
Differences in Performance among Test Statistics for

Assessing Phylogenomic Model Adequacy
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Abstract

Statistical phylogenetic analyses of genomic data depend on models of nucleotide or amino acid substitution. The ade-

quacy of these substitution models can be assessed using a number of test statistics, allowing the model to be rejected

when it is found to provide a poor description of the evolutionary process. A potentially valuable use of model-adequacy

test statistics is to identify when data sets are likely to produce unreliable phylogenetic estimates, but their differences in

performance are rarely explored. We performed a comprehensive simulation study to identify test statistics that are

sensitive to some of the most commonly cited sources of phylogenetic estimation error. Our results show that, for

many test statistics, traditional thresholds for assessing model adequacy can fail to reject the model when the phylogenetic

inferences are inaccurate and imprecise. This is particularly problematic when analysing loci that have few informative

sites. We propose new thresholds for assessing substitution model adequacy and demonstrate their effectiveness in

analyses of three phylogenomic data sets. These thresholds lead to frequent rejection of the model for loci that yield

topological inferences that are imprecise and are likely to be inaccurate. We also propose the use of a summary statistic

that provides a practical assessment of overall model adequacy. Our approach offers a promising means of enhancing

model choice in genome-scale data sets, potentially leading to improvements in the reliability of phylogenomic inference.

Key words: model adequacy, substitution model, maximum likelihood, test statistics, birds, Laurasiatherian mammals,

turtles.

Introduction

In recent years, phylogenomic analyses have provided inter-

esting insights into the evolution of various taxonomic groups

(e.g., Meredith et al. 2011; Timme et al. 2012; Misof et al.

2014). However, the evolutionary relationships in some

groups of organisms have remained difficult to resolve even

with large amounts of data, and different studies have some-

times yielded conflicting phylogenetic estimates (e.g., Jarvis

et al. 2014; Prum et al. 2015). The sources of conflict among

data sets are likely to include model misspecification, incon-

gruence among gene trees, and the impacts of positive selec-

tion (Springer and Gatesy 2016; Reddy et al. 2017; Shen et al.

2017). Unless data from additional loci can be readily

obtained, the best means of improving the reliability of the

inferred species tree is to enhance the Modelling of the evo-

lutionary process that produced the data at hand. This can be

done either by improving the methods of inference (e.g.,

Galtier 2001; Foster 2004; Lartillot et al. 2007; Jayaswal

et al. 2014) or by filtering the data according to appropriate

criteria (Liu et al. 2015). Both of these measures can help to

enhance the phylogenetic signal in the available data.

One potential method of improving evolutionary

Modelling in phylogenetics is to perform an absolute assess-

ment of the adequacy or plausibility of the substitution model

for each locus in the data set (Doyle et al. 2015). This is dif-

ferent from the comparisons of relative model fit that are

routinely performed in phylogenetics (Posada and Crandall

2001), and involves testing whether the chosen substitution

model provides an accurate description of the evolutionary

process that generated the data (Goldman 1993). Although

the available substitution models are sometimes found to be

good descriptions of the molecular evolutionary process

(Ripplinger and Sullivan 2010), they are unlikely to be ade-

quate for all of the loci in genome-scale data sets (Goldman

1993; Doyle et al. 2015; Duchêne et al. 2016). Methods of

assessing model adequacy could, in principle, identify the
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portion of the data set for which the model is realistic. This

information could then be used to reject a given model or to

exclude the subset of the data that is not well described by the

available models (Doyle et al. 2015), leading to enhancement

of the phylogenetic signal in the data.

Methods of assessing model adequacy by comparing em-

pirical data to those simulated under the model can test

whether some aspects of the model are realistic, but they

might not necessarily indicate when estimates of parame-

ters of interest are unreliable. This is because sequence data

might meet the particular assumption being assessed but

still violate other assumptions that are critical for estimating

parameters of interest (e.g., Ho and Jermiin 2004; Brown

2014; Doyle et al. 2015). Data might also fail to meet a

particular assumption of the model, yet this might not

have a negative impact on the estimates of parameters of

interest (Lemmon and Moriarty 2004; Brown 2014;

Duchêne et al. 2017). For example, estimates of tree topol-

ogy and branch lengths can be accurate even when there

are substantial departures from stationary base composition

(Duchêne et al. 2017). To ensure the usefulness of methods

for model assessment, we must evaluate whether measures

of model adequacy can predict the accuracy and precision

of the inferences made using these models. Similarly,

approaches that can summarize tests from multiple meth-

ods, and across hundreds of loci, are needed to make as-

sessment of model adequacy practical in the genomic age.

Methods to assess model adequacy are based on com-

paring the empirical data with a distribution of data gener-

ated under the candidate model, also known as the

predictive distribution. The data generated under the can-

didate model are also known as predictive data and can be

generated using the maximum-likelihood estimates of the

model parameters (Goldman 1993). Alternatively, parame-

ter estimates can be taken from samples from the posterior

distribution in a Bayesian analysis, such that predictive data

account for the uncertainty in estimates of model parame-

ters (Bollback 2002). In a Bayesian framework, simulations

performed using the model are also known as posterior

predictive simulations. The benefit of accounting for uncer-

tainty in parameter estimates comes at the cost of compu-

tational demand. In this study, we focus on methods to

assess model adequacy for genome-scale data sets, so we

use a maximum-likelihood method of assessment. Several

types of models in phylogenetics can be assessed using pre-

dictive simulations, including substitution models (Goldman

1993; Bollback 2002; Foster 2004; Brown 2014), large hi-

erarchical models (Reid et al. 2014; Duchêne et al. 2015),

models of trait evolution (Rabosky and Glor 2010; Slater

and Pennell 2014), and models of diversification rates

through time (Höhna et al. 2016). Predictive approaches

can also be used for relative model comparison (Lewis

et al. 2014), providing an alternative to commonly used

information criteria or Bayes factors.

The procedure of comparing the empirical and predictive

data requires the choice of a test statistic, a metric that

describes some aspect of the data set or of the inferences

drawn from the data set. If empirical data are similar to, or

produce similar estimates to, the predictive distribution, then

the model can be considered adequate. Test statistics that can

be calculated directly from the data are known as data-based

statistics, whereas those that describe the inferences drawn

from the data are known as inference-based statistics. Some

test statistics require calculations from the data as well as

inferences from the data, such that they are hybrid test sta-

tistics. Critically, test statistics can differ in their sensitivity to

biased inferences. Identifying which test statistics are sensitive

to biased phylogenetic inferences is fundamental before we

can develop a practical framework of model assessment.

The extent to which empirical data must be similar to the

predictive distribution for inferences to be inaccurate remains

poorly understood. The traditional approach to determining

model adequacy is to reject the model if the test statistic for

the original data falls above 95% or 99% of the values from

simulated data. But assessment using these thresholds can

lead to the model being rejected even when inferences are

not necessarily unreliable, or the failure to reject a model that

leads to biased inferences (Brown 2014; Duchêne et al. 2017).

In this study, we aim to characterize the performance of a

wide range of test statistics for model assessment in phyloge-

nomic data sets, and explore a method for summarizing their

results. Using simulations under a range of conditions known

to occur in empirical data, we characterize the ability of nine

test statistics to detect poor performance of the substitution

model. We define performance as the accuracy and precision

of estimates of tree topology and branch lengths, which are

often the parameters of interest in phylogenomic studies. We

recommend using an efficient maximum-likelihood frame-

work for model assessment that makes assessment feasible

for genome-scale data sets, and focusing on the test statistics

that perform well in our simulation study. Based on our sim-

ulation study, we also propose thresholds that are meaningful

for identifying misleading phylogenetic inferences. We also

describe the performance of a test statistic that summarizes

multiple tests, which can be used to provide an overall assess-

ment of model adequacy. We demonstrate our approach and

explore the relationship between substitution model ade-

quacy and performance in phylogenomic data sets from tur-

tles, birds, and Laurasiatherian mammals.

Materials and Methods

Fast Assessment of Model Adequacy

Framework for Model Assessment

In a basic assessment of substitution model adequacy, phylo-

genetic analysis of the empirical data is performed using the

model that is to be assessed. Then, a large number of data
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sets of the same size as the empirical data set are generated

by simulating sequence evolution under the chosen model,

using the maximum-likelihood estimates of the model param-

eters. A chosen test statistic is calculated for each of these

simulated data sets, thereby producing a distribution of values

derived from the model (Goldman 1993; Foster 2004). The

test statistic from the empirical data can be compared against

this predictive distribution.

An ideal test statistic is able to describe the differences

between the empirical data and the simulated data, especially

with regard to inferences of interest (such as the tree topology

and branch lengths). Therefore, selecting appropriate test sta-

tistics is critical to assessment of model adequacy. Here, we

describe our framework for fast assessment of model ade-

quacy using test statistics that can detect instances when phy-

logenetic inferences are inaccurate or imprecise. We assume

that we have an empirical data set comprising a large number

of unlinked loci from the taxa of interest.

In our framework, we obtain maximum-likelihood esti-

mates of model parameters and the phylogeny for each

gene alignment using the software PhyML 3.0 (Guindon

et al. 2010). Branch support is estimated using a highly

efficient, nonparametric measure of branch support with

behaviour similar to the nonparametric bootstrap (Guindon

et al. 2010; Anisimova et al. 2011). We take advantage of

the speed of this method for assessing the performance of

test statistics that are based on inferences from the data

(Brown 2014).

For each locus alignment, we generate 100 data sets by

simulating sequence evolution using the parameter estimates

from the empirical data. These simulated data sets have the

same number of taxa and sites as the empirical data. Since

these simulated data are derived from the model, they can be

considered a null distribution (Goldman 1993). To assess

model adequacy, we calculate a number of test statistics for

the empirical data set and for each simulated data set. It is

common to consider the model to be inadequate when the

test statistic calculated from the empirical data falls outside

the central 95 or 99 percentile range of test statistics calcu-

lated from the simulated data. However, these thresholds do

not necessarily reflect the points at which inferences become

inaccurate, so in this study we do not use the P-values to test

model adequacy. Instead, we used a measure of effect size

based on the number of standard deviations of the predictive

distribution (SDPD) between the mean and the statistic calcu-

lated from the original data (Brown 2014; Duchêne et al.

2017).

Test Statistics Considered

Almost any variable or model parameter that can be esti-

mated from the data can be used as a test statistic in the

approach described here. Instead of carrying out an exhaus-

tive examination of possible statistics, we consider nine that

have previously been proposed in the context of substitution

model adequacy (table 1). The selected statistics consider sev-

eral aspects of the model and potentially provide an overall

examination of adequacy. These test statistics include the X2
m

statistic for assessing stationarity of base composition (Foster

2004); multinomial and d statistics for assessing overall model

fit (Goldman 1993; Bollback 2002); biochemical diversity for

assessing the diversity in base composition across sites

(Lartillot et al. 2007); and consistency index for assessing the

consistency of phylogenetic information in the data when

compared with the most parsimonious possible scenario

(Kluge and Farris 1969). We also use three test statistics based

on inferences from the data, including mean branch support,

95% confidence interval in branch support, and sum of

branch lengths (Brown 2014). In addition, we use the

Mahalanobis statistic, which has been used previously for

assessing phylodynamic models, and provides a summary of

a chosen set of test statistics (O’Hagan 2003; Drummond and

Suchard 2008). This approach treats groups of test statistics as

a multivariate distribution, to which the empirical data are

compared using the Mahalanobis distance (see table 1). We

have implemented our approach and the test statistics out-

lined here in the software PhyloMAd (github.com/duchene/

phylomad).

Validation of Test Statistics Using a Simulation Study

Simulation Scenarios

To understand the performance of test statistics for assess-

ing model adequacy, we simulated the evolution of nucle-

otide sequences in a number of scenarios that involve

misspecified models. Under these conditions, the accuracy

and precision of phylogenetic inference might be adversely

affected. We performed a range of simulations in six sce-

narios involving realistic variation across loci (fig. 1). Our

study does not include other scenarios that have the poten-

tial to create difficulties for phylogenetic inference, such as

tree imbalance or extreme model parameter values. Instead,

we focus on scenarios that lead to model misspecification.

Our simulations were performed on fully symmetric trees

with 32 tips. To derive adverse simulation scenarios, we

began with a baseline phylogenetic tree with branch

lengths drawn from an exponential distribution with rate

of 5, such that the mean distance from the root to each

tip is 1 substitution per site. We simulated the evolution of

sequences along these tree to produce data sets with 200,

1,000, or 5,000 nucleotide sites.

Simulations were performed under a model in which the

rates of each of the six substitution types were different. This

model is the GTRþC (Tavar�e 1986; Yang 1993) in scenarios

where base composition is stationary and sites do not contain

covarion-like patterns of substitution. Simulations were done

using the R package PHANGORN (Schliep 2011), except for

those with nonstationary base composition, which were done

Phylogenomic model adequacy test statistics GBE
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using the software p4 (Foster 2004). The R matrix used for

simulation had parameters set to 1.3472, 4.8145, 0.9304,

1.2491, 5.5587, and 1.0000, based on a previous study of

placental mammals (Murphy et al. 2001). We performed an

additional set of simulations under the Jukes–Cantor model

(Jukes and Cantor 1969). For each simulation scenario, we

performed 100 replicates for each locus length.

We first performed phylogenetic and model-adequacy

analyses using substitution models that were overparameter-

ized, underparameterized, and adequate (fig. 1a). This

was done by evaluating three scenarios that represented dif-

ferent combinations of simulation model and estimation

model: sequences that evolved under the JC model and

were analysed using the GTRþC model (overparameterized

a. Substitution model parameterization

d. Long terminal branches

b. Composition heterogeneous model

c. Covarion-like rate variation model

One half of taxa with
moderate change

One half of taxa with
strong change

Moderate
variation

Strong
variation

e. Covarion-like model with long terminal branches

Moderate variation with
terminal branch lengths ×10

×10 ×25

Simulated with
GTR+

Analysed with
GTR+

Model-adequate

Simulated with
JC

Analysed with
GTR+

Over-parameterized

Simulated with
GTR+

Analysed with
JC

Under-parameterized

One eighth of taxa with
strong change

One eighth of taxa with
moderate change

Strong variation with
terminal branch lengths ×10

Moderate variation with
terminal branch lengths ×25

Strong variation with
terminal branch lengths ×25

A C

G T

A C

G T

A C

G T

A C

G T

A C

G T

A C

G T

500 50001000

f. Number of nucleotides in each locus

FIG. 1.—The six characteristics that were varied in simulations of sequence evolution to investigate the performance and adequacy of the candidate

substitution model (GTRþC): (a) substitution model parameterization; (b) compositional heterogeneity; (c) covarion-like rate variation; (d) terminal branch

lengths; (e) covarion-like rate variation and terminal branch lengths; and (f) sequence length for each locus. One hundred replicates were performed under

each scenario from (a) to (e), under each of the sequence lengths shown in (f). Colors in (a) indicate different rate parameters, whereas in (b) they indicate the

magnitude and proportion of taxa undergoing a change in base composition. Branch thickness corresponds to evolutionary rate in (c), (d), and (e).
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model); sequences that evolved under the GTRþC model

and were analysed using the JC model (underparameterized

model); and sequences that evolved under the GTRþC
model and were analysed using the GTRþC model (ade-

quate model).

We simulated other processes that can occur in empirical

data and which can cause poor accuracy and precision in

phylogenetic inference. Heterogeneity in base frequencies

across lineages, which violates the assumption of composi-

tional stationarity, can lead to the spurious joining of taxa with

convergent base frequencies (Lockhart et al. 1992; Jermiin

et al. 2004). We performed simulations that included two

convergent changes in base composition across the tree,

with the maximum topological distance from each other

(fig. 1b). We varied the proportion of tips that underwent a

change in base composition between none, one-eighth, and

half of the total number of tips. We also varied the magnitude

of changes in base composition across two scenarios: 1) ap-

proximately the maximum difference in base composition ob-

served across taxa in an avian phylogenomic data set (Prum

et al. 2015; from {0.25, 0.25, 0.25, 0.25} to {0.05, 0.45, 0.45,

0.05}); and 2) extreme differences in base composition (from

{0.25, 0.25, 0.25, 0.25} to {0.01, 0.49, 0.49, 0.01}). The small-

est base frequency in the first scenario was set to approxi-

mately the smallest base frequency observed in avian

phylogenomic data. These parameters allowed data sets to

have a high realistic probability of leading to biased phyloge-

netic inferences. The smallest base frequency in the second

scenario was set to a small but nonzero value of 0.01, in order

to maintain the presence of all four bases in the data.

Simulations of sequence evolution were also done under a

covarion-like process (Galtier 2001), where substitution rates

vary across sites and across lineages (Fitch and Markowitz

1970; Fitch 1971). This scenario has been found to cause

poor estimates of phylogenetic tree lengths, but can benefit

topological inference by causing the overestimation of inter-

nal branch lengths (Penny et al. 2001; Phillips 2009). For this

reason, it can be considered an unusual form of model mis-

specification that is likely to be difficult to detect, yet might

mislead the inferences. Under a covarion-like process (Galtier

2001), relative rates across lineages are described by a discre-

tized gamma distribution. The data share the categories of the

distribution, but each site has its own realization of rates

across lineages (Galtier 2001). In this way, sites might share

the rate along a given branch, but might not share that rate

along other branches. We simulated this covarion-like process

using a gamma distribution with an a parameter of 1. To vary

the strength of variation across sites, rates across lineages

were drawn from distributions with 1 (no covarion), 5, or

10 categories across sites, allowing for an increasing number

of extreme rates (fig. 1c). The consequence of using different

numbers of categories is that some sites will have more ex-

treme (low and high) rates, although the rate distribution and

mean rate remain unchanged.

To increase the sources of error in the data, we introduced

simulation scenarios in which the lengths of the terminal

branches were 10 and 25 times those in the original simula-

tions (fig. 1d). These simulations led to data that resemble

those across highly divergent taxa, such as those used to ex-

amine the relationships among metazoan taxa (e.g., Pisani

et al. 2015). To select the parameters for these simulations,

we took the original simulations involving a root-to-tip dis-

tance of 1 substitution per site to represent a period of 50 My.

Under this assumption, the simulation scenarios with longer

terminal branches reflect data sets across timescales of 1.25

and 2.5 billion years, resembling the scenarios simulated by

Penny et al. (2001). We also performed simulations on trees

with long terminal branches for each of the three covarion

scenarios (fig. 1e), which also resembles previous investiga-

tions of these conditions (Penny et al. 2001).

Analyses of Simulated Data

For each simulated data set, phylogenetic inference was per-

formed using a common candidate substitution model

(GTRþC) using the software PhyML (Guindon et al. 2010),

and then model adequacy was assessed as described above.

We used four metrics to describe the accuracy and precision

of our analyses of simulated data. The lengths of branches in

estimated trees were summed, and then the sum was sub-

tracted from the sum of branch lengths of simulated trees.

This value was then divided by the sum of simulated branch

lengths to describe the inaccuracy in estimates. We made the

same calculation using the stemminess of each tree, which is

the proportion of the inferred tree length represented by in-

ternal branches (Fiala and Sokal 1985). Stemminess was used

to summarize the bias in inferences across branch lengths

within each tree estimate. As a measure of error in topological

inference, we calculated the unweighted Robinson–Foulds

distance between the estimated and simulated trees

(Robinson and Foulds 1981; Penny and Hendy 1985). Lastly,

we used the support for nodes in the estimated tree as a

measure of precision in the inferred topology, calculated using

the Shimodaira–Hasegawa approximate likelihood-ratio test

(aLRT) nonparametric measure of branch support (Guindon

et al. 2010; Anisimova et al. 2011).

For each simulated data set, we assessed model adequacy

using each of the nine test statistics considered in our study. In

statistics, sensitivity is generally defined as the ability of a test

to correctly identify instances in which a result is significant.

Accordingly, we consider test statistics to be consistently sen-

sitive to particular simulation conditions if the distribution of

values from replicate simulations does not overlap with the

mean of the values from the predictive distributions. For test

statistics that were sensitive to inferences with poor accuracy

and precision, we aimed to determine meaningful thresholds

for model assessment. This is because existing tests of model

adequacy are generally conservative, frequently rejecting the

Phylogenomic model adequacy test statistics GBE
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model when inferences from the data are unlikely to be mis-

leading (e.g., Duchêne et al. 2017).

We identified thresholds with a tendency to be lenient,

with low risk of rejecting the model when the inferences

are not misleading (low Type I error rate) at the expense of

sometimes failing to reject the model when inferences are

misleading (moderate Type II error rate). This approach max-

imizes the usage of phylogenomic data, because data can still

contain useful information even when the model is rejected

by a given test statistic.

The interpretation of test statistics can be sensitive to se-

quence length (Duchêne et al. 2017), so our thresholds take

this into account. We determined the threshold for model

assessment for each sensitive test statistic. Thresholds were

defined as a fitted function between the sequence lengths

used for simulation and the median test statistic under a sim-

ulation scenario to which the statistic is most sensitive.

Analyses of Empirical Data

The framework that we have used here for model assessment

is highly computationally efficient, and therefore well suited

for examining genome-scale data sets. We analysed three

phylogenomic data sets to investigate the impact of assessing

substitution model adequacy on the inferred tree topology.

These data sets comprised 2,363 loci from 63 turtle taxa

(Crawford et al. 2015), 222 loci from 200 bird taxa (Prum

et al. 2015), and 96 loci from 15 Laurasiatherian mammal

taxa (Zhou et al. 2012). In order to allow calculation of the

multinomial likelihood, sites with gaps or unknown nucleoti-

des were excluded. For each of the three data sets, we per-

formed maximum-likelihood analyses using a GTRþC model

of nucleotide substitution, and assessed model adequacy us-

ing the nine test statistics that we investigated in our simula-

tion study (table 1).

We described the relative distances between gene trees by

approximating these distances in two-dimensional space. This

approach has been shown to provide an accurate description

of the differences in phylogenetic signal across loci (Duchêne

et al. 2018). This representation of tree space was made using

multidimensional scaling (MDS), based on unweighted

Robinson–Foulds distances (Robinson and Foulds 1981;

Penny and Hendy 1985) for describing the distances between

trees in Euclidean space (Hillis et al. 2005; Matsen 2006;

Höhna and Drummond 2012). MDS finds the Euclidean posi-

tions of gene trees that minimize the sum of the distances

between them (Mardia et al. 1979).

We used the MDS visualization to explore an association

between tree space and the Mahalanobis distance, mean

node support, tree length, and number of variable sites.

This association might occur, for example, if loci that yield

trees with highly supported nodes and that have high infor-

mation content lead to congruent estimates of topology and

have high model adequacy (Doyle et al. 2015). Alternatively,

loci that lead to well-supported topologies can have some of

the largest numbers of variable sites, and therefore can be the

loci that show the greatest differences from predictive data

(i.e., have the largest Mahalanobis distance).

To investigate whether information content was associated

with distance from the model or with tree space, we used

Spearman’s q to test whether the Mahalanobis distance was

correlated with mean node support, tree length, number of

variable sites, and the MDS dimensions. We also used the

MDS visualization to assess the performance of thresholds

for assessing model adequacy. For each sensitive test statistic,

we investigated the power of our threshold to reject the

model in regions of tree space that are the most likely to

contain misleading inferences.

Results

Accuracy and Precision under Simulation Conditions

Phylogenetic inferences are accurate and precise when there

is a match between the substitution models used for simula-

tion and analysis (fig. 2). When the model used for analysis is

overparameterized, the accuracy and precision of phyloge-

netic estimates is similar to those obtained when the data

are analysed using the correct model (supplementary figs.

S1–S3, Supplementary Material online). When the model

used for analysis is underparameterized, tree length is consis-

tently underestimated (fig. 2a), terminal branches have a dis-

proportionate contribution to the tree length (fig. 2b), and the

topology is estimated with higher error than when the correct

model is used (fig. 2c). Using an underparameterized model

also leads to estimates with greater branch support (higher

precision) than when the model is adequate (fig. 2d), in agree-

ment with the bias-variance tradeoff found in statistical mod-

els (Burnham and Anderson 2002; Lemmon and Moriarty

2004; Wertheim et al. 2010; Liu et al. 2015).

As simulated in this study, compositional heterogeneity

leads to a mild tendency to overestimate tree length, to ter-

minal branches having a greater contribution to the tree

length, and to greater error in the estimate of the tree topol-

ogy than when the correct model is used (fig. 2). Branch

lengths can be overestimated under conditions of composi-

tional heterogeneity because a change in base composition

can inflate the inferred numbers of the types of substitutions

involved in that change (Ho and Jermiin 2004; Duchêne et al.

2017).

Analyses of data generated under a covarion-like process

lead to underestimates of tree length (fig. 2a), but otherwise

produce estimates with similar accuracy and precision to

those in which the correct model was used. The lowest accu-

racy and precision in phylogenetic inferences was found in

simulation scenarios that involved long terminal branches

(fig. 2c and d). In these cases, tree length was severely under-

estimated and terminal branches had a small contribution to
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tree length (fig. 2a and b). The effects of the covarion process

combined with long terminal branches have been studied

previously, with similar outcomes (Galtier 2001; Penny et al.

2001). We also find that inferences from short sequence

alignments have greater variance in accuracy and precision

(supplementary figs. S2 and S3, Supplementary Material

online).

Sensitivity of Model-Adequacy Test Statistics

None of the test statistics is consistently sensitive to scenarios

in which the model is adequate (fig. 3a) or to model over-

parameterization (supplementary figs. S4b–S6b,

Supplementary Material online). This is a desirable property

and is consistent with the results of previous research (Brown

2014; Duchêne et al. 2017). Four test statistics are consistently

sensitive to model underparameterization, including the mul-

tinomial likelihood, d statistic, biochemical diversity, and the

consistency index (fig. 3b). However, the d statistic has negli-

gible sensitivity compared with the other three test statistics,

with SDPD values lower than 0.5 in data sets with 1,000

nucleotides. The same four test statistics, along with X2
m, are

consistently sensitive to compositional heterogeneity. The X2
m

statistic is overwhelmingly the most sensitive statistic to this

scenario, dwarfing the signal of the other statistics (fig. 3c).

These results suggest that most test statistics are lenient under

conditions of compositional heterogeneity. However, the X2
m

statistic can be highly conservative, because some of the infer-

ences under conditions of compositional heterogeneity have

similar accuracy and precision to those obtained when using

the correct model.

The biochemical diversity and consistency index statistics

are consistently sensitive to the covarion-like process, in par-

ticular when the simulated sequences had a length of 5,000

nucleotides (fig. 3d and f; see supplementary figs. S5i and S6i,

Supplementary Material online). Only the biochemical
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FIG. 2.—The performance of phylogenetic inference using the GTRþC substitution model in simulations with 5,000 nucleotides under six represen-

tative simulation conditions (for results from every simulation scenario, see supplementary figs. S1–S3, Supplementary Material online). Each box represents

the results of 100 replicate analyses. Performance is described by (a) the length of the estimated tree minus that of the simulated tree, divided by that of the

simulated tree, (b) the difference in stemminess, defined as the proportion of the inferred tree length represented by internal branches, (c) the unweighted

Robinson–Foulds topological distance between estimated and simulated trees, and (d) the mean node support in the estimated tree, which is a measure of

precision in estimates.
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diversity statistic is consistently sensitive to long terminal

branches, particularly in simulation scenarios involving

sequences with lengths of 5,000 nucleotides (fig. 3e). In

data sets with shorter sequences (200 and 1,000 nucleotides),

two test statistics are consistently sensitive to long terminal

branches, but with low sensitivity (SDPD between �1 and 1;

supplementary figs. S5j–S5o and S6j–S6o, Supplementary

Material online). These were the multinomial likelihood and

the confidence interval in branch support. Interestingly, we

find that inference-based statistics are generally very lenient.

This is possibly because inferences from predictive data sets

are similar to those from the original data (but see Brown

2014).

We propose an approach to model assessment that con-

siders the test statistics that have measurable sensitivity to

phylogenetic inferences with low accuracy and precision:

the X2
m, multinomial likelihood, biochemical diversity, and

consistency index. The result of focusing on these statistics

can be observed when comparing the summary

Mahalanobis distance including all eight of the other test sta-

tistics examined here (M1) with that including only the four

most sensitive statistics (M2). In most simulation scenarios, M1

and M2 are two of the most sensitive statistics, and M2 is

always more sensitive than M1 (with the exception of scenar-

ios in which the correct model is used). This shows that

statistics with low sensitivity should be excluded.

Meanwhile, examining M2 and the four informative test sta-

tistics can provide a useful general method for examining

model performance.

New Thresholds for Assessment

Analyses of phylogenomic data sets from turtles, birds, and

mammals show the critical importance of using thresholds for
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FIG. 3.—The sensitivity of nine test statistics for assessing the adequacy of the GTRþC substitution model in simulations with 5,000 nucleotides under

six representative simulation conditions (for results from every simulation scenario, see supplementary figs. S4–S6, Supplementary Material online). The

Mahalanobis test statistic was calculated to summarize all test statistics (M1), or the four sensitive test statistics (M2). Each box represents the results of 100

replicate analyses.
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assessment that consider sequence lengths. We find strik-

ing evidence in these data that highly informative align-

ments have poorer perceived model adequacy. Loci with

poor perceived model adequacy (the highest SDPD for M2)

yield gene-tree estimates that are similar to those of loci

that yield high branch support and long branches, and

that contain a large number of variable sites (fig. 4). In

simulations and empirical data sets, we find that loci

with gene-tree estimates that are likely to be inaccurate

and imprecise have consistently good perceived model ad-

equacy (low M2), low mean branch support, short trees,

and few variable sites (supplementary figs. S7–S8;

Supplementary Material online).

We propose thresholds of model assessment based on the

median value of test statistics under the scenarios to which

test statistics are sensitive (supplementary fig. S9,

Supplementary Material online). We use the scenarios of

strong compositional heterogeneity, model underparameteri-

zation, covarion-like process with long terminal branches, and

covarion-like, for determining the thresholds of X2
m, multino-

mial likelihood, biochemical diversity, and consistency index,

respectively. For deriving the threshold for M2, we used the

median values of simulations of a covarion-like process with

long terminal branches.

In analyses of phylogenomic data from birds and mam-

mals, the new thresholds have an association with esti-

mates of the tree topology, in particular when model

assessment is made using X2
m and biochemical diversity

(fig. 5). In these data, the model is rejected for loci in

regions of tree-space with lower branch support and

shorter trees. These results suggest that assessment of

model adequacy might be more meaningful for data sets

with longer sequences, since the mean number of sites is

greater in the data from birds (741) than in the data from

mammals (480) and turtles (200). Similarly, these results

show that X2
m and biochemical diversity statistics might

provide the most informative tests out of those that we

have explored.
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Discussion

Assessing model adequacy can provide important insights

alongside commonly used methods of model selection based

on information criteria or Bayes factors. By assessing model

adequacy, it is possible to consider that even the best-fitting

model can provide a poor description of the process that

generated the data (Gelman et al. 2014). This can be partic-

ularly useful when examining phylogenomic data sets, be-

cause a subset of the data can be selected to maximize the

reliability of the model and inferences. Here, we compared

the sensitivity of methods of assessing model adequacy to a

diverse range of scenarios that can lead to biased inferences

of tree topology and branch lengths. We show that the var-

ious test statistics for assessment differ in their sensitivity to

biased inferences. We find that some test statistics can be

highly lenient, whereas others can be conservative. Our results

also support previous evidence that sequence length has a

critical bearing on the perceived adequacy of a model

(Duchêne et al. 2017). This phenomenon occurs because

when longer sequences are analysed, the distribution of test

statistics calculated for predictive data is narrower. As a con-

sequence, long sequences can appear to have a greater dis-

crepancy from predictive data compared with short

sequences (Goldman 1993).

Using these insights, we have proposed thresholds for as-

sessment that are specific to the most sensitive test statistics,

implemented using a fast maximum-likelihood optimization

framework. These sensitive statistics include X2
m, multinomial

likelihood, biochemical diversity, and consistency index. We

have also shown the performance of the assessment using

these four statistics simultaneously in a multivariate setting,

using a statistic that we denote M2. We focus on these five

test statistics for deriving meaningful thresholds for assess-

ment, which we hope can provide information about

whether the model is likely to yield misleading inferences

of tree topology or branch lengths. Exploring the power of

novel test statistics for identifying misleading inferences will

be an important avenue of research. For example, entropy

metrics have been implemented for model assessment in a

Bayesian framework (Brown 2014), and could be adapted

for use in a maximum-likelihood setting by metrics that

compare the empirical and predictive data to another null

reference data set (Lewis et al. 2014). Similarly, more exten-

sive simulation frameworks could lead to additional insights

into the power of model assessment for detecting other

potential sources of bias, such as tree imbalance or long-

branch attraction.

Our results emphasize the importance of defining thresh-

olds based on sequence length. In our simulation study and

our analyses of three phylogenomic data sets, we find that

the loci that yield estimates with high accuracy are usually

long, such that they would be rejected using traditional

thresholds for assessing model adequacy (supplementary

figs. S1–S6, S8; Supplementary Material online). Critically,

(a) (b) (c) (d) (e)

FIG. 5.—Estimated two-dimensional representation of tree-space for loci from turtles, birds, and mammals. Data are colored according to whether each

locus passes (black) or fails (red) each of the five tests of model adequacy using our new thresholds for assessment.
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the poor perceived model adequacy in analyses of long

sequences might be exacerbated in empirical data, since the

model is a greater simplification of the evolutionary process in

these data compared with our simulations. Nonetheless, it

seems unreasonable to reject the model for these data, since

a simple model can be sufficient for estimating the parame-

ters of interest accurately and precisely (Steel 2005). This leads

us to propose thresholds for model assessment that are rela-

tively lenient when applied to data generated by simulation,

yet can reject the model in most cases when inferences are

misleading. In analyses of phylogenomic data sets from birds

and mammals, we find that our methods of assessment can

reject a commonly used substitution model for loci that lead

to inferences with anomalous tree topologies and low statis-

tical support.

We also find that assessing model adequacy can be difficult

for short loci. In the phylogenomic data from bird families, loci

that were model-adequate according to our thresholds

yielded congruent estimates of the tree topology, with strong

statistical support. The data from birds comprised the longest

loci of the three phylogenomic data sets that we investigated.

These data also produced the most intuitive results, consistent

with a previous study that also identified that model-adequate

loci lead to congruent phylogenetic inferences (Doyle et al.

2015). Strikingly, when using the phylogenomic data set with

the shortest sequences, based on ultraconserved elements

from families of turtles, model assessment was less meaning-

ful. In these data, model-adequate loci yielded phylogenetic

estimates that were similar to those from loci for which the

model was rejected. These results are congruent with those of

a previous study of the X2
m statistic in phylogenomic data from

birds, which showed that only some of the shortest loci were

deemed model-inadequate and risked causing phylogenetic

bias due to compositional heterogeneity (Duchêne et al.

2017).

Tests of model adequacy are frequently reliant on evaluat-

ing multiple test statistics and can be too lenient or conserva-

tive, such that it is difficult to interpret the phylogenetic

performance of the model. The thresholds for assessment

provided here should lead to more effective identification of

models that are potentially misspecified. Nevertheless, assess-

ing model performance remains difficult for data sets com-

prising short sequences. Development of novel test statistics

should be accompanied by simulation studies that provide

intuitive thresholds, based on the impact of model violation

on inferences of interest. Other potential avenues of research

include developing more summary metrics and graphics

of model adequacy across the genome; assessing genome-

wide models of inference, such as those developed for

assessing the multispecies coalescent (Reid et al. 2014); or

assessment for quantifying sequence information under the

model (e.g., Klopfstein et al. 2017). Together, these advances

will improve the reliability of phylogenomic inferences from

sequence data.

Supplementary Material

Supplementary data are available at Genome Biology and

Evolution online.
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