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Abstract: The biomechanical models used to refine and stabilize motion capture processes are almost
invariably driven by joint center estimates, and any errors in joint center calculation carry over and
can be compounded when calculating joint kinematics. Unfortunately, accurate determination of joint
centers is a complex task, primarily due to measurements being contaminated by soft-tissue artifact
(STA). This paper proposes a novel approach to joint center estimation implemented via sequential
application of single-frame optimization (SFO). First, the method minimizes the variance of individual
time frames’ joint center estimations via the developed variance minimization method to obtain
accurate overall initial conditions. These initial conditions are used to stabilize an optimization-based
linearization of human motion that determines a time-varying joint center estimation. In this manner,
the complex and nonlinear behavior of human motion contaminated by STA can be captured as
a continuous series of unique rigid-body realizations without requiring a complex analytical model
to describe the behavior of STA. This article intends to offer proof of concept, and the presented
method must be further developed before it can be reasonably applied to human motion. Numerical
simulations were introduced to verify and substantiate the efficacy of the proposed methodology.
When directly compared with a state-of-the-art inertial method, SFO reduced the error due to
soft-tissue artifact in all cases by more than 45%. Instead of producing a single vector value
to describe the joint center location during a motion capture trial as existing methods often do,
the proposed method produced time-varying solutions that were highly correlated (r > 0.82) with the
true, time-varying joint center solution.

Keywords: motion capture; inertial sensors; skin motion; optical markers; soft tissue artifact

1. Introduction

In the 140-plus years since its inception, motion capture has grown from a novelty used to win
bets into a ubiquitous tool for use in fields such as animation, healthcare, industry, sports, and the
military [1–5]. Optical motion capture is currently considered the field’s gold standard, and it works by
using cameras to visually deduce the position and posture of a subject who is covered in markers [6,7].
The paramount importance of accurate calculation of joint axes and joint centers in determining
accurate joint kinematics has spawned much research into methods of using optical markers to
determine them [8–12].

Determination of joint center locations can be accomplished via predictive methods, such as
the Harrington Equations, where regression equations are applied to a subject’s anthropometric
measurements [13]. Marker-based methods for direct computation of joint centers can be categorized
as sphere-fitting or transformation approaches, or collectively as functional methods. Sphere-fitting
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approaches use optimization to determine a radius (and related sphere) that best fits the measured
marker trajectories [8]. Transformation approaches consider the distance between markers on each joint
segment to be fixed, allowing local coordinate systems to be defined. The measurements can then be
mapped to a common reference frame, allowing an optimal joint center to be approximated [8]. For joint
axis determination, the same general approaches as for joint center determination can be applied,
but with cylinder-fitting instead of sphere-fitting, as the desired solution is a line (axis of rotation)
rather than a point [9]. Although this area is generally dominated by marker-based approaches, recent
publications involving inertial motion capture offer competing methods for joint axis determination.
By applying optimization to expressions of joint kinematics, the joint axes for two-degree-of-freedom
joints (such as the elbow) can be identified [14] and leveraged to mitigate the effects of magnetic
interference in the inertial motion capture process [15].

These functional methods perform very well on mechanical apparatuses, but their accuracy
decreases when applied to human subjects due to soft-tissue artifact (STA). STA allows skin-mounted
markers to move relative to the underlying bone in a manner that is difficult to fully mitigate via
modeling [16–20]. STA can be defined as the combination of four transformations: translation,
rotation, scaling, and shearing, though more complex deformations are also possible [21–23]. STA
can introduce significant errors in the joint center location calculated from markers when compared
against gold-standard validation methods (e.g., X-ray and bone-pin markers). In a current article [16]
on estimation of joint angle and range of hip motion using skin markers and dual fluoroscopy, it was
found that the mean STA ranged from 0.3 to 5.4 cm. When calculating the hip-joint angle, STA caused
errors (relative to the dual fluoroscopy validation method) in flexion/extension, abduction/adduction,
and internal/external rotation of 1.9◦, 0.6◦, and 5.8◦, respectively. Range of motion was also impacted,
as the marker-based range of motion for the internal-external rotation axis was 21.8◦ smaller than that
of the validation method.

STA has been thoroughly investigated in recent literature [16,18–22,24,25]. The most recent
research, by way of modal analysis or principal component analysis, shows that, of STA’s
many components, the translation and rotation are likely the main determinants of kinematic
accuracy [19,21,22]. Together, these two transformations constitute the rigid component of
STA-induced motion. However, more recent research investigated STA with a greatly increased
number of optical markers (40 versus 4–6) and found the observed STA to be more complex than
indicated by previous research, sometimes requiring the use of stretching and homotheties to fully
describe the behavior [23]. This suggests that modeling STA via only its rigid components may lead
to incomplete and/or insufficient mitigation of STA’s effect on the accuracy of joint kinematics. In
sum, the current literature suggests that motion capture accuracy could be improved by a practical
and non-invasive method that more completely mitigates the effects of STA.

In the last decade, inertial motion capture has emerged as another method of tracking human
movement [26,27]. Inertial motion capture centers on magnetic, angular rate, and gravitational sensor
arrays, often referred to as inertial measurement units (IMUs). The literature showed several methods
that used IMUs in the analysis of human motion [28–30]. However, a recent survey on motion tracking
using IMUs suggests that optimization-based approaches are more promising than other methods and
offer considerable room for improvement [27]. Said optimization can be achieved via reformulating
the equations of motion for translational acceleration of rotating bodies, allowing the position vector
locating the IMU relative to the joint center to be calculated directly [28,31,32]. In the work of Seel et al.,
the relative alignment of the sensor and joint axis is optimized in a similar manner [31]. The subject
first performs a specialized calibration motion to manifest the kinematic constraints associated with the
optimization, allowing subject-specific joint centers and joints axes to be determined. Joint angles are
calculated by a Kalman Filter–based integration process, producing results for knee flexion/extension
accurate to within 3◦ of root mean square error relative to the marker approach used for validation [28].

This paper proposes a novel approach to joint center estimation applied via sequential application
of single-frame optimization (SFO). The method attempts to mitigate the effects of STA by first
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minimizing the variance of individual time frames’ joint center solutions to obtain an accurate
overall joint center estimate. This is accomplished via the developed variance minimization method.
The resulting joint center estimate is then used as initial conditions to stabilize an optimization-based
linearization of human motion that determines a time-varying joint center estimation. The proposed
method, henceforth referred to as SFO, requires accelerometric and gyroscopic measurements only;
magnetic data is not utilized. The method was tested in this work via a simulated mechanical system
(rotating planar pendulum) with an inertial sensor attached to it. STA was simulated by allowing the
inertial sensor to translate and rotate relative to the pendulum.

2. Methods

2.1. Equations of Motion

IMUs can measure only derivatives, be they positional or rotational. Therefore, in order to relate
the inertial measurements—translational acceleration and rotational velocity—to the joint center vector
(in the local coordinate system of the inertial sensor), the following equation of motion can be used

a = aJC + α × r + ω × (ω × r) (1)

Here a is the overall translational acceleration, aJC is the translational acceleration of the joint
center, ω is the rotational velocity, α is the rotational acceleration, and r is the position vector describing
the location of the IMU relative to the joint center. All these values are expressed within the local
coordinate system of the IMU. The nature of this equation is such that it can be applied to joints
modeled as having one, two, and/or three degrees of freedom. Notice that Equation (1) is valid only if
ω and a are measured by a sensor rigidly connected to a link, and only if the link length (meaning r)
has null values for its first and second time derivatives. In the context of human motion capture, STA
ensures that neither of these conditions is satisfied. The inertial measurements will be contaminated
by the translational acceleration, rotational velocity, and rotational acceleration caused by STA, and the
distance from the IMU to the joint center will inevitably vary so that it has non-zero first and second
derivatives, also due to STA.

2.2. Spanned Single-Frame Optimization

SFO uses Equation (1) as the basis of its cost function, with the understanding that the model
embedded in its cost function can only produce solutions pertaining to rigid-body motion. Said
solutions will henceforth be referred to as rigid-body realizations. The vector relating an IMU to its
corresponding joint center (represented by r) will necessarily vary with time in human movement due
to the impact of STA. To track this motion, SFO calculates a rigid-body realization (meaning a value
for r) for each individual frame of data. Defining the joint center vector as the time series of these
rigid-body realizations allows the non-rigid nature of the STA-contaminated joint center vector to be
accurately captured, effectively linearizing the joint center vector and its corresponding STA. SFO
will therefore be presented as operating under two assumptions. First, the value of aJC is negligible
relative to the other terms, and second, any acceleration terms generated by STA are negligible relative
to those generated by the STA-free motion, henceforth referred to as real motion. With this in mind,
Equation (1) can be rearranged into a cost function in terms of r that quantifies the optimality of a joint
center vector estimate

0 =||a− (α× r + ω× (ω× r))− g|| (2)

Here the double bars on either side denote the Euclidean norm, and g denotes the scalar value of
gravitational acceleration. This scalar is subtracted because gravitational acceleration will impact the
accelerometer measurements. Note that the aJC term has been removed in this equation as it is assumed
that the origin of the position vector is undergoing no translational acceleration. Equation (2) can be
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modified to allow for an accelerating origin, but, for the purposes of this article, such modification has
little heuristic value. The modified equation will instead be explored in a future paper.

SFO uses Equation (2) as a cost function and applies an optimization algorithm to each frame of
data individually. This results in a time-varying realization for r over the course of the considered
motion. The optimization method chosen for this work is the unconstrained Levenberg–Marquardt
method with a supplied analytical Jacobian, which is part of the MATLAB Optimization Toolbox [33].
The Levenberg–Marquardt method was chosen for its robust solutions and intuitive methodology. The
default properties built into the MATLAB function “fsolve” were used with one modification—the
Levenberg–Marquardt method was specified as the optimization algorithm. The most relevant of these
default values are the function tolerance and maximum allowed iterations, which were 1 × 10−6 and
400, respectively. The analytical Jacobian was included to expedite the optimization, but it had little
effect on the final result.

The first step in SFO is preparing the data (Figure 1), which involves organizing the raw inertial
data into a form usable by the other algorithms, applying frequency filters, and employing numerical
differentiation. The second step examines the entire data set to determine the optimal non-varying
joint center estimate via the variance minimization method, which will be explained in the coming
sections. The third step uses the previously determined non-varying joint center estimate to stabilize
an optimization process that calculates a joint center solution for each frame of data. The final step
refines the results of the third step by applying a moving-average filter. Together, these four steps
constitute the entirety of the SFO process. A flowchart representation of the SFO process is provided in
Figure 2.

2.3. Data Preparation

See Figure 1 for a complete layout of the data manipulation pre-optimization. The lowpass filter
was a fourth-order, Butterworth filter applied bi-directionally to prevent phase change (raising the
effective order from fourth to eighth). Referring to Equation (2), values for the translational acceleration
and rotational velocity are obtained via direct measurement. Values for the angular acceleration cannot
be obtained by measurement but can be well approximated by numerically differentiating ω. Many
methods can be used to accomplish this, such as the three- or five-point differentiation methods.
As the optimization stability could be affected by this, however, cubic splines are used to minimize
differentiation error. The ω vectors are converted to piecewise cubic spline functions, which are then
analytically differentiated and discretized at the appropriate time steps.

Figure 1. Flowchart detailing how the data is pre-processed before being fed into SFO. The subscript
“LP” denotes that the variable has been lowpass filtered.
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Figure 2. Flowchart representation of the SFO method. The subscript “LP” denotes that the
variable has been lowpass filtered, “t” denotes the time vector, “JC” denotes joint center, and “Eqn”
denotes Equation.

2.4. Variance Minimization Method

Optimization requires the user to supply initial conditions to guide the optimization algorithm to
a realistic solution. Poor initial conditions can greatly increase the required computation time, as well
as lead to destabilization or the finding of a local minimum instead of a global one. The likelihood
of one of these outcomes increases with cost function complexity (more roots provide more local
minimums) and decreasing data quality (poor equation fitting destabilizes the search). Equation (2)
makes for a reasonably complex cost function, but the true difficulty is the use of only a single data
point that is most likely contaminated with some amount of STA. This complication makes the choice
of initial conditions exceptionally important, as they will have a much greater effect on the calculated
minimum than they would in traditional optimization, where there are many other data points to
share the responsibility for convergence.

A motivating factor for SFO’s development is the current inability to solve for joint centers
accurately. Therefore, one would not expect users to accurately estimate reasonable initial conditions.
Therefore, an unbiased method of objectively and reproducibly calculating them is needed. The method
developed to fulfill this need is termed the “variance minimization method”, which operates by treating
the variance of the array composed of each individual frame’s optimal joint center vector solution
as its cost function. The overall initial conditions (used as the initial conditions for every frame’s
optimization) are treated as the design variables. These overall initial conditions will henceforth be
referred to as ICVMM for clarity. Again, the Levenberg–Marquardt method is used with MATLAB’s
default “fsolve” optimization settings. The only difference is that an analytical Jacobian is not provided.
A flowchart detailing the variance minimization method process can be seen in Figure 3.
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Figure 3. Flowchart detailing the variance minimization method process. The term “JC” denotes joint
center, “var” denotes variance of, and “VMM” denotes variance minimization method.

The variance minimization method operates under the assumption that the optimal ICVMM,
meaning the position vector that most optimally fits the entire dataset, can be determined by
minimizing the variance of the array composed of each individual frame’s optimization solution
when using said ICVMM. Put simply, given the large number of time points considered, it is reasonable
to assume that a non-negligible number of datasets was captured at times when the effects of STA were
sufficiently negligible. These datasets would therefore be determined almost entirely by real motion.
This is useful because the cost function defined by Equation (2) operates under the assumption that
the input data consists of motion exhibiting a ratio of real motion to STA motion large enough for
the STA to be relatively negligible. Spans of data points composed predominately of data with such
a ratio can be referred to as high-quality data. By high-quality data, it is meant that when such a data
point is subjected to the optimization process, the result will converge to the true solution regardless of
the starting values of ICVMM. Let these high-quality data points be referred to as “constant points”.
Meanwhile, the remaining, lower-quality data points will converge to solutions greatly influenced by
the ICVMM. If the cost function is defined as the variance of the aforementioned array, minimization
would be achieved by moving the ICVMM closer to the constant point solution values. This movement
would increase the quality of the ICVMM, allowing data points of quality slightly lower than the
constant points to converge to their correct solutions. Repetition of this process eventually yields
a vector value for ICVMM that maximizes the number of data points stable enough for their optimization
to converge to a reasonable solution.

2.5. Comparator for SFO Validation

To contextualize the performance of the SFO process, it must be compared with an existing
method. The method deemed most relevant for such a comparison is that propounded by Seel et al.,
henceforth referred to as Seel’s optimization method (SOM) [28,31]. As with SFO, SOM uses inertial
sensors, subsumes the calibration process, and attempts to solve for the joint centers directly (rather
than statistically). SOM was developed for use in human motion capture, so its driving cost function
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was applied so that it could deal with a joint center undergoing acceleration. This requires two sensors,
one on either side of the joint center in question, and simultaneous solution of both joint center vectors.
When SOM is simplified to be comparable with SFO as it has been developed thus far, its cost function
reduces to that shown in Equation (2). In the optimization process, every data point is input to the
cost function at the same time, resulting in a vector-valued cost-function solution. The single joint
center solution that minimizes said vector is considered to be optimal. The optimization details for
the SOM mirror those previously specified for SFO using the Levenberg–Marquardt algorithm within
MATLAB’s “fsolve” function.

2.6. Numerical Examples

The SFO algorithm was tested by digitally replicating situations that would occur if an inertial
sensor were attached to a rigid, articulating, planar pendulum. White Gaussian noise was added to
the simulation’s raw inertial data (after any simulated STA was included in the data), and the noise’s
magnitude was based on the noise specifications of the experimental sensors intended to be used in
experimental testing, the XSENS Motion Tracker wireless IMU [34]. The noise was generated based on
the values specified as the desired standard deviations, which were 0.0076 m/s2 and 2.75× 10−5 rad/s
for the translational acceleration and rotational velocity, respectively.

The pendulum’s link length was set at 400 mm, a distance similar to typical human link lengths,
and the initial conditions chosen to describe the pendulum’s state before release (ICpend) were θ = 90◦

and ω = 0 rad/s. The pendulum movement was determined by solving the appropriate equations
of motion for a pendulum released and acted on only by the force of gravity. Said equations were
expressed as differential equations and solved via the built-in MATLAB function “ode45”, which is
based on an explicit Runge–Kutta formula. ICpend was provided as the solver’s starting point [33].
A diagram of the pendulum setup can be seen in Figure 4. Gravity was set to 9.8065 m/s2 globally
downwards. The simulation was set to run for a time of 25.12 s, and the sample rate was set to 100 Hz.

Figure 4. Diagram of numerically simulated pendulum setup. Note that the Z axis is perpendicular to
the XY plane as defined by the right-hand rule. The orange block represents the inertial sensor.

The goal of the simulation is to assess the effect of STA on SFO. A major component of STA is
relative translation, and this was reflected in the simulation by modeling the virtual IMU as attached
to the pendulum via a spring (expanding and contracting in the direction of the link’s longitudinal
axis) undergoing a set number of oscillations over the simulation’s time span (Figure 5). This scenario
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used the same conditions that were used to simulate the rigid link with only noise added, but the
spring forced the length of the link to vary sinusoidally with a specifiable amplitude and frequency.
The sinusoid’s period was set so that one oscillation was completed over the duration of the simulation.
Adding this relative translation will force the SFO solution to change with each iteration. To account
for this, the infrastructure of the SFO process is such that the initial conditions for SFO as applied to
each frame, termed ICSFO, are defined by the solution obtained from applying SFO to the previous
frame. Therefore, ICVMM is used only once—as ICSFO for the first data frame. The second data frame
then uses the SFO solution from the first frame as the new ICSFO, repeating this process at each frame.

As shown in the literature, STA can contaminate human-motion measurements by introducing
relative translation, rotation, scaling, shearing, and other deformations [23]. Furthermore, the literature
suggests that the rigid components of STA (relative translation and relative rotation) are the
components most relevant to the accuracy of kinematic calculations [17,21]. As such, the simulation
was further modified to include a relative rotation component, and rotation of the IMU relative to its
underlying structure was introduced (Figure 5). This was simulated by applying a series of rotation
matrices to the simulated data, as well as updating the generated gyroscope measurements to reflect
the added motion. For clarity, the chosen rotation matrices induced rotation about the Z axis only and
caused two complete sinusoidal cycles of relative rotation with specifiable amplitude to occur over the
simulation’s time span.

Figure 5. Diagram showcasing the modifications made to the simulated pendulum to achieve a better
approximation of STA. The Z axis is perpendicular to the XY plane as defined by the right-hand rule.

To supplement the four cases mentioned thus far, in which the STA was simulated by
low-frequency sine waves, a fifth case was simulated that incorporated STA as a multimodal,
higher-frequency sine wave. Specifically, the equations defining the relative translation and relative
rotation are

xspring = 0.5At sin(0.25t) + 0.1At cos(2t) + 0.025At cos(4t) (3)

θrel = 0.5Aθ sin(0.125t) + 0.25Aθ cos(0.5t) + 0.05Aθ cos(2t) (4)

where, xspring defines the simulated relative translation, and θrel defines the relative rotation. At defines
the amplitude of the relative translation and was set to 30 mm. Arel defines the amplitude of the
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relative rotation and was set to 2◦. The frequencies used in the spring motion were 0.125, 2, and 4 Hz,
while the frequencies used in the relative rotation were 0.125, 0.5, and 2 Hz. These frequencies were
chosen because of the suggestion in the literature that the majority of the energy content for human
motion is concentrated below 3.5 Hz [35,36], and because motion capture data is traditionally filtered
via a Butterworth filter at 6 Hz [37]. The 0.125 Hz frequency was included to represent the motion
of an IMU slowly changing its relative position during a motion trial, as, in the authors’ experience,
commonly occurs when the IMUs are held in place by Lycra suits.

With the addition of the multimodal STA case, a total of five cases were simulated:

1. Rigid link with added noise (control simulation)
2. Rigid link with added noise and spring motion
3. Rigid link with added noise and relative rotation
4. Rigid link with added noise, spring motion, and relative rotation
5. Rigid link with added noise, multimodal spring motion, and multimodal relative rotation

In the following section, SFO and SOM are applied to each of the five aforementioned cases, and
their results are compared both graphically and in terms of root mean square error (RMSE). Pearson
correlation coefficient values for the SFO results are presented as well. The simulation was performed
in planar settings, so only error in the two relevant axes (X and Y) was considered, as the third can
correctly assume infinite values along the pendulum’s axis of rotation. For each method, the norm of
the error was calculated at each point from these two axes, and the RMSE was calculated by taking the
root mean square value of each vector of error norms. The correlation values were reported only if
their associated p-values were significant (p < 0.05).

3. Results

Figures 6–10 below showcase the results of the five simulation cases. In each figure, the left
and middle images refer to the joint center vector for the X and Y axes, respectively. The image on
the right is the overall error norm as a function of time. The black dotted plots denote SFO results,
the blue dash-dot plots denote SOM results, and the red dashed plots denote theory results, meaning
the true solution.

Figure 6. Results for simulation run with only noise added to a rigid link. Black dots refer to SFO, blue
dash-dots to SOM, and red dashes to the theory.

In the first control case, the results were as expected, with both SFO and SOM obtaining sub-mm
accuracy (Figure 6). As the noise added was white and Gaussian, the optimization algorithms were well
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equipped to mitigate that potential source of error, and the ideal environment within the simulation
maximized the optimization’s stability.

The results for the second case (Figure 7), specifically those of the Y axis plot, showcase the
potential for SFO to outperform SOM. SFO’s adaptive solution caused a negligible amount of error in
the X axis (less than ~0.5 mm) but outperformed SOM by up to 30 mm in the Y axis, which was the
axis containing simulated STA. SOM was restricted to finding a single optimal vector response for the
motion as a whole, and therefore its solution was unable to reflect the true motion’s sinusoidal behavior.

Figure 7. Results for simulation run with noise added to the rigid link as well as spring-induced
relative translational motion of the sensor. Black dots refer to SFO, blue dash-dots to SOM, and red
dashes to the theory. Note that the SFO and theory results exhibit significant overlap.

Figure 8. Results for simulation run with noise added to a rigid link as well as induced relative
rotational motion of the sensor. Black dots refer to SFO, blue dash-dots to SOM, and red dashes to
the theory.

As with the results shown in Figure 7, the results for the third case (Figure 8) showed that
SFO’s adaptability allowed it to track the sinusoidal nature of the motion. The major difference
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in this simulation case was the quality of the tracking, specifically the seemingly lower stability of
optimization solutions. These results suggest that 5◦ of relative rotation destabilizes the optimization
far more than 30 mm of relative translation.

The results for the fourth case (Figure 9) look much like a superposition of the results from
Figures 7 and 8. Given that the simulated STA for Figure 9 is a superposition of the STA simulated in
Figures 7 and 8, this suggests that a somewhat linear relationship may exist between the simulated
STA and the resulting error, at least within the ranges of the simulated values.

The results of the fifth case are seen below in Figure 10. Notice that the time scale has been
shortened to slightly more than 6 s to allow for closer inspection of the effects caused by the
higher-frequency simulated STA.

Figure 9. Results for simulation run with noise added to a rigid-link, spring-induced relative
translational motion, and an induced relative rotational motion. Black dots refer to SFO, blue dash-dots
to SOM, and red dashes to the theory.

Figure 10. Results for simulation run with noise added to the rigid link, as well as the multimodal
implementations of translational and rotational STA, as defined by Equations (3) and (4). Black dots
refer to SFO, blue dash-dots to SOM, and red dashes to the theory.
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Figure 10 shows that SFO has greater difficulty in tracking these higher-frequency components
than the lower-frequency ones, as was expected. However, SFO tracks the overall motion better than
SOM does, both in terms of RMSE and in correlation to the theory. SOM did not lose accuracy because
of the higher-frequency components; this was expected because the higher frequencies have little to no
effect on the overall average relative motion.

The above results (Table 1) show that in all cases where STA was simulated, SFO produced
RMSE values far lower than those produced by SOM. As for the control case where STA was not
simulated, the error of both methods was negligible. Considering the correlation values, SFO exhibited
high correlation values (r > 0.82) in all cases where STA produced significant changes in the joint
center vector component. This indicates that SFO is capable of capturing the motion caused by the
simulated STA.

Table 1. Tabulation of the simulation results for SFO and SOM. rX denotes the Pearson correlation
between the SFO X axis results and the theory X axis results. rY denotes the same but for the Y axis.
Only results with acceptable p-values (p > 0.05) were displayed. The * symbol refers the reader to
reference multimodal amplitude as defined by Equation (3), and the ** refers the reader to reference
multimodal rotation as defined by Equation (4).

Simulated Case
SFO SOM

Amplitude (mm) Rotation (◦) RMSE (mm) rX rY RMSE (mm)

Case 1 0 0 0.15 - 0.00 0.10
Case 2 30 0 0.474 - 1.00 21.22
Case 3 0 5 7.80 0.97 0.33 24.70
Case 4 30 5 7.83 0.97 0.99 32.53
Case 5 Multimodal * Multimodal ** 7.53 0.825 0.90 13.85

4. Discussion

The method described in this paper, termed single-frame optimization (SFO), proposes a method
of mitigating the effects of STA on the calculations of joint centers. SFO accomplishes this by
representing and solving for the joint center vector, meaning the vector relating the joint center
location to the location of an IMU within the IMU’s local coordinate system, in a time-varying manner.
The time-varying joint center vector is determined by an optimization process that calculates an optimal
rigid-body realization for each frame. These rigid-body realizations effectively linearize the joint center
solution, capturing the motion due to STA. The effect of STA on the inertial measurements can then be
quantified and mitigated, thereby improving calculation of joint kinematics.

4.1. Interpreting SFO Results

The simulation results for Cases 1–4 suggest that the SFO approach can accurately capture
changes in the position vector, as is the method’s primary goal. These results also suggest that STA
in the form of relative rotation negatively impacts SFO’s accuracy more than STA in the form of
relative translation. The most likely explanation for this is that relative translation impacts only the
translational acceleration, while relative rotation impacts the rotational velocity, rotational acceleration,
and translational acceleration (i.e., changes its distribution along the axes but not its magnitude).

It is obvious from the time scale that the STA simulated in Cases 1–4 is not realistic. Therefore,
the results of Case 5 (Figure 10) are likely more indicative of how SFO would respond to true STA.
The results suggest that SFO can produce viable results for a more realistically simulated STA, but also
that higher frequencies are more difficult to capture. Furthermore, the correlation values for Case 5
(rX = 0.83 and rY = 0.90) suggest that, despite the higher-frequency content, the overall motion was
well represented by the solution. However, the results seen in Figure 10 have been passed through
a lowpass filter and a moving average filter as part of the SFO process. The unfiltered results offer
a different perspective on SFO’s efficacy and are shown in Figure 11. The resulting RMSE for SOM and
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the unfiltered SFO were 13.85 mm and 14.93 mm, respectively, and the SFO correlation values were
0.48 and 0.72 for the X and Y axes, respectively.

The results without filtering explicitly show the potential for instability of individual SFO results,
e.g., the errors in excess of 30 mm in the X axis. This instability is the price paid for attempting to
linearize behavior that is highly nonlinear. In the Y axis, SFO does a far better job of tracking the STA,
and this is likely partially the result of the Y axis motion being larger than that of the X axis and not
being centered near zero.

Upon comparison with the filtered results (Figure 10), it is clear that a large portion of this
instability can be mitigated by a simple filtering process. This suggests that the raw optimization data
contains valuable information despite its scattered appearance. It also suggests that there is much
room for improvement in how the raw data is processed. This could be as simple as applying the
frequency and moving-average filters with adaptable parameters, or as complex as using an extended
Kalman filter. There is much information currently unused by SFO that is potentially beneficial, such as
the residual value of the objective function at each time point, the necessity of continuity of positional
change, and the known cyclical nature of certain motions, such as human gait.

Figure 11. The same results as presented in Figure 10, but without frequency or moving average
filtering applied to the SFO results. Black dots refer to SFO, blue dash-dots to SOM, and red dashes to
the theory.

4.2. Comparison with SOM

The major difference between SFO and SOM is that SFO produces a time-varying joint center
vector, whereas SOM produces a single joint center vector. As a result, SFO can capture STA-induced
changes in the joint center vector. It should be noted, however, that SOM could be applied multiple
times within a given time frame, and that it requires only that the motion considered for optimization
be rich enough to manifest relevant kinematic constraints [28]. Perhaps the SOM approach could be
modified to detect data richness and update every time sufficient data has been gathered, or perhaps
it could be applied via a moving-window approach. If these changes were made, SOM could be
more adaptable to STA, and its associated RMSE would decrease. In the case of the moving-window
application, the SOM solution would adapt to STA-induced changes, such as a sensor slowly sliding
around during motion, but it would only capture the average of the STA effects in that time span.

To supplement the comparison of SFO with SOM, the relative computational costs should be
discussed. Such comparison is difficult, as both methods were implemented in a way that maximizes
accuracy rather than efficiency. This is particularly relevant in the case of the variance minimization
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method, due to its nested optimization structure. Therefore, the comparison will be broad. For the
datasets simulated here (24 s), application of SFO (supplied with ICVMM) and SOM (to an entire
dataset) required similar time to complete (approximately 1 s), though SOM was roughly one to two
times faster. Determining the ICVMM, however, requires that the variance minimization method be
applied to an entire dataset, and this required time periods between 5 min and 10 min. Therefore,
as a whole, SFO required two to three orders of magnitude more time than SOM. The relevance of this,
however, is potentially diminished when one considers that the time period required was less than
10 min, and that the variance minimization method has a high potential for efficiency improvement,
were that deemed a priority.

4.3. Assumptions and Limitations

The literature shows that lowpass filters with cut frequencies of near 6 Hz are commonly used
to filter human motion data [37,38]. Therefore, the STA component of the signal should be captured
by the linearization process as long as the sample rate is two or more times the chosen cut frequency.
A single XSENS Motion Tracker wireless IMU can produce sample rates of up to 120 Hz, so reaching
the necessary sample rate should not be limited by the inertial hardware [34]. Despite this, there are
some significant limitations to SFO that must be addressed.

The first and most important assumption that SFO makes is that STA motion can be considered
negligible when compared to real motion. More specifically, it is assumed that the acceleration
components induced by STA motion are negligible relative to the acceleration components induced by
real motion. This is an assumption that will eventually need to be substantiated experimentally, but
currently the authors believe it is a reasonable assumption for normal motion such as gait. However,
there will certainly be instances when this assumption is not reasonable, such as during dynamic
movements or when the real motion suddenly ceases (STA will almost certainly be active for a short
while after such an occurrence). In cases such as these, where the aforementioned assumption is
violated, it is clear that SFO will destabilize, meaning that the optimization process will converge to
a non-viable minimum. As SFO only considers data from a single frame, it is unstable, and if the
assumptions of its cost function are violated, it will almost certainly converge to a value that can clearly
be identified as grossly inaccurate (a non-viable minimum). If this is not clear from the actual solution,
it should be clear from the large residual value of the objective function at the calculated minimum.

Because these results could be clearly identified as incorrect, they could be excluded from the final
solution (as a gap). It could also be reasonably assumed that these unstable results indicate minimal
real motion, and instead of a gap, the solution value just before the gap could be repeated through the
gap. It is also worth noting that SFO is not the only method that suffers from this problem; all methods
known to the authors, both optical and inertial, would suffer in some manner from such an occurrence.
How well the occurrence is handled would depend on the method in use and the supplementary
algorithms the method employs to deal with such situations. Developing a method for SFO that can
assess the suitability of a given data set has been considered, as has a method for extracting information
from data deemed unsuitable. For example, metrics such as the recent frequency content of the inertial
measurements, the cost function value post-convergence, and the periodicity of motion in things like
gait could all be leveraged to assess data suitability and/or improve the corresponding SFO solutions.

The second limitation of the proposed method is its assumption/requirement that the acceleration
of the joint center be negligible. The authors do not believe it is likely that there is any instance in
human motion capture where this assumption would be adequately satisfied. Therefore, SFO, as
presented, is likely not applicable to human motion capture. However, the authors intend to address
this limitation in future work, and preliminary results suggest it can be overcome.

Pertaining to the third limitation, estimations of STA exist in the literature, and the simulated
multimodal STA was based on these estimations [35,36]. However, these estimations were obtained
for cases of marker-based motion capture, and it is not clear how valid they are in the case of inertial
motion capture. The standard 14 mm optical marker (without base) weighs approximately 1.5 g,



Sensors 2018, 18, 1089 15 of 17

whereas an XSENS Motion Tracker wireless IMU weighs 27 g [34]. As for the attachment area,
the same marker’s associated base was approximately 225 mm2, and the Motion Tracker’s base was
approximately 1750 mm2 (nearly eight times larger). Even accounting for variability in marker and
IMU choice, these differences must be considered. Furthermore, the estimations of STA in the current
literature are primarily expressed in terms of position or orientation [10], and IMUs measure the
second and first derivatives of these metrics respectively. Therefore, while the existing literature
estimations of STA are an invaluable starting point for assessing the viability of SFO, they would be
greatly supplemented by an inertial-sensor-specific characterization of STA or experimental data.

There is a final limitation that does not apply to the SFO method, but rather to the environment in
which it was simulated. As presented, there is no theoretical reason that SFO could not be applied to
a 3D simulation rather than a planar one. The mathematical description of Equation (2) is such that it
can be applied to joints modeled as having one, two, and/or three degrees of freedom. The reason
for presenting a planar case is that it produces results that are far easier to understand, interpret, and
critique than those of a 3D case. In a 3D case, the results must be expressed from all three relevant
orientations instead of just one, complicating their interpretation. Furthermore, the determination of
pendulum movement and relative rotation would be further complicated. This article is intended to
act as proof of concept for the SFO method. As such, it was applied in a simple and easy-to-understand
(planar) manner to ensure that it was critiqued on its most basic conceptual level. An unfortunate
tradeoff, however, is that SFO has not been verified for 3D motion, a limitation that will be addressed
in future work.

5. Conclusions

A new methodology for inertial motion capture, termed single-frame optimization, is presented in
this work. The method attempts to mitigate soft-tissue artifact by calculating a time-varying joint center
vector via an optimization process. To counter the instability posed by optimizing over a single time
point, variance minimization is used (via a nested optimization approach) to calculate optimal initial
conditions. The time-varying solution determined by this method allows the motion of soft-tissue
artifact to be captured directly. When compared against a state-of-the-art inertial method via numerical
simulation, the calculated error due to soft-tissue artifact was reduced in all cases (minimum reduction
was 46%). Furthermore, the calculated time-varying solution was highly correlated (r > 0.82) with the
true solution in most cases. The proposed methodology, as currently presented, is intended as a proof
of concept. The method needs to be tested under more realistic conditions in the future, including
accelerating joint centers and spherical joints, before considering it for application in human motion.
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