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Abstract

There is growing interest in the use of critical slowing down and critical fluctuations as early

warning signals for critical transitions in different complex systems. However, while some

studies found them effective, others found the opposite. In this paper, we investigated why

this might be so, by testing three commonly used indicators: lag-1 autocorrelation, variance,

and low-frequency power spectrum at anticipating critical transitions in the very-high-fre-

quency time series data of the Australian Dollar-Japanese Yen and Swiss Franc-Japanese

Yen exchange rates. Besides testing rising trends in these indicators at a strict level of confi-

dence using the Kendall-tau test, we also required statistically significant early warning sig-

nals to be concurrent in the three indicators, which must rise to appreciable values. We then

found for our data set the optimum parameters for discovering critical transitions, and

showed that the set of critical transitions found is generally insensitive to variations in the

parameters. Suspecting that negative results in the literature are the results of low data fre-

quencies, we created time series with time intervals over three orders of magnitude from the

raw data, and tested them for early warning signals. Early warning signals can be reliably

found only if the time interval of the data is shorter than the time scale of critical transitions in

our complex system of interest. Finally, we compared the set of time windows with statisti-

cally significant early warning signals with the set of time windows followed by large move-

ments, to conclude that the early warning signals indeed provide reliable information on

impending critical transitions. This reliability becomes more compelling statistically the more

events we test.

Introduction

Since Scheffer et al. published their 2009 [1] and 2012 [2] reviews on early warning signals
(EWSs) preceding regime shifts, there has been an explosion in the number of papers on this

topic for various complex systems. In Table 1, we summarized EWS papers published between

2014 and 2017, showing the types of complex systems they were dealing with, and whether

they could observe the various EWSs. While most of these papers successfully detected
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significant EWSs prior to extreme dynamics in their complex systems, a few reported negative

results for one or more EWSs [3, 4].We found these negative results intriguing.

In principle, a complex system approaching a generic regime shift should exhibit EWSs in

most, if not all early warning indicators (EWIs). However, we also understand that some of

these EWIs (for example, the lag-1 autocorrelation) might sit on top of non-critical back-

grounds, while others (for example, the skewness) are statistically difficult to measure. In addi-

tion, for some EWSs, the tests of statistical significance (for example, the Kendall-tau test) that

are used might be too strict. Therefore, as we strive to avoid false positives (statistically signifi-

cant EWSs but no regime shift), it is also important for us not to throw out the baby with the

bath water, by introducing too many false negatives (regime shift with statistically insignificant

EWSs). To understand how such a compromise can be struck, we turned our focus on the for-

eign exchange (FOREX) market, which is the most fluid market in the financial world. We

chose to work with FOREX data because (1) the FOREX market is a bona fide complex system,

with (2) very frequent booms and crashes, and for which (3) very high-frequency data is avail-

able. The large number of critical transitions (booms and crashes) means that we can test the

performances of the EWIs over many events (instead of only over one large event in many

slowly-evolving complex systems). The high data frequency in the raw data means that we can

systematically test the performances of the EWSs for the same set of events using different test

data frequencies, by omitting more and more raw data points, to simulate lower-frequency

data collected for other complex systems.

To better understand the conditions under which we can reliably obtain EWSs for impend-

ing critical transitions, we use the Kendall-tau test to examine the significance of rising trends

in the three most common EWIs, namely the lag-1 autocorrelation (AC(1)), the variance (Var),

and the low-frequency power spectrum (LFPS) while systematically fine tuning three time scale

parameters, one de-trending parameter, and one LFPS parameter. We compared the perfor-

mances of EWSs with different parameters, and obtained optimal combinations of parameters

for accuracy as well as timeliness of EWSs. We also experimented with poor choices of parame-

ters and found EWSs either lose reliability or simply disappear. In addition to working with the

assumption that EWSs that are concurrent in three EWIs are more reliable than EWSs that do

not simultaneously appear in all three EWIs, we quantitatively analyzed the reliability of EWSs,

and found that they provide useful information for anticipating incoming critical transitions.

The organization of this paper is as follows. In the Data and Methods section, we will

describe the FOREX data we used in our studies, and the pre-processing that we have done.

We also describe how the three EWIs can be computed, and how we test for statistically signifi-

cant rising trends in these EWIs. Beyond the rising trends, we also explain why we insist on

concurrence between the EWSs, and why the endpoints of the rising EWIs must be large for

the EWSs to be predictors of large movements in the FOREX market. We end this section by

describing a systematic sensitivity analysis to test how strongly the EWSs depend on our choice

of parameters. Following these, in the Results and Discussion section, we describe the statisti-

cally significant EWSs found in our FOREX data, and the optimal parameter choices that

emerged from our sensitivity analysis. We then demonstrate how a poor choice of data fre-

quency can lead to false negatives, before going on to test the reliability of the EWSs, by check-

ing how often a large FOREX market movement follows a statistically significant EWS.

Data and methods

Data

We downloaded exchange rates between two pairs of currencies on the foreign exchange

(FOREX) market (see Table 2) from the Thomson-Reuters Tick History Database (https://
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Table 1. A survey of the EWS literatures between 2014 and 2017, showing the titles and first authors of the papers, corresponding reference numbers, their publica-

tion dates, whether the data used was real or simulated, the types of complex systems, the common EWIs, and customized EWIs (if any).

• Title

• (First author)

Ref

Num

Date Data Type of system AR V/

S

PS SK KT FK Others or remarks

• Vegetation recovery in tidal marshes reveals critical

slowing down under increased inundation

• (J. van Belzen)

[5] Jun

2017

Real Ecology Recovery rate +, spatial variance

and autocorrelation +/−

• Direct observation of increasing recovery length

before collapse of a marine benthic ecosystem

• (L. Rindi)

[6] May

2017

Real Ecology Recovery length (spatial indicator)

+

• Critical slowing down as an early warning of

transitions in episodes of bipolar disorder: A

simulation study based on a computational model of

circadian activity rhythms

• (A. Bayani)

[7] Jan

2017

Simulated Biology + +

• Alternative stable states and spatial indicators of

critical slowing down along a spatial gradient in a

savanna ecosystem

• (S. Eby)

[8] Dec

2016

Real Ecology + + + + Indicators: spatial instead of

temporal

• Early warning signals of regime shifts in coupled

human-environment systems

• (C. Bauch)

[9] Nov

2016

Simulated Ecology +

• Evaluating early-warning indicators of critical

transitions in natural aquatic ecosystems

• (A. S. Gsell)

[3] Nov

2016

Real Ecology − − − − Low reliability and agreement

among indicators

• Early warning signals for critical transitions in a

thermoacoustic system

• (E. A. Gopalakrishnan)

[10] Oct

2016

Both Physical − + Conditional heteroskedasticity +

• Rate of forcing and the forecastability of critical

transitions

• (C. F. Clements)

[11] Oct

2016

Simulated Ecology + + Density ratio +, and return rate +

• Early warning signals, nonlinearity, and signs of

hysteresis in real ecosystems

• (M. A. Litzow)

[12] Oct

2016

Real Ecology Spatial AR +, spatial variability

+/−, temporal AR +/−, and

temporal variability −
• Early warning signals detect critical impacts of

experimental warming

• (K. S. Mccann)

[13] Sep

2016

Real Ecology + + Recovery rate +

• The Regime Shift Associated with the 2004–2008 US

Housing Market Bubble

• (J. Tan)

[14] Sep

2016

Real Housing + + + +

• Early-warning indicators for rate-induced tipping

• (P. Ritchie)

[15] Sep

2016

Simulated Mathematical

Model

+ +

• Nonlinear manifold learning for early warnings in

financial markets

• (Y. Huang)

[16] Aug

2016

Real Financial Information metric-based

manifold learning (IMML) +

• Detecting early signs of the 2007–2008 crisis in the

world trade

• (F. Saracco)

[17] Jul

2016

Real Economics Bipartite WTW topology change

+

• Early warning of critical transitions in biodiversity

from compositional disorder

• (C. P. Doncaster)

[18] Jul

2016

Both Ecology Correlation between

compositional disorder and

biodiversity +

• Percolation-based precursors of transitions in

spatially extended systems

• (V. Rodriguez-Mendez)

[19] Jul

2016

Both Ecology/

General

Indicators for percolation

transitions of spatial correlation

network +

• Resilience changes in watershed systems: A new

perspective to quantify long-term hydrological shifts

under perturbations

• (M. Qi)

[20] May

2016

Real Hydrology Proposed resiliience indicator,

CSD +

• Dynamic bifurcations on financial markets

• (M. Kozłowska)

[21] Mar

2016

Real Financial + + +

(Continued)
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tickhistory.thomsonreuters.com/TickHistory/login.jsp). The currencies studied are the Aus-

tralian Dollar (AUD), the Japanese Yen (JPY), and the Swiss Franc (CHF), while the period

studied (1995 to 2010) consists of years within the Global Financial Crisis (2007 to 2009).

Table 1. (Continued)

• Title

• (First author)

Ref

Num

Date Data Type of system AR V/

S

PS SK KT FK Others or remarks

• Anticipating abrupt shifts in temporal evolution of

probability of eruption

• (J. Rohmer)

[22] Feb

2016

Simulated Geology − + + + Density ratio +

• Are critical slowing down indicators useful to detect

financial crises?

• (H. Gatfaoui)

[23] Feb

2016

Real Financial − + +

• Network based early warning indicators of

vegetation changes in a land–atmosphere model

• (Z. Yin)

[24] Feb

2016

Simulated Ecology + Moran’s coefficient +, and

interaction network based

indicators +

• Lack of Critical Slowing Down Suggests that

Financial Meltdowns Are Not Critical Transitions, yet

Rising Variability Could Signal Systemic Risk

• (V. Guttal)

[25] Jan

2016

Real Financial − + −

• Predictability of critical transitions

• (X. Zhang)

[26] Nov

2015

Simulated Mathematical

Model

+ +

• Early warnings and missed alarms for abrupt

monsoon transitions

• (Z. A. Thomas)

[4] Nov

2015

Real Climate − −

• Critical Slowing Down as an Early Warning Signal

for Financial Crisis?

• (C. Diks)

[27] Sep

2015

Real Financial + +

• Early warning signals for critical transitions in

power systems

• (H. Ren)

[28] Mar

2015

Simulated Power system + + + +

• Critical Slowing Down Governs the Transition to

Neuron Spiking

• (C. Meisel)

[29] Feb

2015

Real Biology + + Recovery rate +

• Early warning signals of Atlantic Meridional

Overturning Circulation collapse in a fully coupled

climate model

• (C. A. Boulton)

[30] Dec

2014

Real Climate + +

• Evidencing a regime shift in the North Sea using

early-warning signals as indicators of critical

transitions

• (N. Wouters)

[31] Oct

2014

Real Ecology + +

• Critical slowing down as early warning for the onset

of collapse in mutualistic communities

• (V. Dakos)

[32] Oct

2014

Simulated Ecology + +

• Critical slowing down associated with regime shifts

in the US housing market

• (J. P. L. Tan)

[33] Feb

2014

Real Housing + +

• Early warning signals of abrupt temperature change

in different regions of China over the past 50 years

• (J.-L. Tong)

[34] Feb

2014

Real Climate +

In this table, a ‘+’ indicates that the EWS was found to be sufficiently significant, a ‘−’ indicates that the EWS was found to be insignificant, and a ‘+/−‘ indicates that the

EWS was found to be significant only under certain conditions. In this table, the common EWIs compared are lag-1 autocorrelation (AR), variance/standard deviation

(V/S), low-frequency power spectrum (PS), skewness (SK), kurtosis (KT), and flickering (FK). Other EWIs, like recovery rate, spatial variance, spatial correlation,

conditional heteroskedasticity for example, are recorded under ‘others or remarks’.

https://doi.org/10.1371/journal.pone.0191439.t001
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Pre-processing

We first imported the raw data from the Tick History comma-separated (CSV) files into

Matlab data structures. We then read through the ticks, and extracted exchange rates at fixed

time intervals (T0) (See Text A in S1 Protocol for Matlab script) that we can specify to obtain

our time series data.

From the theory of critical transitions [1, 2], we know that as we approach a tipping point,

not only will we observe long-term trends in the slow variables, we will also detect a slowing

down in the fluctuations of fast variables. When both effects are present, it is difficult to reli-

ably interpret the EWIs. Therefore, it is important to first remove the long-term trends from

the time series data. The simplest way to do de-trending is to use a rolling window. However,

the local trends obtained this way do not change smoothly from one rolling window to the

next. Therefore, we used a Gaussian kernel to smooth the data [4, 23, 27] (See Text B in S1 Pro-

tocol for Matlab script). It is also possible for us to use the LOESS method of non-parametric

local regression [14], or more sophisticated methods such as the de-trending algorithms used

in the detrended fluctuation analysis (DFA) [35], and the empirical mode decomposition [36].

A systematic comparison of the performance of different de-trending methods is outside the

scope of this paper.

In Fig 1(A), we show the T0 = 15 s time series for AUDJPY between 11:15 AM and 17:00

PM on Oct 6, 2008 as a red solid curve, and the trend obtained after smoothing with a

Table 2. The two foreign exchange pairs: AUD-JPY and CHF-JPY, and the periods their time series data were

available over.

Pair Start Date End Date Number of Ticks

AUD-JPY (early) 02 Jan 1995 31 Dec 2004 5,019,035

AUD-JPY (late) 02 Jan 2005 11 Jan 2010 28,477,160

CHF-JPY 11 Jul 2008 31 Dec 2009 4,932,694

Here, a tick is a single transaction.

https://doi.org/10.1371/journal.pone.0191439.t002

Fig 1. (a) A part of the T0 = 15 s AUDJPY exchange rate (red) on 6th Oct, 2008, and the Gaussian smoothed time

series (blue) that tracks it very closely. (b) The residue time series, obtained by subtracting the Gaussian smoothed time

series from the exchange rate. In these plots, the bandwidth of the Gaussian kernel used is 100T0.

https://doi.org/10.1371/journal.pone.0191439.g001
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Gaussian kernel with bandwidth σ = 100T0 as a blue dashed curve. We then show in Fig 1(B)

the blue residue time series obtained by subtracting the Gaussian-smoothed time series from

the exchange rate. Our EWS analysis in the rest of the paper will be based on the residue time

series.

Early Warning Indicators (EWI)

After removing the long-term trends, we tested the residue time series (see Fig 1(B)) for criti-

cal slowing down. This was done by calculating three EWIs: (1) the lag-1 autocorrelation (AC

(1))

AC 1ð Þ ¼
1

N � 1

XN� 2

n¼0

ðxn � �xÞ xnþ1 � �x
� �

;

where �x ¼ 1

N

PN
i¼1
xi is the mean of the sequence (xn), and N is the number of total elements in

the sequence; (2) the variance (Var)

Var ¼
1

N � 1
�
XN� 1

i¼0

ðxi � �xÞ2

of the sequence (xn); and (3) the low-frequency power spectrum (LFPS). Given a sequence (xn),
we define its discrete Fourier transformation as

Xk ≝
XN� 1

n¼0

xn � e
� 2pikn=N ;

where k is an integer from 0 to N − 1. The power spectrum Pk = |Xk|2, k = 0,. . .,N − 1, is then

normalized so that its sum is 1. Finally, the LFPS is then calculated to be the power residing in

the first 6% elements of the sequence Pk. The LFPS of a sequence (xn) measures the weightage

of the low-frequency part in the power spectrum.

Testing for significant EWSs

Increasing trends. When we slide a rolling window of length Rwin (corresponding to a

window duration of T1 = Rwin � T0) over the entire residue time series with rolling step Rstep
(set to be one third of Rwin), we create the time series of indicators. For all three indicators, an

EWS corresponds to an increasing trend in the indicator values. Therefore, we test EWSs for

statistical significance within rolling windows of indicators of length Rind (corresponding to a

window duration of T2 = (Rind � (Rstep −1) + Rwin) � T0) with rolling step 1 along the time series

of the three indicators respectively.

Within each rolling window of length N = Rind, we calculate the Kendall-tau values, also

known as the Kendall rank correlation coefficient [37],

t ¼
Nconcordant pairs � Ndisconcordant pairs

NðN � 1Þ=2
;

where Nconcordant pairs is the total number of concordant pairs and Ndisconcordant pairs is the num-

ber of disconcordant pairs. Suppose t1 < t2, the pair of ðxt1 ; t1Þ and ðxt2 ; t2Þ is said to be concor-

dant if xt1 < xt2 and discordant if xt1 > xt2 . Note that if xt1 ¼ xt2 , the pair is neither concordant

nor discordant.

To see how this works, let us consider the ordered series: (2, 4, 3, 8). Except for 4 coming

before 3, the rest of the series has an increasing trend. To see this using the Kendall-tau

Early warning signals in critical transitions
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coefficient, we note that according to the definition, there are 5 concordant pairs: (2, 4), (2,3),

(2, 8), (4, 8), (3, 8), and 1 disconcordant pair: (4, 3). In total there are
4ð4� 1Þ

2
¼ 6 pairs. In this

example, the Kendall-tau coefficient is
ð5� 1Þ

6
¼ 2

3
, which is fairly large. In general, a time series

with a strong increasing trend will have a high Kendal-tau coefficient.

To determine the statistical significance of the Kendall-tau value of a given rolling window

of indicators, which has Rind indicators corresponding to Rind � (Rstep −1) + Rwin data points in

the residue time series, we first reshuffle the residue time series of Rind � (Rstep −1) + Rwin data

points, to create a null model residue time series that has the same mean and variance as the

subject time series, but whose time ordering is completely destroyed. Here, let us point out

that normally, to test the Kendall-tau of the indicator time series for statistical significance we

reshuffle the indicator time series. By reshuffling the residue time series instead, we are mak-

ing the significance tests stricter. We repeat this procedure 1000 times to create a histogram of

1000 Kendall-tau values for the null model. The p value of the subject Kendall-tau is then the

percentage of null-model Kendall-tau values that are greater than the subject Kendall-tau

value. For the purpose of this paper, if p� 0.05, we regard the EWS in this time interval as

significant.

Concurrence. A period with one statistically significant EWI points to an impending criti-

cal transition. However, the other EWIs may not be statistically significant over the same

period, or they may be statistically significant over slightly different periods. Since it is possible

for a statistically significant EWS to be a false positive, we can reduce the false-positive rate by

requiring all three EWIs to be statistically significant over the same overlapping period. With

this concurrent set of EWIs, the probability of the overlapping period being a statistical false

positive should be significantly reduced.

Endpoint. Sometimes we encounter situations where the rising trends of the indicators

are statistically significant but the indicators values remain small at the end of the T2 time win-

dows. We show in Fig 2 the magnitude of last indicator value in a T2 time window, and call it

the endpoint of the indicator. If the endpoint is small, we do not expect to find a critical transi-

tion shortly after the EWS even if the rising trend is significant. We expect a critical transition

only if the rising trend is statistically significant and the endpoint is large.

To decide whether the endpoint is large or small, we build the histogram shown in Fig 3 of the

endpoints of T2 rolling windows over the entire time series. The ‘historical p value’ of the endpoint

of an EWS candidate is the percentage of endpoints in the histogram that are larger than it. Only

endpoints within lowest historical p values are considered as EWS candidates. A more careful reli-

ability analysis will be presented at the end of the Results and Discussion section.

Choice of parameters and sensitivity analyses

Choice of parameters. In this study, the parameters we have freedom to adjust are sum-

marized in Table 3.

Sensitivity analyses. We performed two sets of sensitivity analyses in this paper. In the

first, we determined the optimal combination of parameters to detect EWSs of large move-

ments in the FOREX market.

To do this, we must identify the events we sought to forecast. In order to quantitatively pick

out sudden shifts in the exchange rate, we consider a time period Y starting from the end of

the T2 rolling window, to half a day afterwards, and define the maximum spread to be

yms ¼
maxðE0 � Emin;Emax � E0Þ

E0

:

Early warning signals in critical transitions
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Here, E0 is the exchange rate at the beginning of time period Y, Emin is the minimum

exchange rate within Y, and Emax is the maximum exchange rate within Y. Basically, yms mea-

sures the most extreme exchange rate variation within Y, relative to its starting value, allowing

variations in either directions. This can be E0 − Emin, if it is larger than Emax – E0, or Emax – E0

vice versa. Higher values of yms correspond to more extreme exchange rate variations within Y.

Fig 2. (a) The exchange rate time series and (b) the indicator time series. The pair of blue dashed vertical lines

represents the time window over the exchange rate time series in (a) was used to compute one indicator value (the

open blue circle in (b)). We slide this window along to obtain the pair of red dashed vertical lines, within which we

obtain a second indicator value (the open red open circle in (b)). Repeating this we obtained the indicator time series

in (b), which is then Gaussian smoothed (blue dashed curve). For the T2 rolling window indicated by the pair of blue

solid vertical lines, its endpoint is the last value on the Gaussian-smoothed indicator time series (the solid blue dot in

(b)). The endpoint value of the next T2 rolling window (the pair of red solid vertical lines) is shown in (b) as the solid

red dot on the Gaussian-smoothed curve.

https://doi.org/10.1371/journal.pone.0191439.g002

Fig 3. The histogram of endpoints of T2 rolling windows over the entire AUD-JPY time series from 2005 to 2010.

https://doi.org/10.1371/journal.pone.0191439.g003
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To examine the performance of a certain combination of parameters, we first created the

sets A, B1, B2, and C as shown in Fig 4. The corresponding 90th percentile and 95th percentile

values of yms are noted as yms10 and yms5 respectively (shown as the vertical blue line and the

vertical red line in Fig 5(A)). Based on the intersections C \ B1 = {yms 2 C|yms> yms10} and

C \ B2 = {yms 2 C|yms> yms5} as shown in Fig 5(B), we defined the 5% and 10% discovery

rates of Set C,DR5 and DR10, as

DR5 ¼
cardðC \ B2Þ

cardðAÞ
;

DR10 ¼
cardðC \ B1Þ

cardðAÞ
;

Table 3. Parameters and their test ranges to determine the optimal combination for EWSs, as well as to test the effects of data frequency.

Parameters Meaning Range of values for finding optimal

combination

Range of values for testing the effect of

data frequency

T0 Time interval between residue data points 15–60 s 15 s to 6 hrs

Rwin The number of residue data points in a rolling window used to

compute one indicator value

60–249 10–14400

Rstep The rolling step of the rolling window of residue Fixed to be Rwin/3 Fixed to be Rwin/3
Rind The number of indicator data points in a rolling window used to

test statistical significance

92–96 10 (fixed)

R1 The rolling step of the rolling window for indicator time series 1 1

σ The bandwidth of the Gaussian kernel for smoothing the residue

time series

38–180 20–150

∑ The bandwidth of the Gaussian kernel for smoothing the indicator

time series

Fixed to be Rind Fixed to be Rind

P The percentile of power spectrum defining the low-frequency

power

3%–38% 10% (fixed)

https://doi.org/10.1371/journal.pone.0191439.t003

Fig 4. Venn diagram illustration for maximum spreads, in terms of percentile and statistical significance. In this

illustration, A represents the set of maximum spreads {yms} over the entire time series using a given combination of

parameters. B1 and B2 represent the elements in Awith yms values above 90th percentile and 95th percentile. C
represents the set of the maximum spreads corresponding to statistically significant EWSs.

https://doi.org/10.1371/journal.pone.0191439.g004
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where card() stands for cardinality, which is the number of elements in the set. We also defined

the 5% and 10% specificities of Set C, SP5 and SP10, as

SP5 ¼
cardðC \ B2Þ

cardðCÞ
;

SP10 ¼
cardðC \ B1Þ

cardðCÞ
:

In this analysis, our objective was to choose parameters that maximize discovery rates and

specificities.

In our survey of the literature on EWSs, we noticed that most studies confirmed EWSs pre-

ceding critical transitions, while other studies could not detect statistically significant EWSs.

However, the qualities of data used in these analyses are highly uneven, in the sense that in

some studies, very high frequency data was used, whereas in other studies, the data frequency

was low. Because we had the good fortune of working with FOREX data at the highest fre-

quency, we could create data samples over many orders of magnitude in data frequency.

Therefore, in this second sensitivity analysis, we systematically test the effect of data frequency

(determined by T0) on the discoverability of a subset of very obvious true positives. A true pos-

itive is discoverable at a given data frequency if there are statistically significant EWSs preced-

ing the true positive. In this analysis, we fixed the largest window size T2, but kept the product

of T1 and T0 constant so that the number of indicator values used for significance testing (Rind)
is fixed (at 10), as we increased T0 from the optimum (15 s or 30 s) to the very large value of 6

hrs.

Fig 5. (a) The histogram of maximum spreads yms in Set A. (b) The histogram of maximums spreads yms in Set A

with signs (positive for boom and negative for bust). The blue and red solid vertical lines indicate the 90th and 95th

percentiles yms10 and yms5 respectively. The maximum spread is defined to be positive, but in this histogram, we restore

their signs. We can think of a large positive maximum spread as a boom, and a large negative maximum spread as a

bust. The blue and red solid vertical lines in (b) correspond to the signed yms10 and yms5 values respectively.

https://doi.org/10.1371/journal.pone.0191439.g005
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Results and discussion

Results

In Figs 6–8, we show the statistically significant EWSs obtained from individual EWIs (See

Texts C, D, and E in S1 Protocol for Matlab script) with historical p values of their endpoints

set to p� 0.025 (See Text F in S1 Protocol for Matlab script), compared to concurrent EWSs

(See Text G in S1 Protocol for Matlab script) with the same historical p value for the three dif-

ferent data sets. In these three figures, we also show the concurrent EWSs for a historical p
value of their endpoints set to p� 0.06, to illustrate how we can include more statistically sig-

nificant EWSs. The parameters used to detect the EWSs are the optimal combinations for the

three data sets. We will explain how these optimal parameter combinations are obtained

shortly.

In Fig 7, the numbers of statistically significant EWSs predicted by the three indicators are

roughly equal. Also, the statistically significant EWSs predicted by Var are mostly at similar

times to those predicted by AC(1) and LFPS. However, in Figs 6 and 8, even though the num-

bers of statistically significant EWSs predicted by Var are roughly the same as those predicted

by AC(1) and LFPS, those predicted by Var are concentrated in a small number of time peri-

ods. We believe this is because the variations of AC(1) and LFPS are within a narrow band of

values, whereas the variations of Var can be over many orders of magnitude. Therefore, the

condition for a strict historical p value for the endpoint of Var restricts the discovery of statisti-

cally significant EWSs to only periods with very high variance.

Fig 6. Statistically significant EWSs for the AUD-JPY exchange rate between 1996 and 2004, obtained from the (a) lag-1

autocorrelation, (b) variance, (c) low-frequency power spectrum, (d) concurrent signals with historical p value for

endpoint< = 0.025, and (e) concurrent signals with historical p value for endpoint< = 0.06. For subplot (a), (b), and (c),

we used a historical p value for the endpoint of 0.025. In (d), we show the concurrent EWSs for the same historical p
value. More statistically significant concurrent EWSs can be included in (e) by increasing the historical p value of the

endpoint to p� 0.06. In this figure, a statistically significant EWS begins at a solid blue vertical line and ends at a solid

red vertical line.

https://doi.org/10.1371/journal.pone.0191439.g006
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From Figs 6–8, we see that the effect of relaxing the historical p value for the endpoints is

that the additional concurrent EWSs being included are mostly close to those already included

at the stricter historical p value. This gives us confidence that the EWSs are indeed consistent

precursors to actual critical transitions. In fact, the bunching up of EWSs seen in the figures is

consistent with the general pattern of flickering critical transitions being preceded by fore-

shocks and followed by aftershocks. More importantly, the sharpest decline in AUD-JPY

exchange rate on 6 Oct 2008 in Fig 7 is preceded by consistent EWSs in all indicators and

therefore shows up strongly in the concurrent EWSs.

Optimal combination of parameters

The sets of EWSs discovered depend on the parameter combinations that we used. Therefore,

we performed the sensitivity analyses, where parameters are sequentially optimized for high

discovery rates and specificities, as shown in Tables A, B, and C in S1 Appendix. From these

tables, we concluded the optimal parameter combinations for AUD-JPY from 1996 to 2004,

AUD-JPY from 2005 to 2010, and CHF-JPY from 2008 to 2009 to be (T0, σ, Rwin, Rind, P) = (30,

76, 126, 86, 6), (15, 100, 225, 80, 26), and (30, 48, 150, 84, 24) respectively. (See Text H in S1

Protocol for Matlab script)

Most of the time, a 1% change in the parameters around the optimal values in Tables A, B,

and C in S1 Appendix produces less than 1% change in the discovery rate (DR5) and specific-

ity (SP5) (see Tables D in S1 Appendix). The discovery rate and specificity are most sensitive

to changes in Rind and Rwin, although the percentage changes are still small.

Fig 7. Statistically significant EWSs for the AUD-JPY exchange rate between 2005 and 2010, obtained from the (a)

lag-1 autocorrelation, (b) variance, (c) low-frequency power spectrum, (d) concurrent signals with historical p value

for endpoint< = 0.025, and (e) concurrent signals with historical p value for endpoint< = 0.06. For subplot (a), (b),

and (c), we used a historical p value for the endpoint of 0.025. In (d), we show the concurrent EWSs for the same historical

p value. More statistically significant concurrent EWSs can be included in (e) by increasing the historical p value of the

endpoint to p� 0.06. In this figure, a statistically significant EWS begins at a solid blue vertical line and ends at a solid red

vertical line.

https://doi.org/10.1371/journal.pone.0191439.g007
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Effects of increasing time interval

Following this, we turned our attention to the key question in this paper: whether the EWSs

can always be detected in lower-frequency data. In this analysis, we focused on increasing the

time interval from 15 s to 6 hr (see Table 4), checking if the EWSs discovered at optimal T0 (15

s and 30 s) were also discovered at longer time intervals.

As we can see from Fig 9, for the AUD-JPY data set from 1996 to 2004, where we used the

30-s EWSs as the ground truth, around half of the critical transitions do not have reliable

EWSs at larger T0’s, whereas for the other half, EWSs are reliable up to around 5 min, above

which the EWSs becomes intermittent, disappearing above certain T0’s. Similarly for Fig 10,

for the AUD-JPY data set from 2005 to 2010, most of the 15-s EWSs we used as the ground

truth can be detected reliably up to 2 min. Beyond T0 = 10 min, most of the 15-s EWSs do not

show up anymore. In the time period when the exchange rate is low, many other EWSs are dis-

covered by the other T0’s. Finally, from Fig 11, for the CHF-JPY data set from 2008 to 2009,

the EWSs at larger T0’s are generally inconsistent with the ground truth at 30 s, especially for

T0’s greater than 2 min.

For the FOREX market, whose dynamical time scale is of the order of 1 to 5 seconds, and

where the largest crash is over in a matter of 10 to 15 minutes (see Fig 1(A)), it is surprising

that we could even have semi-reliable EWSs with data frequencies up to 2 minutes! When we

zoom in to Fig 7 for a closer look, we find that there were up to 3 days of EWSs before the larg-

est crash on 6 Oct 2008. Going through the parameter combinations in Table 4, we inferred

Fig 8. Statistically significant EWSs for the CHF-JPY exchange rate between 2008 and 2009, obtained from the (a) lag-

1 autocorrelation, (b) variance, (c) low-frequency power spectrum, (d) concurrent signals with historical p value for

endpoint < = 0.025, and (e) concurrent signals with historical p value for endpoint < = 0.06. For subplot (a), (b), and

(c), we used a historical p value for the endpoint of 0.025. In (d), we show the concurrent EWSs for the same historical p
value. More statistically significant concurrent EWSs can be included in (e) by increasing the historical p value of the

endpoint to p� 0.06. In this figure, a statistically significant EWS begins at a solid blue vertical line and ends at a solid red

vertical line.

https://doi.org/10.1371/journal.pone.0191439.g008
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that these signals were fully captured by the last rolling window, and partially captured by the

second last rolling window. This means that out of the ten indicator values that went into the

Kendall-tau test, only the last two indicator values contained contributions from the actual

EWSs. For time intervals beyond 2 minutes, the 3 days’ worth of EWSs were also only captured

by the last two rolling windows. But because fewer data points containing early warning infor-

mation were sampled during these 3 days, the signal-to-noise ratio becomes smaller. There-

fore, we deduced that the deterioration of EWSs for larger time intervals is the result of under-

sampling of residue data points within the EWS periods. In other words, low data frequency

could significantly compromise the performance of EWSs.

Table 4. Parameter combinations with T0 increasing from the optimal value up to 6 hr, to test whether the EWSs

can be discovered at longer time intervals.

T0 Rwin Rind σ
15 sec 14400 10 150

30 sec 7200 10 60

1 min 3600 10 30

2 min 1800 10 24

5 min 720 10 20

10 min 360 10 20

20 min 180 10 20

40 min 90 10 20

1 hr 60 10 20

2 hr 30 10 20

3 hr 20 10 20

4 hr 15 10 20

5 hr 12 10 20

6 hr 10 10 20

https://doi.org/10.1371/journal.pone.0191439.t004

Fig 9. Concurrent EWSs (short green bands) for various time intervals (left axis) compared with the EWSs for

30-s time interval (long red bands) for AUD-JPY from 1996 to 2004. The historical endpoint requirement is p� 0.2.

The exchange rate is plotted (black curve) is plotted in the background with axis to the right.

https://doi.org/10.1371/journal.pone.0191439.g009
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As a caveat, let us note that in this test, we used unusually large 600-hr rolling windows for

all time intervals T0. This was to accommodate the largest 6-hr time interval that we included

in the test. Technically, the EWSs presented here are not the most reliable, because they are

obtained in a way that is far from ideal, resulting in only a few of them that are sparsely distrib-

uted in time. This is unlike the robust consecutively EWSs within proper time periods for the

optimal combination of parameters. Moreover, the 600-hr rolling window is much larger than

the 3-day period of actual EWS, which therefore must stand out against more noise from the

rest of the rolling window. Additionally, to make comparisons, we also had to relax the criteria

Fig 10. Concurrent EWSs (short green bands) for various time intervals (left axis) compared with the EWSs for

15-s time interval (long red bands) for AUD-JPY from 2005 to 2010. The historical endpoint requirement is p� 0.2.

The exchange rate is plotted (black curve) is plotted in the background with axis to the right.

https://doi.org/10.1371/journal.pone.0191439.g010

Fig 11. Concurrent EWSs (short green bands) for various time intervals (left axis) compared with the EWSs for

30-s time interval (long red bands) for CHF-JPY from 2009 to 2009. The historical endpoint requirement is p� 0.2.

The exchange rate is plotted (black curve) is plotted in the background with axis to the right.

https://doi.org/10.1371/journal.pone.0191439.g011
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for historical p value to be able to detect a decent number of EWSs. In so doing, even the reli-

ability of EWSs from residue time series at time intervals below 2 minutes is not as high as that

of EWSs obtained with the optimal combinations. Nevertheless, the test convincingly shows

that large time intervals (beyond 2 minutes) could not produce reliable EWSs. The reliability

of EWSs whose time intervals are within 2 minutes were not verified in this section, however

we do know that the optimal time interval ranges from 15 seconds to 30 seconds, from the

optimal combinations in the previous section.

Reliability analysis

Finally, to quantify the performance of our EWSs, we examined the conditional probability for

a large maximum spread to occur after an EWS, as well as that for a large maximum spread to

occur without an EWS. To do so, we examined the maximum spreads (yms) by the end of every

rolling window that was used for computing EWSs (defined by optimal Rwin and Rstep) across

the whole time period, and check: (1) whether the maximum spread is within the top 5 percen-

tile, and (2) whether such a large maximum spread is preceded by at least one recent EWS,

with p< 0.05 for Kendall-tau and the historical p< 0.04 for the endpoints. By ‘recent’, we

mean that the EWS ended within the last 0.9 days (excluding weekends), even though it may

have started much earlier. The maximum spreads yms are computed within the time window

of 0.1 day starting from the end of every Rwin rolling window. We chose to have the time

between the end of the EWS and the end of the maximum spread time window to be one day

as one day is expected to be a reasonable time to make a decision in this highly liquid FOREX

market. To be fair, we used the same 0.1-day time window for large maximum spreads that are

not preceded by a recent EWS.

From the pool of all Rwin rolling windows, we estimate P1 and P2 as

P1 ¼ P Large ymsjEWSð Þ ¼
Number of cases with large yms and recent EWSs

Number of cases with recent EWSs
;

P2 ¼ P Large ymsjNo EWSð Þ ¼
Number of cases with large yms and no recent EWSs

Number of cases with no recent EWSs
:

If P1 = 1, all EWSs should be followed by large (top 5 percentile) maximum spreads. This

means that the EWSs provide very precise predictions on subsequent exchange rate move-

ments. If P1 < 1, then some EWSs are not followed by large maximum spreads, so overall the

EWSs are less precise. If we act on them to short the exchange rate in question, we may lose

the opportunity to make a killing shortly afterwards, but we will not sustain unexpectedly large

losses. On the other hand, there can also be large maximum spreads that occur in the absence

of EWSs. We can incur large losses if we believe wholeheartedly that no EWSs mean no large

maximum spreads afterwards. The proportion of such events, out of the set of cases with no

recent EWSs is given by P2. From all indicators in all data sets, we found that P2 is at most 0.05.

For the EWSs to provide reliable predictions, it is necessary to have P1 > P2. In fact, the larger

the ratio P1

P2
, the more confident we are at avoiding losses when we act upon the EWSs.

Indeed, as can be seen from Figs 12–14 (See Text I in S1 Protocol for Matlab script), the

pool ratio P1

P2
averaged over all times is greater than 1 for all indicators in all data sets. In the

worst case, for AC(1) of CHF-JPY, this ratio is 1.73, whereas in the best case, for Var of

AUD-JPY (2005–2010), the ratio is 11.93. These performances determine what we would have

gotten from acting on the EWSs all the time for the three data sets.

Since it is customary for traders to test a new strategy over a finite time period before adopt-

ing it, we also tested the reliability of the EWSs over various shorter time periods. For example,
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to test the reliability of the EWSs on the scale of 250 trading days, we created a statistical

ensemble of 250-trading-day time period with 100,000 random starting times. We then com-

puted the histograms of P1

P2
and P1 over this ensemble, as shown in Figs 12–14 for the data sets

Fig 12. The histograms of the ratios P1
P2 ((a), (c), and (e)) and precisions (P1) ((b), (d), and (f)) of the 100,000 samples with

250 days trial period, for the indicators AC(1), Var, and LFPS respectively for the data set AUD-JPY from 1996 to 2004.

The red vertical lines mark P1

P2
¼ 1, and in the legends we give the proportion of samples with P1

P2
> 1 in the 100,000 samples as

rate of exceeding 1. The pool values of P1

P2
and P1 are marked by black vertical lines.

https://doi.org/10.1371/journal.pone.0191439.g012

Fig 13. The histograms of the ratios P1
P2 ((a), (c), and (e)) and precisions (P1) ((b), (d), and (f)) of the 100,000 samples with

250 days trial period, for the indicators AC(1), Var, and LFPS respectively for the data set AUD-JPY from 2005 to 2010.

The red vertical lines mark P1

P2
¼ 1, and in the legends we give the proportion of samples with P1

P2
> 1 in the 100,000 samples as

rate of exceeding 1. The pool values of P1

P2
and P1 are marked by black vertical lines.

https://doi.org/10.1371/journal.pone.0191439.g013
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AUD-JPY from 1996 to 2004, AUD-JPY from 2005 to 2010, and CHF-JPY from 2008 to 2009

respectively. In the histograms of P1

P2
, we highlighted P1

P2
¼ 1 with red vertical lines. These lines

separate the samples with P1

P2
< 1 from the ones with P1

P2
> 1, whose proportions in the 100,000

samples are given by rate of exceeding 1 in the legends. From Figs 12–14, we see that for the

case of sampling with 250 trading days, the rates of exceeding 1 for all indicators in all data sets

are above 0.7, except for that of Var for AUD-JPY (2005–2010) in Fig 13(C), which is 0.66.

This implies that the EWSs are informative most of the time, and perform better at predicting

large maximum spreads than just pure guessing. The expectations of P1

P2
for the ensembles are

close to their pool values marked as black vertical lines in the limit of large sample size

(100,000). These expectation values are even larger than 1, meaning that on average the EWSs

carry significant information on predicting large maximum spreads. The histograms of P1

((b), (d), and (f) of Figs 12–14) show the distributions of precisions of EWSs, with their pool

values marked as black vertical lines. From these, we can see that most pool values are larger

than 0.1, with only two exceptions in Figs 12(F) and 14(B). Note that in Fig 14, the bands are

highly concentrated. This is because the CHF-JPY data set contains only 382 trading days,

which is not large enough to sample many 250-trading-day windows with random starting

time. In comparison, AUD-JPY (1996–2004) and AUD-JPY (2005–2010) include 2608 and

1311 trading days respectively, which is large enough for this test.

To see how the performances of EWSs measured by rates of exceeding 1 change with varying

trial time periods, we repeated the same sampling procedure with a growing time period start-

ing from 10 trading days up to 400 trading days in steps of 10 trading days. The results are

shown in Fig 15 (See Text J in S1 Protocol for Matlab script). From Fig 15(A) and 15(B), we

see that rates of exceeding 1 increase monotonously with trial time period, and gradually

approaches the upper bound of 1, except for Var in Fig 15(B), which grows very slowly. This

implies that in practice, the overall performances of EWSs are expected to improve if they are

Fig 14. The histograms of the ratios P1
P2 ((a), (c), and (e)) and precisions (P1) ((b), (d), and (f)) of the 100,000 samples

with 250 days trial period, for the indicators AC(1), Var, and LFPS respectively for the data set CHF-JPY. The red

vertical lines mark P1

P2
¼ 1, and in the legends we give the proportion of samples with P1

P2
> 1 in the 100,000 samples as rate of

exceeding 1. The pool values of P1

P2
and P1 are marked by black vertical lines.

https://doi.org/10.1371/journal.pone.0191439.g014
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tested for a longer time. In Fig 15(C), we tested up to 280 trading days for CHF-JPY since it

only contains 382 trading days’ worth of data. From Fig 15(C) we see an odd trend in the AC

(1) curve from 150 trading days onwards, which might be a result of the small size of the

CHF-JPY data set, limiting the variation of the starting time of long-time-period samples.

Conditions for EWSs. We have shown in this paper that statistical significant detection of

EWSs is very sensitive to (1) the intrinsic early warning period for each extreme event, (2) the

frequency of data points in the time series, and (3) the choice of test statistic for which the

EWSs would be statistically significant. If the intrinsic early warning period is too short or the

data frequency too low, we might end up with an insignificant value for the Kendall-tau even if

we have independent and reliable validation of the critical transition tested.

Working with the stringent Kendall-tau statistic represents a desire by the early warnings

community to be strict with which events they can claim as critical transitions. The data fre-

quency is frequently within our control: if the experimental method and cost permit, we can

always collect more data points per unit time. However, the intrinsic early warning period,

which is the period of time the complex system we study re-organizes and move endogenously

towards the critical transition, is something that we may have little control over. Moreover, we

have no theoretical justification that critical transitions of the same scale have similar intrinsic

early warning periods. A large critical transition may thus be accompanied by a short early

warning period, and we would then simply miss its early warnings.

The impact of accidental noise sequences. In this final subsection, we discuss how robust

our conclusions are, when there is noise in the time series data. The first question we would

ask is how likely it is for us to observe a statistically significant EWS that is due entirely to ran-

dom noise. In some sense, this is also the easiest question to answer: the probability of a series

of purely random noises producing an EWS that is statistically significant is given by the p

Fig 15. Rates of exceeding 1 for the ratios P1
P2 with increasing trial time period, for the indicators AC(1), Var, and LFPS

and data sets (a) AUD-JPY (1996–2004), (b) AUD-JPY (2005–2010), and (c) CHF-JPY (2008–2009). Each data point is

computed with 100,000 samples.

https://doi.org/10.1371/journal.pone.0191439.g015
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value of our statistical test. In all our tests, which involve reshuffling the time series data to

obtain a statistical ensemble of artificial data that has no serial correlation in time, this proba-

bility is at the level of less than 0.05, i.e. no more than 5% of the EWSs that we have identified

can be due entirely to random noise.

The next question we might ask is how we can separate an accidental sequence of noises

that is meaningless from an intrinsic trend that is meaningful. One might worry that these two

cannot be disentangled when we use high-frequency data, especially when the time scale over

which the critical transitions occur is short. We made clear in the Effects of increasing time

interval subsection that (1) the typical time scale over which extreme movements of the

FOREX market occur is around 15 minutes, which is already 2 orders of magnitude more than

the time interval T0 we used in our analyses, and (2) intrinsic trends that preceded large

exchange rate variations, which we call the early warning periods, lasted up to 3 days. Again,

this time scale is very much larger than T0. There is thus no worries that fluctuations at the

scale of T0 will impact the conclusions we arrived at, because for this to happen, we would

need the fluctuation to be accidentally correlated over thousands to ten thousands of time

steps, which is extremely unlikely.

The last question concerns more the correct identification of booms/crashes. This is a fair

question to ask for a paper like ours, but is one that is extremely difficult to answer. In the

stock market, there have been many attempts to define market crashes, but none of these defi-

nitions are universally accepted because they are not based on a mechanistic understanding of

the market. In place of a rigorous definition, researchers have resorted to studying market

crashes that are reported in the popular press. These are frequently the most pronounced

crashes, and therefore are the least controversial. Many smaller crashes are likely to have been

missed, because they are not picked up by financial news reporters.

In particular, with the advent of high-frequency algorithmic trading, flash crashes of the

order of 10% in market value but lasting several minutes are not uncommon in major

exchanges of the world. These are assumed to be due to glitches in the trading algorithms, but

are poorly documented and studied. A similar problem plagues the FOREX market. Because

of the shorter time scale on the FOREX market, one naturally expects many more booms and

crashes in a given period of time. These events are rarely picked up by financial news reporters,

so we do not even have a curated list of the most uncontroversial events to work with. This is

why in this paper we used the 95th percentile set of the maximum spread as a proxy for booms

and crashes, because there is no ground truth we can obtain by alternative means.
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