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Abstract: Advanced glycation end-products (AGEs) generated with aging or in the presence of
diabetes mellitus, particularly AGEs derived from the glucose/fructose metabolism intermediate
glyceraldehyde (Glycer-AGEs; termed toxic AGEs (TAGE)), were recently shown to be closely
involved in the onset/progression of diabetic vascular complications via the receptor for AGEs
(RAGE). TAGE also contribute to various diseases, such as cardiovascular disease; nonalcoholic
steatohepatitis; cancer; Alzheimer’s disease, and; infertility. This suggests the necessity of minimizing
the influence of the TAGE-RAGE axis in order to prevent the onset/progression of lifestyle-related
diseases (LSRD) and establish therapeutic strategies. Changes in serum TAGE levels are closely
associated with LSRD related to overeating, a lack of exercise, or excessive ingestion of sugars/dietary
AGEs. We also showed that serum TAGE levels, but not those of hemoglobin A1c, glucose-derived
AGEs, or Nε-(carboxymethyl)lysine, have potential as a biomarker for predicting the progression
of atherosclerosis and future cardiovascular events. We herein introduce the usefulness of serum
TAGE levels as a biomarker for the prevention/early diagnosis of LSRD and the evaluation of
the efficacy of treatments; we discuss whether dietary AGE/sugar intake restrictions reduce the
generation/accumulation of TAGE, thereby preventing the onset/progression of LSRD.

Keywords: advanced glycation end-products (AGEs); biomarker; toxic AGEs (TAGE); receptor
for AGEs (RAGE); cardiovascular disease (CVD); nonalcoholic steatohepatitis (NASH); cancer;
Alzheimer’s disease (AD); infertility; lifestyle-related diseases (LSRD)

1. Introduction

Diabetes mellitus (DM) is one of the largest global health emergencies of the 21st century.
Increases are reported each year in the number of individuals with this hyperglycemic condition,
which may result in life-changing complications. In addition to the 415 million adults (this will
increase to 642 million adults by 2040) already estimated to currently have DM (a DM-related death
occurs every 6 s), there are 318 million adults with impaired glucose tolerance (IGT), which places
them at high risk of developing the disease in the future [1]. Under hyperglycemic conditions,
a non-enzymatic glycation reaction (Maillard reaction) between reducing sugars and the amino
groups of proteins progresses in an accelerated manner; it begins with the conversion of reversible
Schiff base adducts, and then to more stable, covalently-bound Amadori rearrangement products.
Over the course of days to weeks, these early glycation products undergo further reactions, such
as rearrangements and condensation to become irreversibly cross-linked, fluorescent macroprotein
derivatives termed advanced glycation end-products (AGEs) [2–5]. Continuous hyperglycemia is
involved in the pathogenesis of diabetic micro- and macro-vascular complications via various metabolic
pathways, and numerous hyperglycemia-induced metabolic and hemodynamic conditions exist,
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including the increased generation of various types of AGEs [6–9]. We produced seven specific
antibodies for non-Nε-(carboxymethyl)lysine (CML) AGEs that recognized the immunoreactive types
of AGEs (glucose-, fructose-, glyceraldehyde-, glycolaldehyde-, methylglyoxal (MGO)-, glyoxal
(GO)-, and 3-deoxyglucosone (3-DG)-derived AGEs) [10–13]. We recently demonstrated that
glyceraldehyde-derived AGEs, the predominant components of toxic AGEs (TAGE), play an important
role in the pathogenesis of angiopathy in DM patients [7–9,14]. Moreover, a growing body of evidence
suggests that the interaction between TAGE and the receptor for AGEs (RAGE) alters intracellular
signaling, gene expression, and the release of pro-inflammatory molecules, and also elicits reactive
oxygen species (ROS) generation in numerous types of cells, all of which may contribute to the
pathological changes observed in lifestyle-related diseases (LSRD).

Hence, a focus was placed on TAGE and a specific competitive enzyme-linked immunosorbent
assay (ELISA) was developed, and the clinical utility of measuring TAGE as a biomarker for evaluating
disease activity in LSRD was examined.

2. AGEs

AGEs are generated by the Maillard reaction, a non-enzymatic reaction, between the aldehyde
or ketone groups of reducing sugars, such as glucose and fructose, and the N-terminal α-amino
group or ε-amino group of the lysine residues of proteins, and contribute to the aging of proteins as
well as pathological complications associated with DM [2–9]. In hyperglycemia, this process begins
with the conversion of reversible Schiff base adducts to more stable, covalently bound Amadori
rearrangement products. Over the course of days to weeks, these Amadori products undergo further
rearrangement reactions to generate irreversibly bound moieties known as AGEs. AGEs were originally
characterized by their yellow-brown fluorescent color as well as their ability to form cross-links with
and between amino groups; however, this term now encompasses a broad range of advanced products
of the glycation process, including CML, Nε-(carboxyethyl)lysine (CEL), and pyrraline, which do
not display color or fluorescence and are not cross-linked proteins [2–5]. In vivo AGE generation is
affected by sugar concentrations, the rate of turnover of the chemically modified target, and the time
available. Increases in glucose concentrations were previously considered to have a major influence
on the Maillard reaction; however, glucose is one of the least reactive sugars found in biological
organisms [2,15]. In addition to extracellular AGE generation, the rapid intracellular generation of
AGEs from intracellular precursors such as trioses (i.e., glyceraldehyde), dicarbonyl compounds, and
fructose has been gaining attention [16,17]. Due to marked variations in the structures of AGEs found
in vivo and the complex nature of the reactions required for their generation, only some AGEs have had
their structures identified to date [18]. The structures of cytotoxic AGEs have not yet been elucidated.

3. Alternative Routes for the Generation of Various AGEs in Vivo

We previously reported the contribution of α-hydroxyaldehydes (glyceraldehyde and
glycolaldehyde), dicarbonyl compounds (MGO, GO, and 3-DG), and fructose as well as glucose
to the glycation of proteins [10–13]. Seven immunochemically distinct classes of AGEs (Glu-AGEs,
glucose-derived AGEs; Fru-AGEs, fructose-derived AGEs; Glycer-AGEs, glyceraldehyde-derived
AGEs; Glycol-AGEs, glycolaldehyde-derived AGEs; MGO-AGEs, MGO-derived AGEs; GO-AGEs,
GO-derived AGEs; and 3-DG-AGEs, 3-DG-derived AGEs) have been detected in serum samples
collected from diabetic nephropathy on hemodialysis (DN-HD) [10–13]. Accordingly, the in vivo
generation of AGEs was suggested to occur via a process involving the Maillard reaction, sugar
autoxidation, and sugar metabolic pathways (Figure 1).



Diagnostics 2016, 6, 23 3 of 22
Diagnostics 2016, 6, 23 3 of 21 

 

 
Figure 1. Alternative routes for the generation of advanced glycation end-products in vivo: Reducing 
sugars, such as glucose, fructose, and glyceraldehyde, which are known to react non-enzymatically 
with the amino groups of proteins to form reversible Schiff bases and Amadori products/Heyns 
products. These early glycation products undergo further complex reactions, such as rearrangement, 
dehydration, and condensation, to become irreversibly cross-linked, heterogeneous fluorescent 
derivatives, termed advanced glycation end-products (AGEs). Glu-AGEs: glucose-derived AGEs; 
Fru-AGEs: fructose-derived AGEs; Glycer-AGEs: glyceraldehyde-derived AGEs; Glycol-AGEs: 
glycolaldehyde-derived AGEs; MGO-AGEs: methylglyoxal-derived AGEs; GO-AGEs: glyoxal-
derived AGEs; 3-DG-AGEs: 3-deoxyglucosone-derived AGEs; CML: Nε-(carboxymethyl)lysine; P-
NH2: free amino residue of a protein; AR: aldose reductase; SDH: sorbitol dehydrogenase; FK: 
fructokinase; HbA1c: hemoglobin A1c; TAGE: toxic AGEs. 

4. Pathway for the Generation of Glyceraldehyde (GLA) in Vivo 

Two different pathways are responsible for the in vivo generation of GLA, which is the precursor 
of TAGE: (i) the glycolytic pathway (glycolysis) and (ii) the fructose metabolic pathway (fructolysis) 
[7–9,19]. In pathway (i), the enzyme GLA-3-phosphate (G-3-P) dehydrogenase (GAPDH) generally 
breaks down the glycolytic intermediate G-3-P. However, reductions in GAPDH activity lead to the 
intracellular accumulation of G-3-P. Therefore, G-3-P starts to be metabolized via an alternative 
pathway, causing increases in the concentration of GLA and, as a result, promotes the generation of 
TAGE. Therefore, a positive feedback mechanism is in operation; namely, the inhibition of GAPDH 
activity by GLA promotes the generation of TAGE. In pathway (ii), an increase in intracellular glucose 
concentrations under hyperglycemic conditions stimulates the generation of fructose via the polyol 
pathway in insulin-independent tissues, such as nerve tissues, the kidneys, the lens of the eyes, red 
blood cells, and the brain [20,21]. Fructose is a constituent of high-fructose corn syrup (HFCS) and 
sucrose, and, hence, is commonly included in the human diet [22,23]. Fructokinase phosphorylates 
fructose to fructose-1-phosphate, which is then broken down into GLA and dihydroxyacetone 
phosphate by aldolase B [24,25]. The GLA produced induces the generation of TAGE in intracellular 
compartments. The accumulation of TAGE results in cell damage, TAGE leak into the blood, and, 
thus, TAGE levels in circulating fluids are considered to increase (Figure 2). 

Figure 1. Alternative routes for the generation of advanced glycation end-products in vivo: Reducing
sugars, such as glucose, fructose, and glyceraldehyde, which are known to react non-enzymatically
with the amino groups of proteins to form reversible Schiff bases and Amadori products/Heyns
products. These early glycation products undergo further complex reactions, such as rearrangement,
dehydration, and condensation, to become irreversibly cross-linked, heterogeneous fluorescent
derivatives, termed advanced glycation end-products (AGEs). Glu-AGEs: glucose-derived AGEs;
Fru-AGEs: fructose-derived AGEs; Glycer-AGEs: glyceraldehyde-derived AGEs; Glycol-AGEs:
glycolaldehyde-derived AGEs; MGO-AGEs: methylglyoxal-derived AGEs; GO-AGEs: glyoxal-derived
AGEs; 3-DG-AGEs: 3-deoxyglucosone-derived AGEs; CML: Nε-(carboxymethyl)lysine; P-NH2: free
amino residue of a protein; AR: aldose reductase; SDH: sorbitol dehydrogenase; FK: fructokinase;
HbA1c: hemoglobin A1c; TAGE: toxic AGEs.

4. Pathway for the Generation of Glyceraldehyde (GLA) in Vivo

Two different pathways are responsible for the in vivo generation of GLA, which is the
precursor of TAGE: (i) the glycolytic pathway (glycolysis) and (ii) the fructose metabolic pathway
(fructolysis) [7–9,19]. In pathway (i), the enzyme GLA-3-phosphate (G-3-P) dehydrogenase (GAPDH)
generally breaks down the glycolytic intermediate G-3-P. However, reductions in GAPDH activity lead
to the intracellular accumulation of G-3-P. Therefore, G-3-P starts to be metabolized via an alternative
pathway, causing increases in the concentration of GLA and, as a result, promotes the generation of
TAGE. Therefore, a positive feedback mechanism is in operation; namely, the inhibition of GAPDH
activity by GLA promotes the generation of TAGE. In pathway (ii), an increase in intracellular glucose
concentrations under hyperglycemic conditions stimulates the generation of fructose via the polyol
pathway in insulin-independent tissues, such as nerve tissues, the kidneys, the lens of the eyes, red
blood cells, and the brain [20,21]. Fructose is a constituent of high-fructose corn syrup (HFCS) and
sucrose, and, hence, is commonly included in the human diet [22,23]. Fructokinase phosphorylates
fructose to fructose-1-phosphate, which is then broken down into GLA and dihydroxyacetone
phosphate by aldolase B [24,25]. The GLA produced induces the generation of TAGE in intracellular
compartments. The accumulation of TAGE results in cell damage, TAGE leak into the blood, and, thus,
TAGE levels in circulating fluids are considered to increase (Figure 2).
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Figure 2. Routes for in vivo TAGE generation: The chronic ingestion of excessive amounts of sugar-
sweetened beverages (SSB) and commercial food products increases the levels of the sugar metabolite, 
glyceraldehyde in cells. The glyceraldehyde produced induces the generation of TAGE in intracellular 
compartments. As a result, TAGE accumulate in cells, cause cell damage, and leak into the blood, and, 
thus, TAGE levels in circulating fluids may be considered to increase. Furthermore, the chronic 
ingestion of excessive dietary AGEs (mainly Glu-/Fru-AGEs) increases the enhanced 
generation/accumulation of TAGE and the expression of RAGE, thereby leading to TAGE-RAGE 
interactions. Interactions between TAGE and RAGE alter intracellular signaling, gene expression, and 
the release of pro-inflammatory molecules and also elicit the generation of ROS in numerous types of 
cells, all of which may contribute to the pathological changes observed in lifestyle-related diseases. 
TAGE: toxic AGEs; RAGE: receptor for AGEs; ROS: reactive oxygen species; SSB: sugar-sweetened 
beverages; HFCS: high-fructose corn syrup; AR: aldose reductase; SDH: sorbitol dehydrogenase; FK: 
fructokinase; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; G-6-P: glucose-6-phosphate; F-
6-P: fructose-6-phosphate; F-1,6-DP: fructose-1,6-diphosphate; F-1-P: fructose-1-phosphate; P-NH2: 
free amino residues of proteins. 

5. Methods for the Detection of Serum TAGE Levels 

We found that (i) seven distinct classes of AGE structures circulate in the blood of individuals 
with DN-HD [10–13]; (ii) the neurotoxic effects of the serum fraction from DN-HD patients containing 
various AGE structures are completely neutralized by the addition of antibodies raised against TAGE 
[26]; and (iii) TAGE mimic the deleterious effects of AGE-rich serum purified from DN-HD on 
endothelial cells (EC) [27]. Furthermore, due to their stronger binding affinity to the receptor for 
RAGE [28,29], TAGE are considered to be more cytotoxic than other AGEs. Hence, we developed a 
specific competitive ELISA for TAGE. 

5.1. Preparation of an Anti-TAGE-Specific Antibody 

An immunopurified anti-TAGE antibody was prepared as described in our previous studies 
[11]. Briefly, 4 mg of TAGE-rabbit serum albumin (RSA) was emulsified in 50% Freund’s complete 
adjuvant and then injected intradermally into Japanese white rabbits. This procedure was repeated 
at weekly intervals for 6 weeks. After a 2-week break, the rabbits were given a booster injection of 4 
mg of the TAGE-RSA. The animals were bled on the 10th day after the last injection, and their sera 
were obtained for further affinity purification. A CNBr-activated Sepharose 4B gel was coupled to 

Figure 2. Routes for in vivo TAGE generation: The chronic ingestion of excessive amounts of
sugar-sweetened beverages (SSB) and commercial food products increases the levels of the sugar
metabolite, glyceraldehyde in cells. The glyceraldehyde produced induces the generation of TAGE in
intracellular compartments. As a result, TAGE accumulate in cells, cause cell damage, and leak into
the blood, and, thus, TAGE levels in circulating fluids may be considered to increase. Furthermore,
the chronic ingestion of excessive dietary AGEs (mainly Glu-/Fru-AGEs) increases the enhanced
generation/accumulation of TAGE and the expression of RAGE, thereby leading to TAGE-RAGE
interactions. Interactions between TAGE and RAGE alter intracellular signaling, gene expression, and
the release of pro-inflammatory molecules and also elicit the generation of ROS in numerous types
of cells, all of which may contribute to the pathological changes observed in lifestyle-related diseases.
TAGE: toxic AGEs; RAGE: receptor for AGEs; ROS: reactive oxygen species; SSB: sugar-sweetened
beverages; HFCS: high-fructose corn syrup; AR: aldose reductase; SDH: sorbitol dehydrogenase; FK:
fructokinase; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; G-6-P: glucose-6-phosphate; F-6-P:
fructose-6-phosphate; F-1,6-DP: fructose-1,6-diphosphate; F-1-P: fructose-1-phosphate; P-NH2: free
amino residues of proteins.

5. Methods for the Detection of Serum TAGE Levels

We found that (i) seven distinct classes of AGE structures circulate in the blood of individuals
with DN-HD [10–13]; (ii) the neurotoxic effects of the serum fraction from DN-HD patients containing
various AGE structures are completely neutralized by the addition of antibodies raised against
TAGE [26]; and (iii) TAGE mimic the deleterious effects of AGE-rich serum purified from DN-HD
on endothelial cells (EC) [27]. Furthermore, due to their stronger binding affinity to the receptor for
RAGE [28,29], TAGE are considered to be more cytotoxic than other AGEs. Hence, we developed
a specific competitive ELISA for TAGE.

5.1. Preparation of an Anti-TAGE-Specific Antibody

An immunopurified anti-TAGE antibody was prepared as described in our previous studies [11].
Briefly, 4 mg of TAGE-rabbit serum albumin (RSA) was emulsified in 50% Freund’s complete adjuvant
and then injected intradermally into Japanese white rabbits. This procedure was repeated at weekly
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intervals for 6 weeks. After a 2-week break, the rabbits were given a booster injection of 4 mg of the
TAGE-RSA. The animals were bled on the 10th day after the last injection, and their sera were obtained
for further affinity purification. A CNBr-activated Sepharose 4B gel was coupled to TAGE-bovine serum
albumin (BSA) as described previously [11]. The anti-TAGE antiserum, which contained anti-TAGE
and anti-CML antibodies, was applied to a column (2.5 ˆ 5.5 cm) containing Sepharose 4B coupled to
TAGE-BSA. After washing with phosphate-buffered saline (PBS), the adsorbed fractions were eluted with
20 mM sodium phosphate buffer containing 1 M potassium thiocyanate (pH 7.4). The eluted fractions
were pooled, concentrated using Centriprep-10, and passed through a PD-10 column equilibrated with
PBS. The eluted fraction was then loaded onto a column (1.5 ˆ 5.5 cm) containing Sepharose 4B coupled
with CML-BSA, which was washed with PBS to obtain the unadsorbed fraction (anti-TAGE antibody).
The anti-TAGE antibody was pooled, concentrated with Centriprep-10, and passed through a PD-10
column equilibrated with PBS, before being used in an ELISA [11].

The immunopurified anti-TAGE antibody did not recognize well-characterized AGE structures,
such as CML, CEL, pyrraline, pentosidine, argpyrimidine, imidazolone, GO-lysine dimers, MGO-lysine
dimers, and GLA-derived pyridinium. Furthermore, it did not recognize AGEs with unknown
structures, such as Glu-AGEs, Fru-AGEs, Glycol-AGEs, GO-AGEs, MGO-AGEs, and 3-DG-AGEs [11,27,30].
Instead, the anti-TAGE antibody specifically recognized unique unknown Glycer-AGE structures.
The anti-TAGE antibody was able to detect high- and low-molecular-weight TAGE with unique
unknown structures in human/animal sera [11,27,30].

5.2. Competitive ELISA for Serum TAGE Levels

Serum TAGE levels were measured with a competitive ELISA using an immunopurified
anti-TAGE antibody as described previously [11]. Briefly, 96-well (flat-bottomed without a lid, high
binding) enzyme/radio immunoassay plates were coated with 1 µg/mL TAGE-BSA standard solution
in each well and incubated at 4 ˝C overnight. The wells were washed three times with 0.3 mL of the
washing solution (PBS containing 0.05% Tween-20). Wells were then blocked by being incubated for
1 h with 0.2 mL of a solution of PBS containing 1% BSA. After washing with the washing solution,
test samples (50 µL) were added to each well as a competitor for 50 µL of the immunopurified
anti-TAGE antibody (1:1000), followed by an incubation for 2 h at 30 ˝C with gentle shaking on
a horizontal rotary shaker. Wells were then washed with washing solution and developed with
alkaline phosphatase-linked anti-rabbit IgG utilizing p-nitrophenyl phosphate as the colorimetric
substrate. The TAGE concentrations of each sample were read from the calibration curve for the
TAGE-BSA standard and were expressed as TAGE units (U) per mL, where 1 U corresponded to 1 µg
of the TAGE-BSA standard [30,31]. The sensitivity and intra- and inter-assay coefficients of variation
were 0.01 U/mL, 6.2%, and 8.8%, respectively [30,31].

6. Clinical Relevance of Serum TAGE Levels and LSRD

We recently demonstrated that TAGE play an important role in the pathogenesis of angiopathy in
DM patients [7–9,14]. Moreover, a growing body of evidence suggests that the interaction between
TAGE and RAGE alters intracellular signaling, gene expression, and the release of pro-inflammatory
molecules, and also elicits ROS generation in numerous types of cells, all of which may contribute to
the pathological changes observed in diabetic vascular complications, cardiovascular disease (CVD),
nonalcoholic steatohepatitis (NASH), cancer, Alzheimer’s disease (AD), and infertility [7–9,14,30–44].
Therefore, the inhibited formation of TAGE, blockade of TAGE-RAGE interactions, and suppression
of RAGE expression or its downstream pathways are promising targets for therapeutic interventions
against LSRD.

6.1. Non-DM/DM

There is a growing body of evidence to suggest that continuous hyperglycemia under diabetic
conditions enhances the generation of AGEs, which are senescent macroprotein derivatives, through
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non-enzymatic glycation. We recently demonstrated that TAGE play an important role in the
pathogenesis of angiopathy in DM patients [7–9]. Furthermore, interactions between TAGE and RAGE
have been shown to alter intracellular signaling, gene expression, and the release of pro-inflammatory
molecules and also elicit the generation of ROS in numerous types of cells (such as EC, pericytes,
mesangial cells, tubular cells, and podocytes), all of which may contribute to the pathological changes
associated with diabetic vascular complications [7–9].

The findings of our recent studies revealed that serum TAGE levels, but not those of hemoglobin
A1c (HbA1c), Glu-AGEs or CML were (i) associated with thrombogenic markers (i.e., plasminogen
activator inhibitor-1 and fibrinogen) and low-density lipoprotein cholesterol levels in a general
population [45–47]; (ii) correlated with serum pigment epithelium-derived factor (PEDF) and
dipeptidyl peptidase-4 (DPP-4) levels, markers of insulin resistance (IR), in a general population [48,49];
(iii) associated with visceral and subcutaneous adipose tissue inflammation and decreased adiponectin
levels in outpatients [50,51]; (iv) correlated with vascular inflammation and endothelial dysfunction in
high-risk patients [30,52]; (v) elevated under chronic kidney disease (CKD) and/or DM conditions
and correlated with inflammatory biomarkers such as monocyte chemoattractant protein-1 (MCP-1),
the soluble form of vascular cell adhesion molecule-1 (sVCAM-1) and asymmetric dimethylarginine
(ADMA) [53–57]; (vi) correlated with a soluble form of RAGE (sRAGE) that may reflect tissue RAGE
expression in non-DM and DM subjects [53,54,58,59], thereby suggesting their utility as a marker for the
activation of the TAGE-RAGE axis. Moreover, statin (a hydroxymethyl-glutaryl (HMG)-CoA reductase
inhibitor), α-glucosidase, and the DPP-4 inhibitor, sulfonyl urea, have been shown to significantly
decrease serum TAGE levels, which are associated with reduced biomarker levels for organ damage in
DM or CKD subjects [60–66]. These findings indicate that serum TAGE levels, but not those of HbA1c,
CML, or Glu-AGEs, have potential as a biomarker to predict the onset/progression of LSRD.

6.2. CVD

There is a growing body of evidence, ranging from in vitro experiments to pathological
analyses and epidemiological studies, to suggest that atherosclerosis is intrinsically an inflammatory
disease [67,68]. A recent study found that an acarbose treatment reduced the rate at which the intimal
media of the carotid arteries thickened in patients with DM or IGT, and led to a lower incidence of
CVD [69], indicating that acarbose ameliorates postprandial hyperglycemia, and, hence, inhibits the
onset/progression of CVD. We reported that the activation of the TAGE-RAGE axis resulted in the
generation of intracellular ROS and the subsequent activation of nuclear factor-κB in vascular wall
cells, which may promote the expression of various atherosclerosis- and inflammation-related genes,
thereby contributing to the onset/progression of CVD in DM [6,9,70].

In our previous study, serum TAGE levels, but not those of HbA1c, were found to be a marker of
cumulative postprandial hyperglycemia in DM rats treated with nateglinide [71]. We demonstrated
that serum TAGE, but not HbA1c levels, in DM patients decreased significantly after a 12-week acarbose
treatment [64]. These findings indicate that HbA1c levels do not accurately reflect the ameliorative
effects of acarbose on postprandial hyperglycemia. We suggest that serum TAGE levels may be a useful
biomarker for assessing cumulative postprandial hyperglycemia in DM patients.

Endothelial progenitor cells (EPC) contribute to maintaining the structure and function of the
endothelium, and, hence, facilitate angiogenesis and vascular repair. In addition, the number of
circulating EPC and their activity levels were found to be inversely correlated with atherosclerotic
risk factors. Thus, the number and activity levels of EPC may be useful biomarkers for predicting
cardiovascular events. In recent studies, we found that: (i) TAGE levels, but not those of
HbA1c or CML were independently associated with vascular inflammation, as evaluated by [18F]
fluorodeoxyglucose-positron emission tomography (FDG-PET) in outpatients [30]; (ii) TAGE levels
were one of the independent correlates of the decreased cell number and impaired migratory activity
of circulating EPC in apparently healthy subjects [44], thereby suggesting the involvement of TAGE in
impaired EC repair; and (iii) high baseline TAGE levels were associated with plaque progression in
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an assessment of pitavastatin and atorvastatin in an acute coronary syndrome trial (The JAPAN-ACS
Sub-study) in Japan [72]. These findings indicated that serum TAGE levels, but not those of HbA1c
or CML, have potential as a biomarker for predicting the progression of atherosclerosis and future
cardiovascular events.

6.3. NASH

Nonalcoholic fatty liver disease (NAFLD) ranges from simple steatosis to NASH, leads to fibrosis
and potentially to cirrhosis, liver failure, and hepatocellular carcinoma (HCC), and is one of the
most common causes of liver disease worldwide. NAFLD has also been implicated in other medical
conditions such as IR, obesity, metabolic syndrome (MetS), hyperlipemia, hypertension, CVD, and DM.

We previously demonstrated that TAGE induced fibrogenesis- and inflammation-related gene
and protein expression, such as that of transforming growth factor-β1 (TGF-β1), collagen type
Iα2, and MCP-1, in cultured human hepatic stellate LI90 cells via the NADPH oxidase-derived
generation of ROS [33]. Regarding the effects of TAGE on hepatocytes, we recently reported that
TAGE-RAGE interactions stimulated hepatic C-reactive protein (CRP) in human hepatoma Hep3B cells
via the activation of Rac-1 [73]. We demonstrated that GLA, which is a precursor of TAGE, induced
concentration- and time-dependent cell death and increased the intracellular concentration of TAGE in
Hep3B cells [74]. We also showed that a TAGE-modified protein of 70 kDa, which we identified as heat
shock cognate 70, was detected the earliest and in the greatest abundance in GLA-treated Hep3B cells.
We found that intracellular TAGE increased the mRNA expression of the acute phase reactant CRP [74].
These findings prompted us to speculate that extracellular and intracellular TAGE may play roles in the
pathogenesis of NAFLD/NASH. The excessive intake of fructose contributes to the onset of NAFLD
and to the progression of the disease to NASH. Fructose is metabolized to GLA. We showed that
intracellular TAGE was formed in the presence of fructose. We demonstrated that TAGE ameliorated
IR in mice fed a high-fat, high-fructose diet [75]. These findings suggest that hepatic TAGE are useful
markers for the diagnosis and therapeutic evaluation of IR, and may play a pathological role in the
onset of IR. Additionally, heterogeneous nuclear ribonucleoprotein M (hnRNPM) was identified as one
of the target proteins for TAGE [76]. These findings suggest that TAGE-modified hnRNPM, resulting
from the exposure of cells to fructose, alters gene expression and causes adverse effects in Hep3B cells.

The findings of our recent studies revealed that (i) the formation of TAGE was enhanced during
NASH, and serum and hepatic TAGE levels, but not those of Glu-AGEs or CML, were significantly
higher in patients with NASH than in healthy controls or patients with simple steatosis [50];
(ii) atorvastatin reduced serum TAGE levels in NASH patients with dyslipidemia [77]. These findings
suggest that TAGE play critical roles in the pathogenesis of NASH and may serve as potential targets
for therapeutic interventions [34,40,78,79].

6.4. Cancer

TAGE are known to be cytotoxic in vitro and findings from animal studies suggest their
involvement in the pathogenesis of IR and DM, as well as their complications. Human studies
have suggested the involvement of TAGE in the onset of vascular inflammation [30], NASH [50],
AD [80], and some rare disorders [81,82]. In addition to their potential direct effects, some evidence
indicates that TAGE interact strongly with RAGE to cause inflammatory and oxidative responses,
which have been implicated in the onset of various cancers [83–85].

We previously reported that TAGE stimulated the growth and migration of human melanoma
G361 cells [35]. Moreover, tumor formation by melanoma cell xenografts in athymic mice was
prevented by neutralizing antibodies raised against RAGE. In tumor-bearing mice, survival rates
were prolonged, and a treatment with an anti-RAGE antibody inhibited spontaneous pulmonary
metastases of melanoma. In addition, TAGE were detected in the beds of human melanoma tumors,
whereas their levels were negligible in normal skin. These findings demonstrate that TAGE may
play roles in the growth and invasion of melanoma by interacting with RAGE. We recently found
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that a high-affinity DNA aptamer directed against TAGE (TAGE-aptamer) blocked the progression
of diabetic nephropathy in an animal model of obesity and DM [86]. Furthermore, TAGE-aptamer
significantly inhibited the in vivo tumor growth of G361 cells [87]. Immunohistochemical and Western
blot analyses of G361 cells revealed that the TAGE-aptamer decreased the expression levels of RAGE
and vascular endothelial growth factor (VEGF) [87]. We recently found that TAGE increased viable
cell numbers and up-regulated the mRNA levels of RAGE and VEGF in human breast cancer MCF-7
cells [39]. A neutralizing anti-RAGE antibody blocked TAGE-induced increases in viable cell numbers,
whereas metformin completely suppressed TAGE-induced proliferation as well as the up-regulation
of RAGE and VEGF mRNA levels in MCF-7 cells. We also found that TAGE enhanced the migration
capacity of human lung adenocarcinoma A549 cells by activating Rac1 via ROS generation and
increased their invasion capacity [36].

We very recently reported that circulating TAGE levels were significantly higher in non-B or non-C
(NBNC) HCC patients than in NASH subjects without HCC or control subjects [88]. In a multiple
stepwise regression analysis, age, γ-glutamyl transpeptidase, and high-density lipoprotein cholesterol
(inversely) remained significant and were independently related to TAGE levels. These findings
suggest that TAGE are involved in the pathogenesis of NBNC-HCC, and, thus, have potential as
biomarkers with the ability to discriminate NBNC-HCC from NASH. Very recently, we also found
that circulating TAGE levels show a strong positive association with the increased risk of rectal cancer,
but no association with the risk of colon cancer, in the nested case-control European Prospective
Investigation into Cancer and Nutrition (EPIC) cohort study [89]. In this prospective study in
European populations, circulating TAGE were not associated with an overall risk of colorectal cancer.
Further research is needed in order to investigate the roles of TAGE in the onset of colorectal cancer.

6.5. AD and Schizophrenia

AD is the most common cause of dementia in developed countries. It is characterized
pathologically by the presence of senile plaques (SPs) and neurofibrillary tangles (NFTs), the major
constituents of which are amyloid β (Aβ) protein and tau protein, respectively [41,90]. AGEs, senescent
macroprotein derivatives, formed at an accelerated rate under normal aging, may be identified
immunohistochemically in SPs and NFTs in AD patients. Furthermore, recent clinical evidence has
suggested that DM is one of the risk factors for the onset/progression of AD [91,92]. In our previous
studies, we confirmed that TAGE were strongly neurotoxic in a neuronal culture system [26,41].
The neurotoxicities of TAGE were stronger than those of Glu-AGEs and CML, two extensively
examined AGE species. Moreover, the neurotoxic effects of serum AGEs from DN-HD patients
were completely attenuated by the addition of an anti-TAGE antibody, but not the antibodies of
other AGEs [26,41]. In AD brains, TAGE were mainly detected in the cytosol of neurons in the
hippocampus and parahippocampal gyrus, but not in SPs or astrocytes [80]. These findings suggest
that the production of TAGE during sugar metabolism may not only be cytotoxic to hepatocytes, but
also to neuronal cells and possibly many other cells, thereby inducing cellular and organ impairments.

Evidence obtained over the past 20 years has indicated that Aβ42 levels in the cerebrospinal
fluid (CSF) of AD patients are significantly lower than those in age-matched healthy elderly controls,
whereas total tau and p-tauT181 levels are significantly higher [93]. Furthermore, the levels of other
AD biomarkers, such as VEGF [94] and TGF-β1 [95], were found to be higher in the CSF of AD patients.
We recently demonstrated that intracellular TAGE generation decreased Aβ42 levels and increased
total tau and p-tauT181 levels in culture media and also increased the intracellular levels of total
tau, p-tauT181, VEGF, and TGF-β in human neuroblastoma SH-SY5Y cells [96]. Although the exact
mechanisms underlying the target of TAGE and its downstream signaling pathway currently remain
unclear, the measurement of TAGE levels in the CSF and/or serum may be a useful biomarker for the
early detection of AD [97,98].

We recently demonstrated that TAGE and sRAGE levels were significantly higher and lower,
respectively, in patients with acute schizophrenia, and remained stable over the clinical course [99].
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The ratio of TAGE/sRAGE was also significantly higher in patients with schizophrenia than in
healthy control subjects. Hence, TAGE and TAGE/sRAGE ratios remain useful diagnostic markers of
schizophrenia. However, schizophrenia has been regarded as a functional disease in neuropathological
studies of patients with schizophrenia who lack evidence of prominent neurodegeneration, indicating
the differing roles of increased TAGE levels in schizophrenia and neurodegenerative diseases.

6.6. Infertility

AGEs accumulate with aging and DM and play pivotal roles in their pathogenesis. Aging and
polycystic ovary syndrome, a similar disease to DM, are the most common causes of infertility.
TAGE have been implicated in LSRD, such as IR and postprandial hyperglycemia. Infertile female
patients frequently develop IR and IGT. The relationships between serum TAGE levels and the
numbers of oocytes collected or ongoing pregnancy rates have been examined, and the findings
obtained demonstrated that both factors decreased with age and that ongoing pregnancy rates were
lower in the group with higher serum TAGE levels than in those with lower levels, even at younger
ages [31]. In addition, serum TAGE levels correlated with follicle development, fertilization, embryo
development, and pregnancy in assisted reproductive technologies (ART), suggesting that TAGE
accumulation is a novel and useful indicator of poor responders that is independent of age and day-3
follicle-stimulating hormone [31]. Non-pregnant poor responders were treated with the DPP-4 inhibitor,
sitagliptin, and underwent ART again; ovarian dysfunction improved and ongoing pregnancy rates
significantly increased in the group with serum TAGE levels that were reduced by the sitagliptin
treatment. Furthermore, sitagliptin significantly enhanced follicular and embryonic development.
Clinical and ongoing pregnancy rates were significantly higher in patients treated with sitagliptin (20%
and 14%, respectively) than in controls (2.3% and 0%) (unpublished data).

Infertility treatments using TAGE as an indicator are useful for the early diagnosis of ovarian
dysfunction. Improvements in the accumulation of TAGE may become a novel therapeutic strategy for
a poor ovarian response. Thus, serum TAGE levels may serve as a biomarker for assessing the efficacy
of the prevention, early diagnosis, and treatment of ovarian dysfunction.

The clinical relevance of serum TAGE levels was summarized in Table 1.

7. Prevention of the Generation/Accumulation of TAGE in LSRD

Previous studies reported that the chronic ingestion of excessive amounts of
sugar/HFCS-containing foods/beverages not only caused obesity and MetS, but was also
involved in the onset/progression of CDV, NASH, and AD; however, the underlying mechanisms
currently remain unknown [100,101]. We previously revealed that TAGE strongly correlated with
LSRD. The chronic ingestion of excessive amounts of sugar-sweetened beverages (SSB), which contain
HFCS, sucrose, and dietary AGEs, increased the levels of the sugar metabolite, GLA in the liver.
GLA is known to react non-enzymatically with the amino groups of proteins to generate TAGE,
enhance the generation/accumulation of TAGE, up-regulate RAGE mRNA levels, and increase serum
TAGE levels, leading to TAGE-RAGE interactions. We also demonstrated that increases in hepatic
RAGE expression and the enhanced generation/accumulation of TAGE after the oral consumption
of Glu-AGE-rich beverages by normal rats play important roles in the pathogenesis of vascular
damage [102]. SSB, which contain large amounts of sugar [103] and/or dietary AGEs [104], need
to be taken into consideration for disease prevention, particularly in individuals at high risk of
developing LSRD.

7.1. Dietary AGEs

7.1.1. TAGE Generation/Accumulation

Two major sources of AGEs, exogenous and endogenous AGEs, have been identified in
humans [105–108]. We recently indicated that serum levels of TAGE, but not those of HbA1c, Glu-AGEs,
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or CML, have potential as a biomarker to predict the progression of LSRD [30,44,64,72,109]. We also
reported an increase in the expression of hepatic RAGE and the enhanced the generation/accumulation
of TAGE in normal rats administered Glu-AGE-rich beverages that did not contain TAGE [102].
These findings indicate that Glu-AGEs, which are normally contained in beverages/foods [104], and
are taken orally into the body, enhance the generation/accumulation of TAGE and increase serum
TAGE levels, leading to TAGE-RAGE interactions [102,110].

Table 1. Clinical relevance of serum TAGE levels.

Subjects Correlation Factor Therapeutic Agents References

Apparently healthy EPC Number/Migration (-) [44]
Health examination PAI-1/Fibrinogen (-) [45,46]
Health examination Endothelial function (-) [52]

Outpatients PEDF (-) [48]
Outpatients DPP-4 (-) [49]
Outpatients Adipose tissue inflammation (-) [51]
Outpatients Vascular inflammation (-) [30]

non-DM Insulin resistance (-) [109]
non-DM LDL-C (-) [47]
non-DM sRAGE (-) [58]

non-DM CKD ADMA (-) [57]
T2DM sRAGE/sVCAM-1 (-) [53]
T2DM MCP-1 (-) [55]

T2DM/non-DM sRAGE (-) [59]
Septic shock patients IL-6/ADMA (-) [56]

JAPAN-ACS sub-study Plaque progression (-) [72]
NASH HORMA-IR/Adiponectin (-) [50]

NBNC-HCC/NASH NBNC-HCC (Ò) (-) [88]
EPIC cohort study Rectal cancer; Colon cancer (No) (-) [89]

Schizophrenia sRAGE (-) [99]

Infertile women Embryonic development
/Pregnancy (-) [31]

T2DM TAGE (Ó) α-Glucosidase inhibitor [64]
T2DM TAGE (Ó), Albuminuria (Ó) DPP-4 inhibitor [65]
T2DM TAGE (Ó) Sulfonyl urea [66]

T1DM/T2DM TAGE (Ó) Insulin [54]
T2DM TAGE (Ó) Statin [60]

non-DM CKD TAGE (Ó), Proteinuria (Ó) Statin [61]
Coronary atherosclerosis TAGE (no effect), sRAGE (Ò) Statin [62]

SAMIT TAGE (Ó), ANGPTL2 (Ó) Statin [63]
NASH with dyslipidemia TAGE (Ó) Statin [77]

non-DM CRF TAGE (Ó) Oral adsorbent [110]

7.1.2. AGE Content in Beverages and Foods

Dietary consumption has recently been identified as a major environmental source of
pro-inflammatory AGEs in humans. It is currently being disputed whether dietary AGEs represent
a risk to human health. CML, a representative AGE compound found in food [111,112], has been
suggested to make a significant contribution to circulating CML levels. However, recent studies have
found that the dietary intake of AGEs is not associated with plasma CML concentrations [113,114].
We confirmed that serum TAGE levels, but not those of HbA1c, Glu-AGEs, or CML, have potential
as a biomarker for predicting the progression of LSRD [30,44,64,72,109]. Therefore, we assessed
the concentrations of various AGEs in 1650 beverages and foods commonly consumed in Japan.
The concentrations of four kinds of AGEs (Glu-AGEs, Fru-AGEs, CML, and TAGE), which have
been detected in the sera of non-DM and DM subjects [30,44,64,72,109,110], were measured with
competitive ELISA involving immunopurified specific antibodies [10–13]. The findings of the latter
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assays indicated that Glu-AGEs and Fru-AGEs (particularly Glu-AGEs), but not CML or TAGE, were
present at appreciable levels in beverages and foods commonly consumed in Japan. Glu-AGEs,
Fru-AGEs, CML, and TAGE exhibited concentrations of ě85%, 2%–12%, <3%, and trace amounts in
the beverages examined and ě82%, 5%–15%, <3%, and trace amounts in the tested foods, respectively
(Figure 3A,B) [104].
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In humans, it has been demonstrated that roughly 10% of AGEs (estimated CML) in beverages and
foods are taken into the body. Of these, ~33% are excreted in urine within 48 h of their consumption,
while ~67% accumulate within the body [115]. We examined serum Glu-AGE levels in healthy subjects
and Japanese diabetic nephropathy patients and found that they were 10–20 U/mL and 30–50 U/mL,
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respectively. The consumption of 50,000 U of dietary Glu-AGEs resulted in a blood Glu-AGE level of
1.0 U/mL (50,000 (U)ˆ 0.1 (the proportion that is absorbed)ˆ 1/5000 (mL of blood)). The dietary intake
of food products containing <20,000 U Glu-AGEs has been shown to have negligible effects on the body.
On the other hand, care is needed when mixing Glu-AGE-containing products or consuming large
amounts of Glu-AGE-containing beverages or foods because it may result in elevated concentrations
of Glu-AGEs and sugar in the blood and promote the hepatic accumulation of Glu-AGEs [102,110].

7.1.3. Restricting the Consumption of Dietary AGEs

Previous studies have indicated that it is important to consider the amounts of Glu-AGEs present
in foods as a step to prevent liver disease, particularly in individuals at risk of DM, CVD, NASH, or
chronic renal failure (CRF). Kremezin, an oral adsorbent that slows the onset of CRF by promoting
the removal of uremic toxins, was found to reduce serum Glu-AGE and TAGE levels in non-DM CRF
patients [110]. Furthermore, in an examination of the expression profiles of EC extracted from the
serum samples of the latter patients, the mRNA expression levels of MCP-1, VCAM-1, and RAGE were
found to be significantly lower in cells acquired after a Kremezin treatment than in EC obtained prior
to the treatment [110]. These findings indicate that the pathogenesis of vascular damage is influenced
by dietary Glu-AGEs under TAGE-RAGE-related conditions and that reducing the amount of dietary
Glu-AGEs taken into the body represents a useful strategy against LSRD. Further clinical studies
may provide novel insights into whether restricting the consumption of dietary AGEs is beneficial
for preventing or slowing the progression of LSRD. These findings suggest that the renoprotective
and anti-atherosclerotic properties of Kremezin are due to, at least in part, its AGE-lowering ability
via the inhibited absorption of AGEs. Therefore, the adsorption of dietary AGEs or their precursors
in the intestines by Kremezin has potential as a promising therapeutic strategy for the treatment of
AGE-related disorders including progressive renal disease and accelerated atherosclerosis.

There is accumulating evidence to show the pathological role of dietary AGEs in various
cardiometabolic disorders and aging. However, additional long-term high-quality randomized studies
are needed in order to clarify whether dietary AGE restrictions alleviate the pro-inflammatory and
pro-oxidative milieu and insulin sensitivity and protect against cardiovascular and renal damage in
healthy individuals and high-risk patients for CVD [106,116].

7.2. Sugars (HFCS/Sucrose)

The sugar additives (typically HFCS or sucrose) found in many SSB and commercial products
are widely viewed as the main source of the increased amounts of fructose consumed in developed
countries. Dyslipidemia, obesity, and IR are all strongly associated with greater fructose consumption,
and evidence to show that fructose is involved in the onset/progression of NAFLD is increasing human
studies have linked fructose consumption to hepatic fat accumulation, fibrosis, and inflammation.
In adolescents, increased fructose consumption is linked with various CVD risk factors. However,
visceral obesity may be responsible for these associations. In the United States, fructose consumption
is considered to be associated with the recent increases in the prevalence rates of obesity, fatty liver,
and DM. The liver is extremely sensitive to variations in dietary content and plays the primary role in
the metabolism of simple sugars, such as fructose and glucose [117,118].

7.2.1. TAGE Generation/Accumulation

A growing body of epidemiological and mechanistic evidence argues that excessive sugar
consumption affects human health beyond the simple addition of calories [119]. Sugar has been
implicated in the onset of all diseases associated with MetS [120,121], including hypertension, CVD,
NAFLD/NASH, DM, and the aging process, which is promoted by damage to proteins due to the
non-enzymatic binding of sugars (so-called glycation) [2–5]. We recently reported that the glucose- and
fructose-induced generation of GLA caused TAGE, which may be used as biomarkers to predict
LSRD [30,44,64,72,109].
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7.2.2. Sugar Content in Beverages

The increased consumption of SSB has been observed not only in Western, but also in Asian
countries [122], and has been extensively associated with an increased risk of DM and also with weight
gain, obesity, MetS, hypertriglyceridemia, coronary heart disease, and hypertension [123–129]. In the
setting of a pandemic of obesity and DM, the American Heart Association (AHA) has recently released
scientific recommendations to reduce added-sugar intake to no more than 100 (for women)–150 (for
men) kcal (25–37.5 g sugar)/day for most Americans [130]. A new World Health Organization (WHO)
guideline in 2015 has recommended that adults and children reduce their daily intake of added sugars
to less than 10% of their total energy intake (50 g sugar for a 2000 kcal/day diet). An additional
reduction to less than 5% of the total energy intake or roughly 25 g sugar/day may provide additional
health benefits [131]. These limits are markedly exceeded by today’s society [132].

We recently reported the amounts of total sugar and free glucose and calculated fructose plus
sucrose in a typical beverage in Japan. Approximately 40% of the beverages tested contained 25 g
or more sugar per bottle based on standard serving sizes (Figure 4) [103]. This is the upper limit of
daily sugar intake recommended in the guidelines by the AHA [130] and WHO [131] to prevent health
conditions in women and adults/children, respectively. A 500-mL bottle of a carbonated drink (Coke,
Sprite, or Fanta) contains approximately 50–60 g of added sugars; therefore, the consumption of one
bottle equals the recommended amount of added sugars for one day. The amount of glucose was
ě10 g/bottle (the amount of glucose that is prescribed during hypoglycemia to DM patients in Japan)
in ca. 32% of the beverages examined [103].
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7.2.3. Restricting the Consumption of SSB

We evaluated the amounts of AGEs and sugars in beverages and foods, which cause the generation
of TAGE in the body. We evaluated the amounts of various AGEs in 885 kinds of beverages
and 767 kinds of food, and found that the amounts of AGEs derived from Glu-AGEs/Fru-AGEs
(particularly Glu-AGEs) more accurately reflected the amounts of AGEs in beverages and foods than
those of CML [104]. Our evaluation of the sugar content of 885 kinds of beverages showed that
approximately 40% contained more than the standard intake of sugar (25 g/day) recommended by the
AHA and WHO [103]. The habitual intake of more than a small amount of SSB (360 mL/week) in the
long-term been reported to increase the risk of the onset of DM [133].
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Imamura et al. prospectively examined the relationship between the consumption of SSB and risk
of DM from 17 cohorts (38,253 cases/10,126,754 person years) [134]. They repeated a meta-analysis to
estimate the relative risk for 250 mL/day. The higher consumption of SSB was associated with a greater
incidence of DM, by 18% per one serving/day and 13% before and after adjustments for adiposity.
The habitual consumption of SSB was associated with a greater incidence of DM, independent of
adiposity. These findings suggest that the continued intake of negligible amounts of SSB increases the
risk of DM. The consumption of SSB has been directly and indirectly linked to an increased risk of DM.
Extensive and lasting changes in public policies are needed in order to curb the worldwide obesity
and DM epidemics, and limiting the consumption of SSB may be an important strategy to achieve this.

The findings of our studies suggest that sugars (glucose, fructose, and sucrose) are present at
appreciable levels in common beverages [103], and exogenous dietary Glu-AGEs [104] may contribute
to the accumulation of TAGE in the body. The contents of HFCS/sucrose and dietary AGEs in
beverages/foods need to be taken into consideration for disease prevention, particularly in individuals
at high risk of developing LSRD. Additional clinical investigations may provide us with more
information as to whether the restriction of dietary sugars and Glu-AGEs is beneficial for preventing
the progression of LSRD and represents a novel therapeutic target to prevent these diseases.

These findings are promising in that the concept of the restricted intake of AGEs and sugars in
beverages and foods may be a new strategy when considering the suppressed generation/accumulation
of TAGE and prevention of LSRD.

8. Conclusions and Perspectives

As described above, changes in serum TAGE levels are closely associated with MetS and IR,
postprandial hyperglycemia, dyslipidemia, and hypertension, which are related to overeating, the lack
of exercise, or excessive ingestion of sugars (HFCS and sucrose)/dietary AGEs (Figure 2). We proposed
that the “TAGE theory” strongly correlates with the onset/progression of LSRD, and also suggested
the potential of serum TAGE levels as a biomarker for the prevention/early diagnosis of LSRD
and evaluation of the efficacy of treatments. Our series of studies has indicated that serum TAGE
levels have potential as a novel biomarker for vascular injury and may predict future cardiovascular
events in non-DM/DM. The measurement of TAGE using specific competitive ELISA may identify
high-risk patients and provide us with valuable information for treatment decision-making in the
future. The structure of the epitope recognized by the anti-TAGE antibody was not determined;
however, we established that the anti-TAGE antibody differed from those of well-defined AGEs, as well
as those of AGEs derived from carbonyl or sugar molecules with unknown structures. Accordingly, it is
possible that TAGE have unique structures; however, studies involving spectroscopic and biochemical
analyses are required in order to confirm this.

The characteristics of modern dietary habits (excessive intake of glucose, fructose, and AGE-rich
foods and beverages) promote the generation and accumulation of TAGE in the body, and are
strongly involved in the onset and progression of LSRD. Thus, our findings provide a new concept of
preventative measures against LSRD, including aging.
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