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Abstract: Voronoi tessellations are shown to be statistically representative of polycrystalline mi-
crostructures, which have been widely accepted for the modeling of microstructures of metallurgic
and ceramic materials. In this paper, a new implementation of the Voronoi diagram in Laguerre
geometry is presented for the generation of numerical models of polycrystalline microstructures,
where the size and shape of the grains can be controlled, and the 3D grain boundaries can be modeled
with a specified thickness. The distribution of grain sizes in the models is fitted to a lognormal
distribution, compared with the normal distribution in the Voronoi tessellation methods. Finally,
statistical analyses of grain face and grain size distribution are performed with the models, and
the macroscopic elastic properties of polycrystalline ceramic materials are simulated to verify the
capability of the presented method.

Keywords: polycrystalline material; microstructure; Laguerre–Voronoi tessellation; grain boundary

1. Introduction

Polycrystalline materials are widely used as an important material in many fields
such as construction, medical, and aerospace. Recent studies have demonstrated that the
deformation, damage, and even fracture of polycrystalline materials at the macroscopic
level depend on the microstructural characteristics of the materials, so it is important to
understand the deformation mechanism of polycrystalline materials at the grain level
to study the mechanical properties of these materials in the macroscopic field. The mi-
croscopic characteristics of polycrystalline materials include the single crystal behavior,
the distribution of grain sizes and grain orientations, and the polycrystal morphology,
etc. Therefore, the development of optimization techniques for polycrystalline material
design requires a topological structure model with appropriate description of the statistical,
topological, and physical characteristics of the microstructure.

Modeling techniques for polycrystalline material microstructures have developed
rapidly in recent decades, either by material testing methods based on one-to-one ex-
perimental measurements, or by computer simulation methods based on statistical laws
and algorithms.

With the development of materials testing technology, experimental measurement
techniques have been used to measure real microstructural topological information of
materials (e.g., grain size distribution, first neighborhood number, and grain morphology).
Ultrasonic excitation-based nondestructive detection techniques that rely on the reflections
of high frequency acoustic waves are not very effective for imaging grains in metals.
Subsequently, the application of X-ray computed tomography technology solved this
problem. Simonovski et al. established a microstructure model of stainless steel based on
X-ray diffraction contrast tomography data [1]. This method achieved the visualization
of polycrystalline material microscopic modeling. However, complemented techniques
(e.g., electron backscatter diffraction (EBSD)) must be used to identify the distribution of
grain orientation.
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Introduced more recently, the 3D real tissue modeling method based on serial section-
ing techniques is one of the most prospective methods due to its high-fidelity structure of
the materials. This technique builds 3D microstructure models in 3D space by stacking
the two-dimensional microstructure information obtained following serial sectioning. This
technique still needs an EBSD system to obtain the grain orientation [2]. Generally speaking,
all these modeling methods based on experiments require high research funding and must
deal with the huge amounts of data generated during the experiments, which require
complex post-processing techniques. Furthermore, the transformation process between 2D
and 3D models generates non-unique topological relationships due to the overlap of grains.

Due to the aforementioned difficulties in experimental methods and the difficulty
in generating large-scale grains, computer modeling and simulation techniques have
gained researchers’ attention with their advantages in investigating the microstructure of
polycrystalline materials. Furthermore, they bring great convenience to the establishment
of finite element models in the subsequent simulation of deformation and damage of
crystalline materials.

Initially, researchers investigated the micro-mechanics of polycrystalline materials
with numerical simulations based on regular two-dimensional shapes, including Bacz-
manski [3], who proposed thousands of square grains to simulate the residual stresses in
steel in plastic deformation, followed by Ortiz [4], who used ortho-hexagonal grains for
residual stress simulations and concluded that at least two hundred grains were required
to make the calculations more accurate. These regular shape grain models are simple to
establish and easy to mesh. However, during the crystallization processes, because of the
mutual resistance between adjoining grains, the grains spontaneously form polyhedral
irregular grains. The above square or ortho-hexagonal grain models do not match with the
actual grain shapes and cannot reflect the grain irregularity and the grain inhomogeneity
deformation of inner materials. Among the numerical techniques developed to generate
representative models of polycrystalline microstructures, Voronoi tessellation techniques
are generally considered to offer an excellent compromise between representativeness and
simplicity of formulation. Therefore, the modeling methods based on the Voronoi diagram
have been widely used in the field of polycrystal modeling in recent years.

With the improvement of computing power, polycrystal modeling methods based
on the Voronoi diagram were developed, and polycrystal models were developed from
simple 2D polygons to 3D polyhedral models that are more consistent with the actual
grain morphology. One of the most representative 3D polycrystal modeling methods
was proposed by Quey et al., which is a modeling method for generating 3D random
models of large-scale grain polycrystals [5]. This method uses the open-source software
Neper to generate the topological information of the grain model and reconstruct the
polycrystal model by topological information in reverse topology in CAE software. Neper
runs on any Unix-like system, which requires a large number of commands to configure
the system and compile the software, and the process is troublesome and time-consuming
for the researchers.

In recent years, Liang et al. generated the basic Voronoi cells information with MAT-
LAB, stored the cells’ information as data files according to a certain order, and imported the
data files into ABAQUS through the Python interface to establish polycrystalline microstruc-
ture models [6]. This method implements the Quey.R method in Windows, reducing the
researchers’ usage requirements. A large amount of grain information data is generated
through the Voronoi diagram function in MATLAB, and then the polycrystalline microstruc-
ture can be modeled by reverse topological reconstruction using grain information (such as
vertices, lines, surfaces, bodies) in the ABAQUS package. It remains an arduous task to
establish polycrystalline models.

There are several variations of the Voronoi tessellation algorithm available in the open
literature; Poisson–Voronoi, Hardcore–Voronoi, and Laguerre–Voronoi formulations are
widely used to statistically represent the real polycrystalline microstructures. Compared
with the first two variants that have only limited control over the shape and size of the
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cells, the Laguerre–Voronoi formulation imposes constraints on the initial state [5], thus
allowing the formulation of the tessellation to be modified more deeply. The Laguerre–
Voronoi formulation can be used to model a wider range of grain structures (e.g., metals [7],
foams [8], and granular matter [9]).

In addition, it is universally acknowledged that grain boundaries (GBs) govern many
properties of polycrystalline materials. With the decrease of grain size, the volume ratio of
grain boundary structures increases with more significant effects on macroscopic material
properties, especially in the nanomaterials [10,11]. However, the above-mentioned research
works model grain boundaries as ideal interfaces without thickness that does not consider
the 3D solid structure of grain boundaries.

In this paper, a new implementation of the Voronoi diagram in Laguerre geometry
is presented for the generation of numerical models of polycrystalline microstructures.
This method directly models the grains in CAD software by repeating cutting of the
corresponding cell with several cutting planes, which are created by the Voronoi diagram.
The 3D grain boundary structure can be constructed in the microstructure models. There is
no need for cumbersome data processing and reverse topology reconstruction. Moreover,
the resulting models can be directly imported into various computer aided engineering
(CAE) software (e.g., ABAQUS, ANSYS, COMSOL) for the simulation and analysis of
polycrystalline materials. This paper is organized as follows: In Section 2, the procedure
of modeling polycrystalline microstructures is described. In Section 3, the finite element
homogenization method based on the concept of representative volume element (RVE) is
implemented to evaluate the effective elastic properties of the Al2O3 ceramic material. In
Section 4, statistical analyses of grain face and grain size distribution are performed with
the models, and the macroscopic elastic properties of polycrystalline ceramic materials are
simulated to verify the capability of the presented method.

2. Polycrystal Modeling

Voronoi tessellations and its variants provide an analytical formulation to reproduce
the non-regularity of polycrystalline morphologies. According to Boots’s hypothesis on
crystals [12],

• All crystalline nuclei have the same weight, appear at the same time, and remain fixed
in the same location during the growth process.

• The growth is uniform and isotropic with a constant rate.
• Grain growth in a direction stops when two grain boundaries contact each other.
• In the aggregate there are no voids in between the grains or grain overlapping.

Among all the numerical techniques for generating representative models of polycrys-
talline microstructures, the Voronoi-based tessellation techniques are generally considered
to offer an excellent compromise between representativeness and simplicity of formulation.
Additionally, the straight edges and the planar faces of the grains are advantageous for
further spatial discretization in finite element models.

2.1. Voronoi Tessellation

The Voronoi diagram is essentially a spatial partitioning structure. In three-dimensional
space Dn, given a finite set of N points P = {p1, p2, . . . pn} (hereinafter called nuclei), the
space is divided into a series of regions using the nucleus. Each region is the set of nearest
points to the nucleus, and in this way a boundary is set for the region to achieve spatial
partitioning. The set is defined as follows:

Vi = p ∈ Dn∣∣d(p, pi) < d
(

p, pj
)
,
∣∣j 6= i, i = 1, 2, . . . n (1)

where p is any point in the n-dimensional space Dn, and d(p, pi) denotes the distance from
point p to pi.

Voronoi tessellations have been applied to spatially discretize models in a variety
of fields such as astronomy, materials science, and biology. It is obvious that Voronoi
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tessellation has obvious advantages in simulating the grain growth results of polycrys-
talline materials, such as metals or ceramics, and establishing the finite element model
of polycrystalline materials. This method partitions the space to form a 3D structure by
randomly creating a nucleus in the 3D space. The method is simple, stores less data, and
has mature algorithms through recent development, which makes it easier to achieve the
establishment of polycrystal microstructure models.

With the development of Voronoi tessellation in the field of polycrystalline microstruc-
ture modeling, the limitations of this algorithm are exposed: the grain sizes of poly-
crystalline models being normally distributed and not necessarily compatible with real
polycrystalline materials, and the singularity and non-tunable nature of Voronoi tessellation
in polycrystal modeling. In particular, they do not represent a large range of real grain sizes
and the presence of large grains within the microstructure [13]. Therefore, it is imperative
to design a core algorithm that can satisfy the requirements of polycrystal modeling.

2.2. Laguerre–Voronoi Tessellation

The Laguerre–Voronoi diagram is studied on the basis of the Voronoi diagram. The
Laguerre–Voronoi diagram divides the 3D space into N regions by defining Laguerre
distances, which are composed of the nearest points to the nucleus Laguerre distance.
Laguerre distance is defined as follows:

dL(p, Ci) = d(p, pi)
2 − γ2

i (2)

The Laguerre–Voronoi diagram is defined by the following equation:

Vi = p ∈ Dn∣∣dL(p, Ci) < dL
(

p, Cj
)
,
∣∣j 6= i, i = 1, 2, . . . n (3)

where γi and pi are the radius and center, respectively, of any sphere Ci in space Dn;
dL(p, Ci) denotes the Laguerre distance from point p to circle Ci.

Thus, the N-dimensional space is divided into n Laguerre–Voronoi regions and the
corresponding boundaries, which constitute the Laguerre–Voronoi diagram. Compared
with the Voronoi model, the grain size of the Laguerre–Voronoi model is controlled by the
Laguerre distance, which changes the distribution of grain size so that the grain size is
more consistent with the real distribution of grains.

From the mathematical description of the Laguerre–Voronoi tessellation, the overlap
between the power circles can be avoided by imposing a non-overlapping condition on
the spheres representing the weights of the nuclei. The Random Close Packing of Spheres
(RCPS) model is usually adopted as the conditioning method [14,15]. This conditioning
method, adopted in this paper, generates dense three-dimensional packing of spheres with
an arbitrary radii distribution.

Moreover, polycrystalline microstructure models with 3D grain boundaries have also
been established based on the Laguerre–Voronoi tessellation formulation. As shown in
Figure 1, Ri, Rj are the radii of the power circles corresponding to the adjacent nucleus, Dij
is the distance between nuclei, h is the thickness of the grain boundary, and the point S is
the location of the cutting plane between two nuclei. According to the Laguerre–Voronoi
diagram, the distance ratio from the point S to the nucleus i is denoted as λ, and the
tangential distances from the point S to the two spheres are equal. Thus, the position of the
cutting plane can be calculated by the derivation of the equation as follows:

d2
L = (λDij)

2 − R2
i = (1− λ)2D2

ij − R2
j (4)

deduce that

λ =
R2

i − R2
j + D2

ij

2D2
ij

(5)
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Figure 1. Schematic of the improved Laguerre–Voronoi tessellation, Ri, Rj are the radii of the power
circles corresponding to the adjacent nucleus, Dij is the distance between nuclei, h is the thickness
of the grain boundary, and the point S is the location of the cutting plane between two nuclei, λ is
the ratio of the distance from point S to nucleus i to Dij, dL is the tangential distance from point S to
two spheres.

It is evident that when the grain boundary thickness is set to zero where the grain
boundary is considered as ideal interfaces without thickness, the distance from the cutting
plane to the nuclei is λDij, and if the thickness of the grain boundary is set to h, this value is
equal to λDij − h/2. In addition, when the RCPS model has the same radius of each power
circle, the polycrystalline model is converted to Voronoi tessellation.

In this paper, a new polycrystalline microstructure modeling method was imple-
mented. The flow chart is shown in Figure 2. Firstly, spherical particles corresponding to
the number of grains are randomly generated in the RVE region, and the positions and ra-
dius sizes of these particles are adjusted so that they meet the stacking requirements [16,17],
as shown in Figure 3. The seed points are established using the spherical center coordinates
of the spherical particles. Secondly, a 3D Delaunay triangulation is created from the seed
points. According to the data structure of vertices and edges in the Delaunay triangulation
network, the adjacent seed points around each seed point which will achieve an effective
cut on its cells can be efficiently determined. Thirdly, the corresponding cube is built by
taking a seed point as the center and establishing the cutting planes between this seed point
and its adjacent seed points. The grain model is obtained by cutting the corresponding
cube with all the established cutting planes. Finally, Loop the above steps to obtain the
grain model of each seed point, and a Boolean operation is conducted between each grain
with the original cube to obtain the 3D grain boundary model; the program terminates
when the final polycrystalline model is obtained (Figure 4).
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Figure 2. Flow chart of polycrystal modeling.

Figure 3. (a) Sphere packing of 100 lognormally distributed sphere; (b) histogram of radii plotted the
lognormal distribution.
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Figure 4. The polycrystalline microstructure model with grain boundary thickness h.

The procedure can be presented as follows:
The input and output of algorithm are as follows:
Input: The coordinates of the seed points {(xi, yi, zi)|i = 1, 2, 3 . . .}, radius sizes of

spheres {r1, r2, r3 . . .} and thickness of the grain boundary h.
Output: Achieving the establishment of polycrystalline material models with solid

grain boundary model.

1. Create initial cube and seed points
2. Delaunay triangulation of seed points and determine the effective cutting seed points

around each seed point
3. While the number of loops less than of seed points:

3.1. Select a seed point to create a seed point cube
3.2. Create cutting planes

If the cutting plane intersects with the grain model:

Cutting the seed cube with cutting plane

Else:

Finding next cutting plane

If there is no cutting plane
End of if
Go back to (3)

End While
4. Boolean operation between each grain and the original cube to get the thickness of h

grain boundary model
5. Return Final Model

In particular, because of the presented formulation being implemented in the CAD
package, it is possible to tessellate arbitrary desired solid models with Voronoi cells where
the seed points are assigned randomly, as shown in Figure 5.
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Figure 5. Examples of arbitrary solid shapes with Voronoi cells.

3. Finite Element Modeling of Polycrystalline Microstructures

In this section, the finite elements model of the polycrystalline microstructure is
created in the commercial software ABAQUS (6.14, 2017, Dassault Systemes, Paris, France),
including material properties, grain assembly process, boundary conditions, and meshing.
Based on this finite element model, the macroscopic elastic properties of polycrystalline
ceramic materials will be simulated in Section 4.

3.1. Material Model

In this paper, each grain in the polycrystalline model was considered to be a three
dimensions linear elastic anisotropy domain with arbitrary orientation. For general elastic
anisotropic materials, the elastic constants relate the stress σ to the strain ε through the
generalized Hooke’s law. Using the compact Voigt notation, the stress–strain relation can
be expressed as follows:

σmn = Cmnklεkl ⇒ σi = Cijε j (6)

or
εi = Sijσj (7)

The mapping of the tensor indices mn or kl to the matrix indices i or j is

11⇒ 1
22⇒ 2
33⇒ 3
23 = 32⇒ 4
13 = 31⇒ 5
12 = 21⇒ 6

(8)

where Cij is the stiffness tensor, Sij is the flexibility tensor, and the grain model is a three-
dimensional finite element model, so the stiffness matrix is

σ1
σ2
σ3
σ4
σ5
σ6


=



C11 C12 C13 C14 0 0
C12 C11 C13 −C14 0 0
C13 C13 C33 C11 0 0
C14 −C14 0 C44 0 0
0 0 0 0 C44 C14
0 0 0 0 C14

1
2 (C11 −C12)





ε1
ε2
ε3
ε4
ε5
ε6


(9)
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where the stress σ and strain ε are represented in vector form as 6 × 1 matrices. The
C14 is only related to complex deformations, but there are only simple tensile and shear
deformation calculations considered in this paper, and the value of C14 is small compared to
other stiffness values, so it is approximated as zero [18]. The flexibility matrix is Sij = Cij

−1.
Finally, a local coordinate system is independently assigned to each grain by a Python
Scripts for ABAQUS, and a randomly distributed grain orientation is generated by the
random factor method and assigned to each grain separately.

In the current study, Al2O3 ceramic materials were investigated as elastic materials
because their plasticity has a negligible effect on the behavior of the material. Moreover,
there is a large number of consistent measurements of single crystal properties in the
literature, and the limited anisotropy of single crystals. In this paper, we determined C11 =
497.6 GPa, C12 = 162.6 GPa, C13 = 117.2 GPa, C33 = 498.1 GPa, C44 = C55 = 147.2 GPa,
according to reference [18].

3.2. Assembling the Grains

The single grains in polycrystalline models established by this presented method are
independent entities, so it is essential to assemble them together with cohesive contacts
to simulate the viscous connection between the grains. In this paper, the grains and grain
boundaries were assembled together by setting the viscous property through cohesive
contacts between each pair of contact surfaces through subroutine programming. The
method in this paper was as follows: First, use the Find Contact Pairs module to create a
surface-to-surface cohesive surface between each contact pair, then determine whether the
Master surface and Slave surface of each contact pair are consistent, and then delete the
inconsistent contact pairs, and finally obtain the results as shown in [19] Figure 6.

Figure 6. Assembling parts through cohesive contacts.

3.3. Boundary Conditions

During the numerical homogenization calculations for polycrystalline ceramic mate-
rials, the boundary conditions imposed on the RVE must satisfy the energy conservation
criterion for the micro–macro scale transition proposed by Hill’s energy law [16].

〈σ:ε〉 = 〈σ〉 : 〈ε〉 (10)
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In this paper, six different groups of boundary conditions were chosen to impose RVE
in the simulation of homogenization of ceramic materials under small elastic deformations.

ε11 = ε, ε22 = 0, ε33 = 0, ε12 = 0, ε13 = 0, ε23 = 0
ε11 = 0, ε22 = ε, ε33 = 0, ε12 = 0, ε13 = 0, ε23 = 0
ε11 = 0, ε22 = 0, ε33 = ε, ε12 = 0, ε13 = 0, ε23 = 0
ε11 = 0, ε22 = 0, ε33 = 0, ε12 = ε

2 , ε13 = 0, ε23 = 0
ε11 = 0, ε22 = 0, ε33 = 0, ε12 = 0, ε13 = ε

2 , ε23 = 0
ε11 = 0, ε22 = 0, ε33 = 0, ε12 = 0, ε13 = 0, ε23 = ε

2

(11)

The achieved result is shown in Figure 7.

Figure 7. Boundary conditions for the RVE model, E11, E22, E33 represent the tensile boundary
conditions in X, Y and Z directions respectively, G12, G23, G13 are the shear boundary conditions in
XY, YZ and XZ directions respectively.

3.4. Mesh of the Grains

The mesh discretization method in this paper was based on a discretization approach
based on a widely used bottom-up procedure consisting of mesh nodes, edges, faces,
and particles (i.e., 0D, 1D, 2D, and 3D entities) in that order. The 0D meshing consists of
specifying a feature length for each node. Each edge is then discretized in a 1D element,
with the length derived from the feature length of both vertices. A feature length that
determines the length of the 2D elements is specified for each new node, and then each
face is meshed into a triangular element. The same procedure is applied to the 3D meshing;
each particle is discretized into tetrahedral cells [13]. Depending on the quality of the mesh,
the tetrahedral cell can be either C3D4 (4 nodes) or a secondary cell C3D8R (10 nodes). The
meshing diagram of this paper is shown in Figure 8.

Figure 8. Fully assembled FE model of a 100-grain specimen.
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3.5. Finite Element Homogenization Scheme

The RVE-based finite element homogenization method is an excellent method to pre-
dict the effective mechanical properties of various polycrystalline microstructure materials.
In this paper, the finite element homogenization method was used to predict the elastic
modulus of Al2O3 ceramic materials. The preprocessing (including boundary condition,
material properties, etc.), finite element analysis, and postprocessing corresponding to the
evaluations on the mechanical properties of the polycrystalline Al2O3 ceramic materials are
implemented in the finite element package ABAQUS [20]. Finite element homogenization
calculations are implemented in the commercial FEM package ABAQUS.

The effective mechanical properties are intrinsic to the materials and independent
of the external effects, such as body force and boundary condition. Therefore, to predict
the effective mechanical properties of polycrystalline materials by using the RVE-based
finite element homogenization method, the following weak form quasi-static equilibrium
equation is considered:

div(σ(x)) = 0 (12)

Moreover, the boundary conditions are necessary for solving the quasi-static equilib-
rium equation (Equation (12)) and must satisfy Hill’s energy law. Here, Hill’s energy law
states that the energy on the micro-level has to be the same as the effective energy for the
homogenization [21]. For any material point x in the RVE, its constitutive model is given as

σ(x) = σ(x, ε(x)) (13)

The weak form quasi-static equilibrium equation is solved based on the finite element
analysis in the RVE, with the boundary condition satisfying Hill’s energy law (Equation
(10)) and the constitutive relationship (Equation (13)).

During the postprocessing, the stress tensor, strain tensor, and volume (IVOL) of
anyone integration point of RVE can be obtained in finite element analysis, and the average
stress

〈
σij
〉

and strain
〈
εij
〉

can be calculated by Equation (14):

〈
σij
〉
= 1

V

ne
∑

e=1
Ve

[neint
∑

I=1
σij(yI) · J(yI) ·W(yI)

]
= 1

V

nint
∑

I=1
σij(yI) · IVOL (yI)i, j = 1, 2, · · · and yI ∈ V〈

εij
〉
= 1

V

ne
∑

e=1
Ve

[neint
∑

I=1
εij(yI) · J(yI) ·W(yI)

]
= 1

V

nint
∑

I=1
εij(yI) · IVOL (yI)i, j = 1, 2, · · · and yI ∈ V

(14)

where ne is the number of elements; ne int and nint are the numbers of the integration
point in the elements e and the integral RVE (V), respectively; and J(yI) and W(yI) are the
Jacobian matrix and weight matrix, respectively, at an integration point located at yI in the
element e, which occupies a domain size of Ve. IVOL(yI) is the volume of the integration
point at an integration point positioned at yI [20].

In this paper, the linear elastic deformation was considered for ceramic materials; the
elastic stiffness tensor 〈C〉 can be computed by the average stress

〈
σij
〉

and average strain〈
εij
〉

of the RVE (Equation (15)).
〈C〉 = 〈σ〉〈ε〉−1 (15)

4. Results and Discussion

In this section, statistical analysis and various finite element models of different
polycrystalline models are used to illustrate the capability of the presented method for
producing statistically representative microstructures.
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Firstly, statistical analysis of grain face and grain size distribution are performed with
the polycrystalline model. Compared with the Voronoi tessellation, the grain face and grain
size distributions are obviously lognormal distribution.

Then, the polycrystalline model is assigned with Al2O3 linear elastic anisotropy prop-
erties, and the effective mechanical parameters are calculated by finite element homoge-
nization method. The numerical results are compared with experimental measurement to
validate the representativeness of the polycrystalline models.

4.1. Microstructure Analysis
4.1.1. The Distribution of Grain Size

The grain size distribution in real polycrystalline materials has been suggested to be
lognormal in the previous studies [22–24]. Its probability density function is described as

f(x; µ, σ) =
1

xσ
√

2π
e
−(ln x−µ)2

2σ2 , x > 0 (16)

where σ and µ are standard deviation and arithmetic mean of lnx, respectively.
For the purposes of comparison, two sets of polycrystalline microstructure models

are generated separately in RVE based on the Voronoi and Laguerre–Voronoi diagram. To
explore the effect of the number of grains, each group consists 125 and 500 grains. In order
to have statistically valuable number results, ten different models—for a given number of
grains (e.g., 125 and 500 grains)—were generated.

During the statistical analysis, the grain size distributions (Figure 9) show that the
grain size of the Voronoi tessellation-based polycrystalline model has a Gaussian nor-
mal distribution,

y = y0 + (A/(σ · sqrt(2π))) · exp
(
−2 · ((x− µ)/2σ)2

)
, (17)

and the Laguerre–Voronoi tessellation-based one has a log-normal distribution:

y = y0 + A/(sqrt(2π)σx) · exp
(
−(ln x− µ)2/

(
2σ2
))

, (18)

where the σ and µ are standard deviation and arithmetic mean, respectively.
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Figure 9. (a) Grain size distribution of the Laguerre–Voronoi tessellation polycrystalline model with
500 grains; (b) grain size distribution of the Laguerre–Voronoi tessellation polycrystalline model with
125 grains; (c) grain size distribution of the Voronoi tessellation polycrystalline model with 500 grains;
(d) grain size distribution of the Voronoi tessellation polycrystalline model with 125 grains.

With the increasing of the number of grains, the grain size distributions of the polycrys-
talline models seem to become more stable, and the fitting degree is higher. Compared with
the Voronoi tessellation-based polycrystalline models, the Laguerre–Voronoi tessellation-
based ones allowing a wider range of grain structures to be modelled.

4.1.2. The Distribution of Face and Edge Number

Statistical analysis for the number of grain faces and edges was also performed for a
polycrystalline model with 500 grains, and the statistical results are shown in Figure 10.
The number of grains faces in polycrystalline models is concentrated between 10 and 15,
and the number of edges concentrates between 25 and 40, which is consistent with the
actual grain microscopic morphology [2,5]. Furthermore, as with the distribution of grain
size, the distribution functions of the number of grain faces and edges are fitted to the
normal and log-normal distribution functions, respectively.
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Figure 10. (a) Distribution of the number of grains faces, (b) distribution of the number of single grain
edges by Voronoi tessellation, (c) distribution of the number of single grain faces, (d) distribution of
the number of single grain edges by Laguerre–Voronoi tessellation.

In addition, the 3D grain boundary can also be constructed in the polycrystalline
model by the presented method in this paper. The distributions of grain size, and the
number of grains faces and edges is shown in Figure 11 for a grain boundary thickness h of
0.1 and a number of grains of 200. The results show that the distributions of grain size, and
the number of grain faces and edges of polycrystalline model grains that have solid grain
boundaries and established by the Laguerre–Voronoi method conform to the log-normal
distribution function shown in Equation (18). Moreover, the grain topology information in
Figure 11 is consistent with the experimentally measured grain information in a statistically
regular manner [25].

Figure 11. (a) The distribution of grain sizes, (b) the distribution of the face number, and (c) the
distribution of the edge number of the 200-grain polycrystal model.



Materials 2022, 15, 1996 15 of 20

4.2. Predicting the Effective Elastic Modulus of Al2O3 Ceramic Materials

For predicting the elastic modulus of Al2O3 ceramic materials, linear elastic defor-
mation is considered, there no material plasticity, and there are no defects. The effects of
grain size, grain orientation, and grain boundary in the polycrystalline model to predict
the effective elastic modulus of Al2O3 ceramic materials are investigated in this section.

4.2.1. Effect of Grain Size

An RVE of a polycrystalline model usually requires enough number of grains to con-
vey consistent bulk properties. In order to investigate the adequate number of grains to
construct an RVE of polycrystalline ceramic materials, different polycrystalline microstruc-
ture models with different numbers of grains are generated. Benedetti [20] found that
polycrystalline finite anisotropic materials (e.g., nickel, copper, gold) with cubic grain
structures can be calculated with 20 grains for elastic properties within 10% error under
specific boundary conditions. The Al2O3 ceramic materials have finite anisotropy with
linear elastic properties, so the minimum RVE structure is defined as consisting of 25 grains
in this paper.

In this section, finite element models with 25, 50, 100, 200, and 500 grains are estab-
lished to predict the effective elastic modulus of Al2O3 ceramic materials (Figure 12), and 10
different topologies are established for the given number of grains to reduce the influence
of random errors on the calculation results.

Figure 12. Finite element model of polycrystals with grain numbers of 25, 50, 100, and 200.

According to references [26–28], the elastic modulus interval of Al2O3 material is
obtained, as shown in Table 1. The polycrystalline model in this paper is an ideal model
and does not consider defects such as pores and microcracks. Therefore, the maximum
value of 410 in the interval is selected as a reference, that is, E = 410 GPa, to evaluate the
accuracy. Table 2 shows the effective elastic modulus of Al2O3 ceramic materials predicted
with these four sets of RVE models. E11, E22, and E33 are the average values of elastic
modulus in x, y, and z directions for 10 different topologies, respectively, and the relative
error eii is calculated using Equation (19). It can be concluded that the effective elastic
moduli are all distributed within the same ranges of values measured experimentally and
reported in the literature [21]. With the increase of the number of grains, the errors of
calculation results gradually decrease. Considering the balance between computational
cost and accuracy, for a grain number larger than 100, the effect of single grain spatial
distribution on the stress–strain response or overall elastic modulus can be ignored. The
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deformation of the RVE model of polycrystalline material with 100 grains under the six
kinds of boundary conditions in this paper is shown in Figure 13.

eii =
Eii − E

E
(19)

Table 1. Material properties of Al2O3.

Material µ (GPa) B (GPa) v E (GPa)

Al2O3(w > 99.9%) 163 251 0.233 366–410

Table 2. Elasticity modulus and relative error of RVE models.

Grain
Number Elastic Modulus (GPa) Relative Error Computation

Time (sec)

E11 E22 E33 e11 e22 e33 t

25 415.3 405.6 401.3 1.29% 1.07% 2.12% 89.7
50 405.9 411.4 408.6 1.00% 0.34% 0.34% 234.0
100 410.0 407.0 407.4 0.00% 0.73% 0.63% 553.5
200 408.3 407.7 408.2 0.41% 0.56% 0.43% 1789.5
500 409.7 409.3 409.6 0.073% 0.17% 0.097% 3457.9

Figure 13. Deformation of 100-grain Al2O3 ceramic material under the boundary conditions.

4.2.2. Effect of Grain Orientation

The grain orientation is determined by the order of atomic arrangement, and the atoms
are randomly arranged during grain growth, so the polycrystalline materials are usually
intergranular heterogeneous in microstructure, and the grain orientation can be simulated
by the random factor method. However, the bulk properties of polycrystalline materials
are isotropic. According to Section 4.2.1, the adequate number of grains is taken as 100, and
the effect of grain orientation on the effective elastic modulus is investigated in this section
by assigning different grain orientations to the same finite element models.
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In this section, the grain orientations are generated by the random factor method with
randomly distributed orientations for each grain, and five different sets of grain orientations
are assigned to the identical polycrystalline finite element models. Then, the effective elastic
modulus of each model in three different directions is obtained, and the calculation results
are shown in Figure 14.

Figure 14. Effective elastic modulus predicted for five different grain orientations.

When the number of grains is 100, the effective moduli of elasticity for different grain
orientations are in the range of 407–412 GPa and the average modulus of elasticity is within
1% error from the value obtained according to reference [26–28] (E = 410 GPa). It can be
concluded that the grain orientation constructed by the random factor method can be used
to simulate the randomness of grain orientation in the polycrystalline materials.

4.2.3. Effect of Grain Boundary

The difference in grain orientation leads to the formation of grain boundaries between
adjacent grains during the grain growth process, and the existence of grain boundaries is
the fundamental reason for the discontinuity of material properties, so it is often regarded
as a weak point of material structure in the study of material structure. Nowadays, due to
the small size of grain boundaries and the complex chemical composition, structure, and
mechanical environment, there is no direct and accurate quantitative analysis method and
experimental data for the thickness of grain boundaries and various material parameters.
Therefore, the material properties of 3D grain boundaries are simplified as isotropic in this
paper, and the elastic modulus of 3D grain boundaries are considered in three cases:

1. The elastic modulus of the grain boundaries is 50% of the single crystal of the Al2O3
ceramic material.

2. The elastic modulus of the grain boundaries is consistent with the elastic modulus of
the Al2O3 ceramic material.

3. The elastic modulus of the grain boundaries is 150% of the single crystal of the Al2O3
ceramic material.

For the three cases, the effective elastic modulus at different grain sizes was given
as shown in Figure 15. In the figure, E0 is the elastic modulus of grain boundaries, and
E is the single crystal elastic modulus of Al2O3. When the value of E0/E is 1.5 where the
grain boundaries are considered to hinder grain deformation in the actual polycrystalline
material, the overall macroscopic elastic modulus is strengthened as the average grain
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size decreases (the number of grains in the RVE model increases) where the density of
grain boundaries increases, which is in accordance with the Hall–Petch equation. When
the value of E0/E is 0.5, with the decrease of grain size, the volume fraction of grain
boundaries increases, and the macroscopic elastic modulus becomes smaller with grain
refinement to achieve the toughening effect. It is concluded that when predicting the
mechanical properties of polycrystalline materials, the presence of solid grain boundaries
in the polycrystalline model results in the calculations being more consistent with the
mechanical properties of the actual materials.

Figure 15. Effective elastic modulus at different grain sizes for three different grain boundary
elastic moduli.

5. Conclusions

A new implementation of the Voronoi diagram in Laguerre geometry is presented
in this paper for the generation of numerical models of polycrystalline microstructures,
where the size and shape of the grains can be controlled, and the 3D grain boundaries
can be modeled with a specified thickness. This method directly models the grains in
CAD software. There is no need for cumbersome data processing and reverse topology
reconstruction. Moreover, the resulting models can be directly imported into various finite
element packages (e.g., ABAQUS, ANSYS, COMSOL, etc.) for the simulation and analysis
of polycrystalline materials.

In order to verify the capability of the presented method, the statistical analysis of
grain size, grain face, and grain edge distribution are performed with the established
polycrystalline models, and the macroscopic elastic properties of polycrystalline ceramic
materials are simulated. It is shown that the grain size, grain face, and grain edge distribu-
tion can be fitted to a lognormal distribution, compared with the normal distribution in
Voronoi-based tessellation methods.

The effective elastic modulus of polycrystalline ceramic materials is predicted by
the RVE-based finite element homogenization method. The effects of grain size, grain
orientation, and grain boundary in the polycrystalline model materials are investigated.
The predicted effective elastic moduli are compared with the experimental measurement,
and the validity of the proposed method is verified.
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