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Abstract

Within COVID-19 there is an urgent unmet need to predict at the time of hospital admission which COVID-
19 patients will recover from the disease, and how fast they recover to deliver personalized treatments and
to properly allocate hospital resources so that healthcare systems do not become overwhelmed. To this end,
we have combined clinically salient CT imaging data synergistically with laboratory testing data in an inte-
grative machine learning model to predict organ-specific recovery of patients from COVID-19. We trained and
validated our model in 285 patients on each separate major organ system impacted by COVID-19 including the
renal, pulmonary, immune, cardiac, and hepatic systems. To greatly enhance the speed and utility of our model,
we applied an artificial intelligence method to segment and classify regions on CT imaging, from which inter-
pretable data could be directly fed into the predictive machine learning model for overall recovery. Across all
organ systems we achieved validation set area under the receiver operator characteristic curve (AUC) values for
organ-specific recovery ranging from 0.80 to 0.89, and significant overall recovery prediction in Kaplan-Meier
analyses. This demonstrates that the synergistic use of an artificial intelligence (AI) framework applied to CT
lung imaging and a machine learning model that integrates laboratory test data with imaging data can accu-
rately predict the overall recovery of COVID-19 patients from baseline characteristics.
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Introduction

The outbreak of the 2019 novel coronavirus (SARS-CoV-
2) began in December 20191,2 and has since rapidly
spread across the globe,3 causing the World Health Orga-
nization (WHO) to officially declare COVID-19 a pan-
demic. Non-specific findings associated with COVID-19
can include fever, cough, and other flu-like symptoms.4–6

A significant proportion of COVID-19 patients progress
into severe acute respiratory syndrome, which is gener-
ally treated with mechanical ventilation and intensive
care unit (ICU) admission.7–9

Both computed tomography (CT) images and labora-
tory tests have been applied to diagnose COVID-19 during
the current pandemic.10–12 Significant findings on chest
CT scan and/or a positive viral RT-PCR test are used to
indicate infection.13,14 On CT scans, COVID-19 patients
classically develop ground glass opacity (GGO) lesions
or consolidation lesions, which can present clinically as
shortness of breath and decreased oxygen saturations.
Laboratory values such as creatinine and potassium are
often informative and aid clinicians in their diagnoses,
but independently do not capture the entire clinical pic-
ture.

It has been shown that COVID-19 patients can develop
serious liver, kidney, and cardiac injuries15 that may
lead to further long-term damage and functional dete-
rioration.16,17 Moreover, little is known about the organ-
specific recovery of COVID-19 symptoms after hospital
discharge.18 In general, lung lesion sizes on a CT scan
of COVID-19 patients increase from their initial hospital
admission to the beginning of remission,19,20 but the lon-
gitudinal evolution of their lesions and clinical presenta-
tion remains unclear.

It would be of great clinical utility to characterize and
predict recovery within each organ system impacted by
COVID-19 to better personalize therapies, and to effi-
ciently allocate hospital resources based on need. More-
over, the accurate prediction of organ-specific clinical
outcomes is important to flag potential future compli-
cations, and thus plan relevant and appropriate longitu-
dinal follow-up. To this end, we investigated the impact
of COVID-19 patients’ initial CT scans and blood draws
on future organ function scores to establish a predictive
model for organ-specific recovery from baseline charac-
teristics.

Results and discussion
Cohort statistics

The general scheme of our study design and procedures
are described in Fig. 1. We prospectively followed 285
COVID-19 patients from January to July of 2020. Patients’
characteristics are presented in Table 1. These patients
were followed up monthly after their initial discharge
from the Yichang Central Hospital where they were first
diagnosed with COVID-19. If they agreed to participate

in this longitudinal study, they were enrolled and con-
sented to use of their anonymized medical record data,
including demographic information, lifestyle (including
smoking and alcohol use), routine physical examination,
and clinical laboratory data. We then analyzed these data
and established an artificial intelligence (AI) model to
predict organ functional recovery (Fig. 1). Demograph-
ics and clinical parameters of all the study subjects are
provided in Table 1, and the association of each clinical
parameter with critical illness is quantified with a t-test
P value for each.

Prediction of future organ function

We trained five organ-specific machine learning models
that synergistically used AI-analyzed baseline CT scan
data combined with laboratory testing values to predict
organ recovery for the renal, pulmonary, immune, hep-
atic, and cardiac organ systems, where baseline data are
defined as the first laboratory and imaging data obtained
after admission. The models predicted whether a patient
would recover at any point during their follow-up, includ-
ing after hospital discharge. To ensure that the mod-
els were not overfit and that they were generalizable,
we then applied these models into a held–out valida-
tion set of 87 patients. We achieved strong AUCs of 0.89
(95% CI = 0.82–0.94) for the immune model and 0.83 (95%
CI = 0.74–0.90) for the renal model on held–out validation
set data (Fig. 2). The analogous results for the lung, liver,
and coagulation models were also significant, with AUCs
of 0.84 (95% CI = 0.75–0.90) for lung, 0.81 (95% CI = 0.72–
0.89) for liver, and 0.81 (95% CI = 0.72–0.89) for coagula-
tion (Fig. S1).

Kaplan-Meier analysis

To demonstrate the prognostic utility of the organ-
specific recovery AI models, we applied our model scores
to predict prognosis within the context of a Kaplan-Meier
analysis, which is well-suited to the analysis of data
with differing follow-up timepoints. We used the mod-
els to stratify the patient population into “high model
score” and “low model score” groups for each of the
organ systems characterized based upon the midpoint
of the LightGBM prediction scale, in this case 0.5. The
model is trained such that high model scores are asso-
ciated with organ-specific recovery, while low model
scores are associated with non-recovery, where the clin-
ical endpoint of recovery with respect to a given organ
is defined as the point in time when the organ func-
tion score crosses over from abnormal range to normal
range (methods). Both the immune and kidney mod-
els have strong performance, with significant stratifica-
tion of patients with log rank P values <0.0001 for each
organ-specific overall recovery prediction when applied
to the pooled training and validation cohorts (Fig. 3). It
is clear from the Kaplan-Meier curves that the patients
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Figure 1. Proposed framework for NCP diagnosis and prognosis prediction. A large CT and metadata dataset was constructed from 285 patients
(247 756 CT images from COVID-19 pneumonia). These NCP images were entered into an AI diagnostic system with patients’ medical records
to generate a quantitative report of lung lesions. We next analyzed lung-lesion features and clinical metadata to evaluate the changing of bodily
functions after the initial hospital discharge using a LightGBM model and conduct a prognosis analysis using a Kaplan-Meier curve

who are predicted to recover by the model tend to recover
earlier and more consistently than those predicted not
to recover. The liver, lung, and coagulation models also
demonstrate a statistically significant ability to stratify
patients into recovering and non-recovering populations,
with the most striking difference coming early in the
patients’ disease course (Fig. S2).

Cross-correlation matrix of clinical and imaging
features

To characterize the relationships between each labo-
ratory test and lesion size, we computed Spearman’s
rank correlation coefficient across the set of labora-
tory test values and CT lung imaging feature sizes
as determined by the AI-imaging pipeline, and then
applied a hierarchical clustering algorithm (hclust(),
implemented in R using the complete linkage method)
to the results (Fig. S3). We clustered the laboratory and
CT feature values such that highly correlated features
come together, and highly anti-correlated features move
apart.

There are two large clusters that are formed. The first
is located in the lower right portion of the figure and com-
prises features that are positively correlated with larger
lung-lesion sizes, and generally indicate a heightened
inflammatory state that portends worse clinical out-
come. Higher levels of several key features from this data
are known in the literature to be associated with severe
COVID-19 disease including erythrocyte sedimentation
rate,21 C-reactive protein,22 lactate dehydrogenase,23 and
blood urea nitrate.24

Conversely, the cluster in the top left of Fig. S3 is
the feature for which lower values correspond to more
favorable outcomes, and smaller lesion size on CT imag-
ing. Several are described within the literature as anti-
correlated with COVID-19 severity including sodium,25

hemoglobin,26 and albumin.27

Discussion

To our knowledge, this study is the first to demonstrate
organ-specific recovery prediction from baseline imaging
and laboratory values in COVID-19 patients. The integra-
tive machine learning models were shown to generalize
to a held-out validation dataset, achieving AUCs > 0.8 for
prediction of recovery in each of the organ systems to
which they were applied.

In the era of precision healthcare, prediction of recov-
ery using only baseline data is highly valuable to clin-
icians, as it is critical to understand the longitudinal
impacts of COVID-19 tailored to the characteristics of
each patient and to their condition. Moreover, predic-
tion of time to patient recovery would enable health-
care systems to better allocate resources ahead of time
to better ensure that ICUs, personnel, and resources are
distributed in such a way as to avoid the system from
reaching capacity and restricting patient care. Finally,
each of the organ systems characterized in the present
study: renal, pulmonary, immune, hepatic, and cardiac,
is essential to a patient’s short- and long-term health,
and hence insight into their recovery has key conse-
quences for treatment as well as the wellbeing of the
patient in the acute and chronic settings.

Given the success of our integrative machine learning
model in this held-out validation cohort, the next step to
bring it closer to translation to the clinical environment is
to independently validate it at a separate medical center,
and even in a population in another nation. Moreover, we
expect the model to maintain predictive power and accu-
racy with longer follow-up data, and to this end intend to
keep accumulating data.

In sum, COVID-19 can have critical impacts on key
organ systems within the body, and there is an unmet
need to predict organ-specific recovery from the impacts
of this disease to better allocate healthcare resources and
provide the patients with highly personalized medical
treatments. We have trained and validated in a held-out
test set of organ-specific integrative machine learning
models that can predict recovery from baseline patient
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Figure 2. ROC curves and confusion matrices for immune and renal systems. (A) The immune system model resulted in an AUC of 0.89. (B) The
renal system model resulted in an AUC of 0.83. (C) The confusion matrix for the immune system model on the validation set, with an accuracy
of 0.83. (D) The confusion matrix for the renal system model on the validation set, with an accuracy of 0.79.

Figure 3. Kaplan-Meier curves to assess patient recovery. Kaplan-Meier curves for the (A) immune and (B) renal systems. The patient population
was stratified into high and low model scores based on a cutpoint of 0.5, the general midpoint of the lightGBM model output range.

imaging and laboratory testing upon hospital admission
and demonstrated AUCs > 0.8 across each organ system
to which the model is applied.

Methods
Study design and population

This was a retrospective observational study performed
at the Yichang Central Hospital in Yichang, Hubei, China.
We obtained 247 756 deidentified individual CT image
slices from 285 patients (Table 1). Patients were eligible
for recruitment if they 1) were confirmed as novel coro-
navirus pneumonia (NCP) patients, 2) had one or more

clinical visits to the Yichang Central Hospital, 3) had
CT imaging completed and 4) had comprehensive blood
tests completed. Patients were excluded if they did not
meet any single criterion of recruitment above.

CT imaging data collection

CT scans from the 285 patients were collected longi-
tudinally both before and after their hospital discharge
(Fig. 1). Scans were acquired using a Siemens CT scanner
with 2–3 mm thick slices. To ensure that these images
were accurate and usable, first-pass screening was done
on all images to filter out low-quality, unreadable, and
artifact-heavy scans. These scans were then fed into
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a segmentation and classification algorithm19 to calcu-
late the volume of different lung lesions such as ground
glass opacity (GGO), consolidation, interstitial thicken-
ing, pleural effusion, and fibrosis lesions.

Patient metadata collection

Demographic data and a wide range of laboratory value
data were collected from each patient. Blood tests were
collected many times for each patient, although the spe-
cific timing and number of blood tests were variable.
Laboratory values that were collected include albumin,
C-reactive protein, lactate dehydrogenase, and other
salient values (Table 1).19

Integrative machine learning model

We applied the LightGBM machine learning model28–30

architecture, a tree-based model, to predict post-
discharge outcomes in our patient cohort. Because it is
based on decision trees, the LightGBM model is capable
of dealing with missing values (NaN values) from miss-
ing tests. This allowed us to include the maximum num-
ber of laboratory tests without leaving out any patients
because of missing data.

When training the LightGBM models, we used the
Python function “random.shuffle” to split the dataset of
285 patients randomly into separate training and valida-
tion sets, with a train to validation ratio of 7:3 while pre-
serving the original critically ill to non-critically ill ratio
in both the training and validation sets. Each model was
trained separately on the training data and had hyperpa-
rameters fine-tuned using the Optuna algorithm for 1000
iterations.31

Prognosis prediction

Patients were categorized by hospital physicians into
critically ill and non-critically ill cohorts, with ICU admis-
sion or need for mechanical ventilation as the criteria for
the critically ill cohort.

Organ function calculation

Each organ or system that we examined in this study
(liver, lung, kidney, immune, and coagulation) was asso-
ciated with a set of laboratory values (CT scan values for
lung) that we observed, which were available to us in the
study. For example, the set of laboratory values associ-
ated with the liver are blood urea nitrogen (BUN),32–34 ala-
nine transaminase (ALT), aspartate transaminase (AST),
albumin, and direct bilirubin. For kidneys, we associated
BUN, estimated glomerular filtration rate (eGFR), potas-
sium, sodium, and bicarbonate. For immune, we used
erythrocyte sedimentation rate (ESR), lactate dehydro-
genase (LDH), C-reactive protein (CRP), white blood cell
count, and neutrophil count. For coagulation, we used
platelet count, partial thromboplastin time (PTT), pro-
thrombin time (PT), and D-dimer. For pulmonary, we

used the sizes of the five lesion types output by the seg-
mentation algorithm: ground glass opacity (GGO), inter-
stitial thickening, pleural effusion, pulmonary cavity,
and fibrosis. We then created organ function scores for
each of the organs using their associated laboratory val-
ues, modeled after peer-reviewed equations such as the
multiple organ dysfunction (MODS) score,35 SOFA score
for sepsis,36 and the MELD score for liver disease.37 In
all three clinical scoring systems, several markers of dis-
ease are aggregated linearly to result in a single score.
Similarly in our case, if any of a patient’s laboratory val-
ues were determined to be abnormal as per guidelines in
the UpToDate clinical decision resource,38 that patient’s
organ function score would increase by 1. Therefore, in
the example above, a patient could have a minimum
score of 0, and a maximum score of 5. As there was no
strong rationale to treat organ markers differently, we
weighted them equally within the organ score function.
In addition, we did not have sufficient data to stratify
organ function classification with more granularity than
“normal” and “abnormal”. We further considered a score
of 0 to be normal or recovered, and a score of 1 or above
to be abnormal. We then defined a patient as recovered
for a given organ when the score for that organ reached
zero, i.e. all the associated lab values for the organ have
returned to normal. For example, patients would be con-
sidered “liver recovered” if they had follow-up lab tests
with a liver score of 0. Additionally, we estimated the day
that the patient recovered as the number of days after
admission when the first score of 0 blood test was taken.

Statistics

To assess the model’s performance for each classifica-
tion task accuracy, receiver operator characteristic curve
(ROC) analysis was applied. ROC curves are generated
by plotting the true positive rate (sensitivity) versus
the false-positive rate (1–specificity) across different cut
points for the output machine learning model score. An
AUC value of 1 indicates perfect performance, whereas
an AUC approaching 0.5 indicates performance equiva-
lent to random chance. Sensitivity, specificity, and accu-
racy were determined using a cutpoint model score of
0.5.

The organ-specific trained machine learning mod-
els were used to stratify patients into two populations,
which were allocated into high- and low-risk groups
in a Kaplan-Meier analysis for overall recovery. In this
analysis the traditional Kaplan-Meier analysis method is
applied; however, recovery is used instead of the canon-
ical overall survival clinical end-point.

In addition, we applied Spearman’s rank correlation
coefficient to analyze the relationships between quanti-
tative lesion features on CT imaging as ascertained by
the AI image analysis workflow in addition to laboratory
test values. We also provided descriptive statistics such
as the results of two-tailed t-tests to quantify the differ-
ence between critically ill and non-critically ill patients
at the time of hospital admission.
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We applied the Python scikit-learn library and Prism
version 8 to generate plots and conduct all other statis-
tical analyses. The measurements of sensitivity, speci-
ficity, and accuracy were calculated by Python scikit-
learn library. Unless noted otherwise, all experiments
were performed with separate training and validation
sets (7:3 train: validation ratio).

Study approval

All radiographic and laboratory tests were performed
as a part of patients’ routine clinical care, including
CT images. Institutional Review Board (IRB)/Ethics Com-
mittee approvals were obtained (IRB number 2020-KY-
010, Sun Yat-Sen University Memorial Hospital). The
work was conducted in compliance with the United
States Health Insurance Portability and Accountability
Act (HIPAA), the tenets of the Declaration of Helsinki,
the Chinese CDC policy on reportable infectious diseases,
and Chinese Health and Quarantine Law.
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online.
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