Samocha et al. 2014). MNVs that impact two nearby codons (in-
ter-codon MNVs) are likely to have a more severe consequence
on protein function, on average, than an SNV impacting on a
single codon. We observed that the proportion of inter-codon
MNV1–20bps that fall in highly constrained genes (pLI > 0.9) is sig-
nificantly smaller compared with missense SNVs (P-value 0.0007)
(Fig. 3A). For intra-codon MNVs, we saw that the proportion of
two-step missense MNVs observed in highly constrained genes
was also significantly smaller than for missense SNVs (P-value
0.0016). The proportion of one-step missense MNVs was not sig-
nificantly different from either missense SNVs or two-step mis-
sense MNVs. The analysis was repeated using SNVs and MNVs
that were identified by the ExAC, which were subject to different
filtering steps (Lek et al. 2016). The same relationshipwas observed
as the proportion of ExAC two-step MNVs in high pLI genes
was significantly smaller than for ExAC missense SNVs (P-value
9.84×10−6).

We then compared variant deleteriousness across the variant
classes using a combined annotation-dependent depletion
(CADD) score that integrates many annotations such as likely pro-
tein consequence, constraint, and mappability (Fig. 3B; Kircher
et al. 2014). We found that the median CADD score for two-step
missense MNVs was significantly higher than both one-step mis-
sense MNVs (Wilcoxon signed-rank test, P-value 0.00017) and
missense SNVs (Wilcoxon signed-rank test, P-value 2.70×10−8).
Two-step MNV missense had a median CADD score of 22.8 com-
pared with a one-step missense median CADD score of 20.7 and
a SNV missense median CADD score of 20.2.

The proportion of singletons across variant classes is a good
proxy for the strength of purifying selection acting in a population
(Lek et al. 2016). Themore deleterious a variant class, the larger the
proportion of singletons. We found that the singleton proportion
for two-step missense MNVs was nominally significantly higher
compared with missense SNVs (P-value 0.02) (Fig. 3C). The in-
crease in proportion corresponded to an increase of about two in
the interpolated CADD score. This is concordant with the increase
in CADD scores that was computed directly above.

Table 2. Numbers and proportions of consequence types for MNVs
within the same codon

MNV consequence
Sim-MNV (% of all

sim-MNVs)
Con-MNV (% of all

con-MNVs)

Synonymous 10 (0.5%) 5 (0.3%)
One-step missense 815 (38.2%) 814 (50.7%)
Two-step missense 1265 (59.2%) 757 (47.2%)
Stop-loss 2 (0.1%) 4 (0.2%)
Stop-gain 44 (2.0%) 24 (1.5%)
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Estimation of the MNV mutation rate

We estimate the genome-wide mutation rate of sim-MNV1–20bp to
be 1.78× 10−10 mutations per base pair per generation by scaling
the SNV mutation rate based on the relative ratio of segregating
polymorphisms for MNVs and SNVs (Watterson 1975). For this es-
timate, we only used variants that fell into nonconstrained genes
(pLI < 0.1) and noncoding regions to avoid any bias from selection.
We assume that recurrent mutation is insufficiently frequent for
both classes of variation to alter the proportionality between the
number of segregating polymorphisms and the mutation rate.
This estimate is ∼1.6% of the mutation rate estimate for SNVs
and accords with the genome-wide proportions of SNVs and
MNVs described previously (Schrider et al. 2011). We were con-
cerned that the selective pressure on MNVs and SNVs would still
be different in nonconstrained genes and that this might affect
our mutation rate estimate. To see if this was the case, we applied
the same method to estimate the SNV missense mutation rate
across coding region, and found that our estimate was concordant
with that obtained fromusing an SNV trinucleotide contextmuta-
tional model (Samocha et al. 2014).

We also estimated the MNVmutation rate using the set of de
novo MNVs that fell into nonconstrained genes (pLI < 0.1) that
have not previously been associated with dominant developmen-
tal disorders, and obtained a concordant mutation rate estimate of
1.79×10−10 (confidence interval 0.88, 2.70×10−10) mutations per
base pair per generation, very similar to the estimate based on seg-
regating polymorphisms described above.

Contribution of de novo MNVs to developmental disorders

We identified 10 de novo MNVs within genes known to be associ-
ated with dominant developmental disorders (DD-associated) in
theDDD trios (Table 3), which is a significant (Poisson test, P-value
1.03×10−3) 3.7-fold enrichment compared with what we would
expect based on our estimated MNV mutation rate. This enrich-
ment is similar in magnitude to that observed for de novo SNVs

in the same set of DD-associated genes (Fig. 4). We evaluated
whether DD-associated genes are enriched for the primary muta-
genic dinucleotide contexts associated with the signatures of poly-
merase zeta to ensure this observation was not driven by sequence
context. We found that DD-associated genes had a small (1.02-
fold) but significant (proportion test, P-value 1.9 ×10−59) enrich-
ment of polymerase zeta dinucleotide contexts compared with
genes not associated with DD. However, this subtle enrichment
is insufficient to explain the fourfold enrichment of de novo
MNVs in these genes. The enrichment for de novo MNVs remains
significant after correcting for sequence context (Poisson test, P-
value 2.28×10−3).

Eight of the 10 de novo MNVs in DD-associated genes were 1
bp apart, whereas the other twowere 3 and 13 bp apart. All of these
de novo MNVs were experimentally validated in the child (and
their absence confirmed in both parents) using either MiSeq or
capillary sequencing. All 10 MNVs are thought to be pathogenic
by the child’s referring clinical geneticist. Seven of the MNVs im-
pacted two different codons, whereas three fell within the same co-
don, one of which created a two-step missense change. Of those
MNVs that impacted two codons, five caused a premature stop co-
don. We found a recurrent de novo MNV in the gene EHMT1 in
two unrelated patients that bore the distinctive polymerase zeta
signature of GA>TT.

De novo MNVs are underrepresented in clinically reported

variants in DD-associated genes

To assess whether de novoMNVs are being underreported in genes
associated withDD, we downloaded all clinically reported variants
in DD-associated genes from ClinVar (accessed September 2017)
(Landrum et al. 2014; http://www.ncbi.nlm.nih.gov/clinvar/).
We looked at the number of intra-codon missense MNVs in genes
that have at least one reported pathogenic missense mutation.
This was to ensure that missense mutations in that gene would
likely cause DD. We focused on intra-codon MNVs as it is the

BA
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Figure 2. Classification of intra-codon MNV missense mutations. (A) Example of how one-step missense MNVs and two-step missense MNVs are clas-
sified using a single codon “CAC.” Venn diagram shows amino acids that can be created with either a single-base change or a two-base change in the
codon “CAC.” (B–D) Across all codons, the distribution of physicochemical distances for the amino acid changes caused by different types of missense
variants: (B) exclusive SNV missense; (C) one-step MNV missense; and (D) two-step MNV missense. Dashed line indicates the median of the distribution.
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interpretation of this class ofMNV that ismost impacted by failing
to consider the variant as single unit. We calculated the expected
number of pathogenic de novo MNVs in these genes based on
the MNV mutation rate and the number of pathogenic SNV mis-
sense variants reported. We observed a significant depletion of

only 24 reported pathogenic de novo
MNVs comparedwith the expected num-
ber of 52 across 321 genes (Poisson test,
P-value 2.8 ×10−5).

We also looked for clinically rele-
vant SNVs in ClinVar that overlapped
with population sim-MNVs that we iden-
tified in our data.We found one SNV that
had been reported as a stop-gain variant
in the gene AGPAT2. The variant had
been reported as pathogenic and of
uncertain significance for congenital
generalized lipodystrophy type 1 by two
contributors. However, we observe this
variant as anMNV in our data set in three
individuals. The MNV falls within the
same codon and causes a missense as op-
posed to a stop-gain, which decreases its
likelihood of pathogenicity.

MNV mutator phenotype

Five individuals had more than one de
novo sim-MNV. This is significantly
greater than what we would expect as-
suming these arose independently. Using
our estimated MNV mutation rate, the
probability of seeing five ormore individ-
uals in our data set with more than one
MNV is 5.8 ×10−7. The number of MNVs
per person range from two to five de
novo MNVs. These mostly appear on dif-
ferent chromosomes and have different
distances between the pair of variants.
None of the MNVs share the same muta-
tion, and the number of mutations is
too small to pick up on more subtle
similarities in the mutational signatures.
A comparable mutator phenotype has
been observed in other classes of genetic
variation such as CNVs, but, similarly, a
relevant mutational mechanism has
not yet been discovered (Liu et al. 2017).
A larger number of de novo MNVs will
help to uncover possiblemechanisms be-
hind the mutator phenotype.

Discussion

MNVs constitute a unique class of vari-
ant, in terms of both mutational mecha-
nism and functional impact. We found
that 18%of segregatingMNVswere at ad-
jacent nucleotides. We estimated that
19% of all MNVs represent a singlemuta-
tional event, increasing to 53% of
MNV1bp. We estimated the sim-MNV

germline mutation rate to be 1.78×10−10 mutations per base
pair per generation, ∼1.6% that of SNVs.Most population genetics
models assume that mutations arise from independent events
(Harris and Nielsen 2014). MNVs violate that assumption, and
thismayaffect the accuracy of thesemodels. Recent studies suggest

B

A

C

Figure 3. Quantifying the pathogenicity of MNVs. (A) Proportion of variants that fall in genes with pLI
≥0.9 over different classes of variants for both DDD and ExAC data sets. SNVs are green; MNVs, purple.
Lines are 95% confidence intervals. (B) The median CADD score over different classes of variants identi-
fied from DDD data with bootstrapped 95% confidence intervals. (C) Singleton proportion for different
classes of DDD variants. In yellow are SNVs stratified by binned CADD scores with their corresponding
singleton proportions. Lines are 95% confidence intervals.
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that certain phylogenetic tests of adaptive evolution incorrectly
identify positive selection when the presence of these clustered
mutations is ignored (Venkat et al. 2018). Correcting these popu-
lation genetic models will require knowledge of the rate and spec-
trum of MNV mutations. The observation of a possible MNV
mutator phenotype complicates this correction further. We repli-
cated the observations from previous studies that several different
mutational processes underlieMNV formation and that these tend
to createMNVs of different types. Error-prone polymerase zeta pre-
dominantly creates sim-MNV1bp (Harris and Nielsen 2014;
Besenbacher et al. 2016). APOBEC-related mutation processes
have been described to generate MNVs in the range of 10–50 bp
(Alexandrov et al. 2013; Harris 2013; Roberts et al. 2013), but
here we show that an enrichment for APOBEC motifs can be
detected down to MNV2bp. Nonetheless, there remain other sim-
MNVs that cannot be readily explained by either of these mecha-
nisms, and it is likely that other, less distinctive, mutational
mechanisms remain to be delineated as catalogs of MNVs increase
in scale. These future studies should also investigate whether these
MNV mutational signatures differ subtly between human popula-
tions as has been recently observed for SNVs (Harris 2015).
Consecutive MNVs, in contrast, show greater similarity with
known SNV mutation processes, most notably with the creation
and subsequent mutation of mutagenic CpG dinucleotides. The
non-Markovian nature of this consecutive mutation process chal-
lenges Markovian assumptions that are prevalent within standard
population genetic models (Rizzato et al. 2016).

Our findings validated the intuitive hypothesis that MNVs
that impact upon two codons within a protein are likely, on aver-
age, to have a greater functional impact than SNVs that alter a sin-
gle codon. We evaluated the functional impact of intra-codon
MNVs using three complementary approaches: (1) depletionwith-
in genes under strong selective constraint, (2) shift toward rarer al-
leles in the site frequency spectrum, and (3) enrichment of de novo
mutations (DNMs) in knownDD-associated genes in childrenwith
DDs.We showed that intra-codonMNVs also tend to have a larger
functional impact than SNVs and thatMNVmissense changes that
cannot be achieved by a single SNV are, on average, more deleteri-
ous than those that can. This is most likely because they are on
average more physicochemically different compared with amino
acids created by SNVs and are not as well tolerated in the context
of the encoded protein. These “two-step” missense MNVs make
up more than half of all sim-MNVs that alter a single codon. We
also identified 10 pathogenic de novo MNVs within the DDD

study, including both intra-codon and inter-codon MNVs. With
larger trio data sets, we will have more power to tease apart more
subtle differences in pathogenic burden and purifying selection
between different classes of MNVs and SNVs, for example, to test
whether two-step missense de novo MNVs are more enriched
thanmissense SNVs or one-stepmissenseMNVs in developmental
disorders. More data will also allow us to assess the population ge-
netic properties of inter-codon MNVs.

Our findings emphasize the critical importance of accurately
calling and annotatingMNVswithin clinical genomic testing both
to improve diagnostic sensitivity and to avoid misinterpretation.
We observed that pathogenic de novo MNVs are significantly
underrepresented and possibly misannotated among reported

Table 3. De novo MNVs that fall in genes associated with developmental disorders

Decipher
ID

Distance
between
variants Chr Positions Gene Ref Alt

Consequence (first
variant/second

variant)

MNV falls
within/between

codon
Clinician pathogenicity
annotation on Decipher

261423 1 5 161569244, 161569245 GABRG2 CC TT Missense (two-step) Within codon Likely pathogenic (full)
292136 1 14 29237129, 29237130 FOXG1 TC CT Missense (one-step) Within codon Likely pathogenic (full)
280956 1 19 13135878, 13135879 NFIX GC TT Missense (one-step) Within codon Likely pathogenic (partial)
270803 1 3 49114312, 49114313 QRICH1 GC AA Stop-gain/missense Between codon Likely pathogenic (partial)
258688 1 5 67591021, 67591022 PIK3R1 TA GC Missense/missense Between codon Likely pathogenic (full)
274482 1 16 30749053, 30749054 SRCAP GG AT Synonymous/

stop-gain
Between codon Definitely pathogenic (full)

274606 1 9 140637863, 140637864 EHMT1 GA TT Missense/stop-gain Between codon Likely pathogenic (full)
274453 1 9 140637863, 140637864 EHMT1 GA TT Missense/stop-gain Between codon Definitely pathogenic (full)
260753 13 6 157454286, 157454297 ARID1B G..C T..G Missense/stop-gain Between codon Definitely pathogenic (full)
270916 3 1 7309651, 7309654 CAMTA1 G..G A..A Missense/missense Between codon Likely pathogenic (partial)

(Chr) Chromosome; (Ref) reference allele; (Alt) alternate allele.

Figure 4. Enrichment of de novoMNVs in DDD study. Ratio of observed
number of de novo MNVs versus the expected number of de novo MNVs
based on the estimate of the MNV mutation rate. Compared with enrich-
ment of SNVs in DD genes in consequence classes synonymous, missense,
and stop-gain.
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pathogenic clinical variants in ClinVar, indicating that current an-
alytical workflows have diminished sensitivity for identifying
pathogenic MNVs. In a recent comparison of eight different vari-
ant calling tools, it was noted that only two callers, FreeBayes
and VarDict, report two mutations in close proximity as MNVs.
The others reported them as two separate SNVs (Sandmann et al.
2017). Both FreeBayes and VarDict are haplotype-aware callers,
which is necessary for MNV detection (Garrison and Marth
2012; Lai et al. 2016). Even if variant callers do not identify
MNVs directly, software also exists that can correct a list of previ-
ously called SNVs to identify misannotated MNVs (Wei et al.
2015). To further our understanding of the role of MNVs in evolu-
tion and disease, calling and annotating these variants correctly is
a vital step.

Methods

Variant and de novo calling in DDD

The analysis in this report was conducted using exome sequencing
data from the DDD study of families with a child with a severe, un-
diagnosed developmental disorder. The recruitment of these fami-
lies has been described previously (Wright et al. 2015): 7833 trios
from 7448 families and 1791 singleton patients (without parental
samples) were recruited at 24 clinical genetics centers within
the UK National Health Service and the Republic of Ireland.
Families gave informed consent to participate, and the study was
approved by the UK Research Ethics Committee (10/H0305/83,
granted by the Cambridge South Research Ethics Committee, and
GEN/284/12, granted by the Republic of Ireland Research Ethics
Committee). In this analysis, we only included trios from children
with unaffected parents in our analysis to avoid bias from patho-
genic inherited MNVs. This was defined as those trios in which
the clinicians did not report any phenotypes for either parent.
This resulted in a total of 6688 complete trios. Sequence alignment
and variant calling of SNV and insertions/deletions were conduct-
ed as previously described. De novo mutations were called using
DeNovoGear and filtered as previously (Ramu et al. 2013;
Deciphering Developmental Disorders 2017).

Identifying MNVs

MNVs were defined as two nearby variants that always appear on
the same haplotype. To identify all possible candidate MNVs, we
searched for two heterozygous variants that were within 100 bp
of each other in the same individual across 6688 DDD proband
VCFs and that had a read depth of at least 20 for each variant.
These pairs of variants were classified as MNVs if both variants ap-
peared on the same haplotype for >99% of individuals in which
they appear. This was determined by phasing variants using paren-
tal exome data. We were able to determine phase for approximate-
ly two-thirds of all possibleMNVs across all individuals. Those that
could not be phased were discarded. Read-based phasing for these
variants proved to be more error-prone than trio-based phasing
and so was not performed. After examining the properties of these
MNVs, we restricted the analyses to those that were 1–20 bp of
each other. We identified 69,940 unique MNVs.

A set of 693,837 coding SNVs was obtained from the DDD
probands with the exact same ascertainment as those for MNVs
(read depth >20, phased to confirm inheritance). These were
used when comparing MNV properties to SNVs to reduce any as-
certainment bias.

To identify de novo MNVs we looked within a set of 51,942
putative DNMs for pairs of de novo variants within 20 bp of

each other. This set of DNMs had been filtered requiring a lowmi-
nor allele frequency (MAF), low strand bias, and low number pa-
rental alt reads. We did not impose stricter filters at this stage as
true de novo MNVs tend to have worse quality metrics than true
de novo SNVs. We found 301 pairs, ∼1.2% of all candidate
DNMs. A third of these were 1–2 bp apart (Fig. 3A). For analysis
of mutational spectra, we did not filter these further; however,
when looking at functional consequences of these de novo
MNVs, we wanted to be more stringent and examined IGV plots
for all de novo MNVs, of which 91 passed IGV examination.

Estimating the MNV mutation rate

We estimated theMNVmutation rate by scaling the SNVmutation
rate estimate of 1.1 × 10−8 mutations per base pair per generation
by the ratio of MNV segregating sites/SNV segregating sites ob-
served in our data set (Roach et al. 2010). This approach is based
on a rearrangement of the equation for the Watterson estimator
(Watterson 1975). This is outlined below, where θ is the
Watterson estimator, μ is themutation rate, K denotes the number
of segregating sites,Ne is the effective population size, n is the sam-
ple size, and an is n−1th harmonic number.

û = KSNV

an
= 4NemSNV ,

mSNV = KSNV

an4Ne
= 1.1× 10−8,

an4Ne = KSNV

1.1× 10−8 ,

mMNV = KMNV

an4Ne
,

= KMNV

KSNV
1.1× 10−8.

To avoid any potential bias from selection, we excluded vari-
ants that fell into potentially constrained genes (pLI > 0.1). The
MNV mutation rate was estimated to be 1.78×10−10 mutations
per base pair per generation.

We estimated the SNV missense mutation rate in the same
way by scaling the overall SNV mutation rate by the ratio of the
number of missense SNVs in unconstrained genes compared
with all SNVs and obtained an estimate of the missense mutation
rate across coding regions to be 1.07×10−8 per coding base pair per
generation, which agrees with the estimate of 1.09× 10−8 per cod-
ing base per generation, which was calculated using the trinucle-
otide context mutational model described by Samocha et al.
(2014).

Enrichment of de novo MNVs

To test for the enrichment of de novo MNVs, we used a Poisson
test for three categories of genes: all genes, genes known to be
associated with developmental disorders, and genes that are not
known to be associated with developmental disorders. Genes
known to be associated with developmental disorders, in which
de novomutations can be pathogenic, were defined as those curat-
ed on the Gene2Phenotype website (http://www.ebi.ac.uk/
gene2phenotype/) and were listed as monoallelic that were “con-
firmed” and “probable” associated with DD.We did the same tests
for synonymous, missense, and protein-truncating variants using
gene-specific mutations rates for each consequence type derived
by Samocha et al. (2014; Supplemental Fig. S4). The significance
of these statistical tests was evaluated using a Bonferroni-corrected
P-value threshold of 0.05/12 to take into account the 12 tests across
all three subsets of genes, SNV consequence types, and MNVs
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(Supplemental Fig. S4). To correct for sequence context when com-
paring DD genes and non-DD genes, we adjusted the expected
number of MNVs in the DD genes category based on the excess
of polymerase zeta dinucleotide contexts. We also estimated the
MNVmutation rate using all variants, aswell as amore stringent es-
timate just using variants that fell into noncoding regions. When
we redid the enrichment analysis using these mutation rate esti-
mates of varying stringency, the enrichment of de novo MNVs in
DD-associated genes remained significant (all variants: P-value
2.7 ×10−4; noncoding control regions: P-value 4.9 ×10−3) (Supple-
mental Fig. S5A). The SNV mutation rate estimate varies across
studies; therefore, we also recalculated theMNVmutation rates us-
ing SNVmutation rate estimates of 1.0 × 10−8 and 1.2 ×10−8 muta-
tions per base pair per generation (Ségurel et al. 2014). These were
also recalculated across the three different variant subsets (all vari-
ants, excluding variants in genes with pLI > 0.1, variants in non-
coding control regions). The enrichment ratio of de novo MNVs
that fall into DD genes ranged from 2.7 to 4.8; however, it always
remained significantly greater than one, and the confidence inter-
vals consistently overlappedwith that of the SNVmissense enrich-
ment ratio (Supplemental Fig. S5B).

Analysis of the number of clinically reported

de novo MNVs

We downloaded all clinically reported variants from the website
ClinVar and subsetted these variants to those that fell into autoso-
mal dominant DDG2P genes and those that were annotated as
“definitely pathogenic” or “likely pathogenic.” This set was then
subsetted to 321 genes with at least one pathogenic missense mu-
tation. This was to ensure thatmissensemutations cause disease in
these genes. We then counted the numbers of SNV missense vari-
ants and used this to estimate the number of expected missense
MNVs across those genes. This was scaled using the ratio of the
SNV to MNV missense mutation rate across these genes. The
MNV missense mutation rate was calculated as

mDDG2P MNV missense = mMNV × 2
3
× 0.97×

∑

coding bp in DDG2P genes,

where 2/3 is the probability of anMNV falling within a codon and
0.97 is the probability that a within-codon MNV results in a mis-
sense change. The expected number of missense MNVs in
DDG2P genes was then calculated as follows:

Expected # reported pathogenic missense MNVs

= # reported missense SNVs× mDDG2P MNV missense

mDDG2P SNV missense
.

This assumes that the enrichment of MNV and SNVmissense
mutations in these genes is comparable as we have observed in
DDD. This yielded an expected number of 51.94 reported patho-
genic MNVs compared with 24 observed reported pathogenic
MNVs. To test if this difference was significant, we performed a
Poisson test (P-value 2.8 ×10−5).

All results from statistical tests are summarized in Supplemen-
tal Table S1.

Data access

The raw exome sequencing data from this study have been submit-
ted to the European Genome-phenome Archive (EGA; https://
www.ebi.ac.uk/ega/) under accession number EGAS00001000775
and are available following Data Access Committee (DAC)
approval.
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