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Introduction
Although leather industries and tanneries involve highly pol-
luting processes, they offer diverse amenities for manufacturing 
capacity as well as export potential,1 which require several steps 
including dehairing, deliming, bating, degreasing, and finally 
pickling in a cascade manner for converting raw hide into 
long-lasting finished materials which are suitable for a variety 
of uses such as shoes, skirts, trousers, hats, jackets, belts, as well 
as book binding, furniture covering, and so on. Chemical 
dehairing process requires more than 75 chemicals including 
lime (CaO) and sulfide (Na2S/NaSH) to turn raw leathers into 
semi-fabricated leather,2 which gives around 90% of total pol-
lution in leather industries and also produces noxious gases and 
solid wastes.3 Previous report estimated that nearly 850 kg out 
of 1000 solid wastes is generated during leather processing, and 
approximately 40 to 45 L of water is used per kilogram of raw 
hide/skin processing to get finished leathers.4 This causes many 
difficulties including availability of good water, treatment of 
effluent, and sulfide emissions during dehairing. Along with 

solid wastes, biochemical oxygen demand (BOD) and chemical 
oxygen demand (COD) as well as total dissolved solid give 
almost 70% of pollution from pre-tanning, tanning, and  
re-tanning processes.5 Thus, exposure of waste from tanneries 
not only pollutes water, soil, and air of respected area but also 
causes serious health difficulties including asthma, hepatic, 
dermatitis, various malignancies, and neurological disorders to 
the tannery workers as well as the people living nearby areas.

To overcome the above problems caused by chemicals and 
wastes in leather industry, keratinase shows promising nature 
due to significant advantages like reduced processing time, 
biodegradable action, better product quality, low energy 
input, lower cost, nontoxic and eco-friendly characteristics.6 
Extracellular keratinase, a versatile and often used enzyme, 
can be an alternative means of chemical dehairing for mini-
mizing the toxic effects of chemicals in dehairing process of 
leather industries. Keratinase (EC 3.4.21/24/99.11) is classi-
fied as protease7 and can be broadly used in several industries 
such as leather and detergent, textiles, medicine, cosmetics, 
fertilizers, waste bioconversion, as well as drug delivery8 by 
hydrolyzing keratins.
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Keratin is an insoluble (in nature) and structural protein in 
epithelial cells of vertebrates and represents the major constitu-
ents of skin and its attachments such as hair, feathers, nail, wool, 
hooves, beaks, and stratum corneum,9 which have high mechani-
cal stability and resistance to proteolytic degradation.10 Feather is 
constituted of 91% of keratin protein, 8% water, and 1% of lipid,11 
and it is generated in large amounts as waste by-product in poul-
try processing industries, propagating millions of tons worldwide. 
As poultry feathers are rich in keratin protein (90%< of crude 
protein),12 and they are not easily broken down by usual proteo-
lytic enzymes like trypsin, pepsin, and so on,13 keratin-rich 
feather waste degradation by keratinolytic microorganism is 
important, not only for removing feather wastes but also for pro-
viding the worthy protein, which can be used in animal feed, agri-
culture, and cosmetic industries as nutrient additives,14 as well as 
nitrogen fertilizer for organic farming.15 Keratin-degrading bac-
teria include the genus Bacillus16 and also gram-negative bacteria 
such as Pseudomonas species.17 Keratinase from Bacillus sp. 
(Bacillus licheniformis and Bacillus subtilis) have been extensively 
studied due to their effectiveness on feather degradation.18,19

As chemical treatment of keratin waste is regarded as an 
eco-destructive means,20 playing negative roles on environ-
ment, it is highly desired to consider the industrial application 
of keratinase.21 In the present investigation, therefore, environ-
ment friendly enzymatic dehairing by crude keratinase was 
considered in comparison with 2 traditionally used chemicals 
(CaO, Na2S). The reaction condition was optimized with 
respect to various operating parameters in shake-flask culture. 
Moreover, an attempt was made for partial purification of 
crude keratinase activity. In addition, fermentor-scale produc-
tion of crude keratinase through batch culture with optimized 
condition was performed in 1 L fermentor to show the possible 
industrial applications.

Material and Methods
Sampling, isolation, and screening of keratinase-
producing bacteria

A total of 50 soil samples were collected aseptically into sterile 
container from 15 different poultry farms of Chittagong city 
(Supplementary File 1) and preserved them into the refrigera-
tor at 4°C until analysis.

Serial dilution (10−1-10−9) was conducted by using spread 
plate techniques,22 and then bacterial pure culture was isolated 
by streak plate method on nutrient agar media (pH 7.0). 
Selected pure isolates were then subcultured on their respective 
media, purified, and stored in the laboratory (−80°C) in glyc-
erol stock (50%) solution for further studies.

Isolates were then cultured and incubated at 37°C for 
48 hours on skim milk agar for primary screening,23 where clear 
zone–forming isolates were selected as proteolytic bacteria.24 
Then the isolates were further identified as keratinolytic bacte-
ria by using feather meal at 37°C for 24 to 48 hours according 
to Raju and Divakar.25

Phenotypic and biochemical characterization of 
keratinolytic bacteria

Selected keratinolytic bacteria were then characterized by gram 
staining based on cultural, morphological, as well as biochemi-
cal characteristics.26 For the activities of oxidase, catalase, cit-
rate utilization, indole production, methyl-red (MR), 
Voges-Proskauer (VP), urease production, and carbohydrate 
utilization, isolates were biochemically analyzed27,28 and provi-
sionally identified according to Bergey’s Manual of Systemic 
Bacteriology.29

Molecular identif ication of bacteria

Genomic DNA was extracted30 and stored at −20°C. DNA 
concentration was measured by Thermo Scientific, NanoDrop 
2000 spectrophotometer (Thermo Scientific, USA) following 
standard protocol. Polymerase chain reaction (PCR) detection 
of bacteria was performed using previously published primers 
and targeted gene.31,32 Primer specificity was determined by 
searching for similar sequences in microbial genome using the 
Basic Local Alignment Search Tool (BLAST). In each experi-
ment, positive and negative control was carried out. A total 
composition of target gene, primer sequences, cycling parame-
ters, PCR master mixture, and amplicon size (bp) used for 
PCR amplifications in a thermal cycler (Nyx Technik) are 
shown in Table 1.

Amplified PCR products were then analyzed by electro-
phoresis (Micro-Bio-Tech Brand) in 1% (w/v) agarose gel in 
1×TAE buffer, stained with ethidium bromide (1%)30 and 
compared with marker DNA (GeneRuler 1 kb DNA Ladder), 
during visualized under ultraviolet (UV) trans-illuminator 
(Benda company) and then photographed. Then PCR products 
were purified by ATPTM Gel/PCR Fragment DNA Extraction 
Kit (Catalog No. ADF100/ADF300).

Two (SJ, SA) biochemically identified29 bacterial isolates 
were sent for sequencing (Macrogen, South Korea). The 
results were then analyzed by BLAST program of National 
Center for Biotechnology Information (NCBI) (https://
blast.ncbi.nlm.nih.gov)33 and submitted to GenBank by 
using Bankit submission tool. The phylogenetic tree was 
deduced by using the Neighbor-Joining method34 and this 
tree was drawn with the sum of branch length (0.30277880). 
Replicates (500) were used in the bootstrap test and have 
been shown to the branches.35 The branch lengths in the tree 
is drawn by the same units as those of the evolutionary dis-
tances used to infer the phylogenetic tree. The p-distance 
method was used to compute evolutionary distances.36 This 
study included 20 nucleotide sequences. Codon positions 
covered were first + second + third + noncoding. All ambig-
uous positions were removed for each sequence pair (pair-
wise deletion option). A total of 1476 positions were in the 
final data set. Evolutionary analyses of this study were con-
ducted in MEGA X.37

https://blast.ncbi.nlm.nih.gov
https://blast.ncbi.nlm.nih.gov
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Keratinase production in shake flask culture and 
keratinase assay

Identified two isolates (SJ and SA) were then transferred asep-
tically to sterile 50 mL of LB (Luria-Bertani) broth (pH 
7.0 ± 0.2) and incubated overnight at 37°C in a rotary shaker 
incubator (HandyLab), at 150 r/min.

After that, a 250-mL Erlenmeyer flask containing 50 mL 
(w/v) sterile basal medium was prepared according to Williams 
et al38 and incubated with 1.5 mL of bacterial inoculum which 
previously cultured for 24 hours at 37°C and 150 r/min for 
96 hours in a shaker incubator.

Keratinase activity was assayed according to Cai et  al39 
where 1.0 mL of crude enzyme properly diluted in Tris-HCl 
buffer (0.05 mol/L), followed by the incubation with 1.0 mL 
keratin solution prepared from chicken feathers40 at 50°C  
for 10 minutes. Then enzyme-substrate reaction was stopped 
by adding 2.0 mL of 0.4 mol/L trichloroacetic acid (TCA). 
After centrifugation at 4000 r/min for 30 minutes, the 
absorbance of the supernatant was determined at 280 nm by 
UV-Spectrophotometer (Shimadzu, Japan) compared with 
control that was prepared by incubating the enzyme solution 
with 2.0 mL TCA without the addition of keratin solution, 
where 1 unit (U/mL) of keratinase activity was defined as an 
increase of corrected absorbance of 280 nm (A280)41 with the 
control for 0.01 per minute under the assay conditions and cal-
culated by the following equation:

U n A    
  

=
× ×

×
 4
0 01 10

280

.
.

where n is the dilution factor, 4 is the final reaction volume 
(4 mL), and 10 is the incubation time (minutes).

Optimization of culture conditions for maximum 
keratinase production

The keratinase production was optimized with respect to dif-
ferent culture conditions such as temperature, pH, agitation 
speed, incubation period, inoculum volume, substrates, C and 
N sources.24,42 The effects of media temperature, pH, and agi-
tation speed (100-250 r/min) on the cell growth and keratinase 
activity were studied by examining bacterial growth at different 
temperatures such as 35°C, 37°C, 39°C, 40°C, and 43°C and 

various ranges of pH (6.5, 7.5, 8.5, 9.5, and 10.5), during 72, 84, 
and 96 hours of incubation. The culture extract was centrifuged 
at 4000 r/min for 30 minutes at 4°C, to be used to estimate 
keratinase production. To compare relative keratinase produc-
tion, the control was also measured in each case.

To investigate the effect of inoculum volume on enzyme 
production, bacteria were cultured with 1%, 2%, 3%, 4%, and 
5% of inoculum using different substrates such as chicken 
feather, human hair, and feather meal separately at previously 
optimized conditions.

Carbon sources (glucose, fructose, maltose, starch, and lac-
tose) and nitrogen sources (peptone, tryptone, yeast extract, 
sodium molybdate, and ammonium sulfate) were used sepa-
rately at 0.1% concentration to observe their effects on kerati-
nase production at the optimized conditions. Controls were 
performed without addition of carbon and nitrogen sources to 
compare the production.

Partial characterization of crude keratinase activity 
(enzyme-substrate reaction)

Effects of various enzyme reaction conditions such as pH, 
temperature, reaction time, substrates, and metal ions were 
studied for optimum crude keratinase activity.24,43 The effect 
of pH on keratinase activity was determined at pH (4.0-11.0) 
by preparing substrate with acetate buffer (pH 4.0-5.5), phos-
phate buffer (pH 6.0-7.5), Tris-HCl buffer (pH 8.0-10.0), 
and sodium bicarbonate-sodium hydroxide (10.0-11.0). The 
keratinase activity was measured (λ = 280) using standard assay 
condition.

Besides, the enzymatic reaction was performed at different 
temperatures (30°C, 40°C, 50°C, 60°C, 70°C) in water bath and 
assayed (λ = 280) to find out the optimum temperature of the 
enzyme-substrate reaction.

Reaction mixtures were prepared with phosphate buffer 
(pH 6.0-7.5) and Tris-HCl buffer (pH 8.0-10.0), and enzy-
matic reaction was performed at different reaction times (10, 
20, 30, 40, and 50 minutes) at the optimized temperature and 
pH. To study the substrates specificity, human scalp hair, casein, 
chicken feathers, and gelatin were used. The impact of enzyme 
inhibitor was also studied with different metal ions (Na+, K+, 
Co2+, Ca2+, Mg2+, Fe2+, Hg2+, Zn2+).

Table 1. Target genes, primer sequences, cyclic condition, PCR master mixture composition, and amplicon size.

TARGET GEnE PRIMER SEqUEnCE (5ʹ-3ʹ) CYCLInG 
PARAMETERS

TOTAL COMPOSITIOn 
OF PCR MASTER 
MIxTURE

AMPLICOn 
SIzE (BP)

REFEREnCES

Common bacterial: 
16S rDnA

8F-AGAGTTTGATCCTGGCTCAG
850R-GACTACCAGGGTATCTAAT

5 min at 95°C, 35 
cycles of 95°C for 
40 s, 57°C for 50 s, 
and 72°C for 1 min

For 10 μL: 5 μL 
master mix, 2 μL 
template, 1 μLa and 
1 μLb, 1 μL water

800 Fouad et al31 
and Mina et al32

Abbreviation: PCR, polymerase chain reaction.
aForward primer.
bReverse primer.
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Protein estimation

Protein content of culture broth in shake-flask culture was 
assessed by Lowry method44 using BSA as standard during 
optimized culture conditions.

Dehairing assay (laboratory trial)

Fresh raw skins of domestic animal (cow) were collected from 
local slaughter houses of Dewanhat, Chittagong. To remove 
impurities, they were washed with sodium chloride and water, 
and then dried at hot air oven (50°C). The skins were then cut 
into small pieces (5 cm2), kept with 40 mL crude enzyme solu-
tion in a petri dish, and incubated at 37°C for 16 hours. Besides, 
chemical agents like Na2S and CaO were also used to compare 
dehairing efficiency. Skins treated with distilled water was con-
sidered as negative control.45 By gently scraping with blunt 
scalpel, skins were then withdrawn at regular intervals at 4, 8, 
12, and 16 hours to examine better dehairing results.

Partial purif ication of crude enzyme

The growth extract from shake flasks was partially purified by 
acetone precipitation method, where keratinase was precipi-
tated by prechilled acetone at 30%, 40%, 50%, 60%, 70%, and 
80% fractionation. The acetone was added in ratio 3:1 to the 
cell free extract and incubated for 60 minutes at −20°C. The 
mixture was then subjected to centrifugation at 10 000 r/min 
for 10 minutes. After discarding the supernatant carefully, pel-
let was dissolved in Tris-acetate buffer (pH 7.0) and used for 
enzyme assay.43

Keratinase production by the fermentor

Batch cultivations were performed using 1 L of filter sterilized 
basal medium composed of the following components (per liter 
of final volume): 0.5 g NH4Cl, 0.5 g NaCl, 0.3 g K2HPO4, 0.4 g 
KH2PO4, 0.1 g MgCl2.6H2O, 0.1 g yeast extract, including 
1.0 g raw chicken feather and made up to 1000 mL with dis-
tilled water38 in a 2-L fermenter (Hanil, South Korea) main-
tained at previously optimized conditions. The pH of the 
medium was maintained with a pH controller by automatic 
addition of 2.0 M HCl or 2.0 M NaOH. The aerobic condition 
was ascertained by controlling the stirring speed with the con-
stant air flow rate of 1 L/min. Triplicate samples were taken 
after 96 hours to get maximum enzyme production.46

Statistical analysis

Triplicate experiments were done in all the cases during isola-
tion, biochemical analysis, optimization of growth conditions, 
and partial characterization of keratinase enzyme by the 
selected isolates. P value of <.05 was considered as statistical 
significance. The results were expressed as the mean ± SD for 

triplicates. Data were captured into Microsoft Excel Software, 
version 2010, which was used to calculate means and SD.

Results and Discussion
Among 50 soil samples, 7 isolates (SA, SH(W), SH(Y), SJ, 
SK, SN, and SP) were found proteolytic on skim milk agar 
based on clear zone production (Figure 1A). Then, 2 of them 
were selected as best keratinolytic isolates (Figure 1B). This 
observation may be due to the fact that keratinase-producing 
bacteria can also produce one or more other specific bacterial 
proteases such as alcalase, pronase, and trypsin.47 This indicates 
that the isolates which are able to hydrolyze casein might have 
also the ability to synthesize proteolytic enzymes along with 
keratinase enzyme.

After two keratinolytic isolates were selected, they were 
subjected to different biochemical tests. One isolate was identi-
fied as gram positive by detecting the presence of peptidogly-
can as a thick layer in that bacteria, whereas the other isolate 
was gram negative.48 Then based on biochemical characteriza-
tions, they were provisionally identified26,29 as Bacillus cereus 
and Pseudomonas sp. (Table 2).

The 16S rDNA amplification was conducted through 
PCR for two keratinolytic49 and biochemically identified 
bacteria, where extracted genomic DNA showed positive 
bands in 1% agarose gel (~800 bp), compared with the DNA 
1 kb marker (Figure 2). Homology analysis inferred from 16S 
rDNA sequence comparison clearly shows that the two 
strains clustered with B. cereus and Pseudomonas sp., respec-
tively, have 100% identity in blast analysis. Finally, all the 
results were submitted to GenBank, where the accession 
numbers MH430931 and MH430929 were assigned for  
B. cereus and Pseudomonas sp., respectively. BLAST similarity 
and the phylogenetic analysis revealed that the SA and SJ 
isolates were confirmed to B. cereus and Pseudomonas sp., 
respectively (Figure 3).

The optimal growth rates of B. cereus and Pseudomonas sp. 
were attained at mesophilic temperatures such as 39°C and 
37°C, respectively, as expected from other studies on B. subtilis 

Figure 1. (A) Plate assays of 7 pure isolates. (B) Growth of isolates (SA, 

SJ) on FMA (Feather Meal Agar).
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and Bacillus pumilis.50 The medium pH affects the reaction 
mixture and assists in transporting nutrients across the cell 
membrane of bacteria.24 Both keratinolytic isolates exhibited 
optimal keratinase production at alkaline condition (pH 9.50) 
in our study. This propensity results from the deamination of 
peptides and amino acid during degradation of keratin leading 
to the release of ammonium and thus increases the pH. Gupta 
and Ramnani13 also reported that alkaline pH from 6.0 to 9.0 
supports keratinase production in most microorganisms.

In general, higher agitation rates (200-250 r/min) provide 
good growth of bacteria with possibly low keratinase produc-
tion due to high dissolved oxygen concentration. On the other 

hand, Pissuwan and Suntornsuk51 reported that, at low agita-
tion rate (100 r/min), substrates and bacterial cells were not 
mixed properly and produced heterogeneous formation, thus 
lowering dissolved oxygen and leading to lower keratinase pro-
duction. In our study, both isolates produced maximum keratinase 
(57.33 ± 2.08) U/mL for B. cereus and (38.00 ± 3.00) U/mL 
for Pseudomonas sp. at 150 r/min.

Although feather degradation can be completely made 
between 3 to 5 days, it also takes more than 5 days to be degraded. 
Agrahari and Wadhwa52 as well as Yadav et al53 reported the 
maximum keratinase production on days 5 and 7 by Bacillus 
thurengenesis SN2 and Bacillus strain SAA5, respectively. In our 
study, B. cereus showed the highest keratinase production 
(60.00 ± 1.00 U/mL) by using chicken feathers at 96 hours  
(4 days) of incubation, whereas Pseudomonas sp. showed 
(44.00 ± 1.00 U/mL) at 72 hours (3 days) of incubation.

Several inoculum volumes were also tested, where 3% of inoc-
ulum volume was found responsible for the highest keratinase 
production for both B. cereus and Pseudomonas sp. as also shown 
by Sivakumar et  al.42 As the inoculum volume was further 
increased, the production of enzyme was gradually decreased 
which may be due to the rapid growth of bacteria and depletion 
of essential nutrients by bacteria in the early stages of growth.24 
Bacillus cereus and Pseudomonas sp. produced about 2-fold higher 
keratinase in feather meal compared with raw feather, and 
human hair was used as substrate due to its inducible nature.54

Carbon and nitrogen sources also affect keratinase produc-
tion, where B cereus completely hydrolyzed soluble starch, as 
also shown by Sivakumar et al,42 whereas maltose was totally 
hydrolyzed by Pseudomonas sp.55 On the other hand, lactose 
played a suppressive role for keratinase production. In our 
investigation, we found that yeast extract elevated the kerati-
nase production for both isolates,56 whereas ammonium sulfate 
played an inhibitory role. After optimization, it has been shown 
that additional carbon and nitrogen sources have no stimula-
tory effect on keratinase production.

Table 2. Morphological and biochemical characterization of bacterial 
isolates.

MORPhOLOGICAL 
AnD BIOChEMICAL 
ChARACTERISTICS

BACTERIAL 
ISOLATE (SJ)

BACTERIAL 
ISOLATE (SA)

Morphological characteristics

 Gram staining + −

 Shape Rod Rod

 Spore formation + −

 Motility + +

Biochemical test result

 Oxidase − +

 Catalase + +

 Citrate utilization + +

 Indole test − −

 MR test − −

 VP test + −

 Urease production + −

Carbohydrate utilization

 Glucose + +

 Fructose + −

 Sucrose + −

 Lactose − −

 Starch + +

 Dextrose + −

Identified strain 
(provisionally) (Bergey 
et al29)

Bacillus cereus Pseudomonas sp.

Abbreviations: MR, methyl-red; VP, Voges-Proskauer.
+ and − indicates positive and negative result.

Figure 2. Electrophoretic (1% agarose) separation of 16S rDnA gene of 

different isolates. M indicates 1 kb DnA marker; L1-L2, L3-L4 show bands 

of SJ and SA, respectively; P1, P2 for positive control (SJ and SA); and n 

for negative control, respectively.
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Overall optimized conditions for maximum keratinase 
production by B cereus and Pseudomonas sp. are represented in 
Table 3.

Figure 4 shows the effects of culture condition on the 
keratinase activity, where Figure 4A indicates that the optimal 
temperature of keratinase from B. cereus and Pseudomonas sp. is 
50°C, as most keratinase shows thermoactive nature in the 
range of 50°C to 60°C. It has been reported that B cereus LAU 
shows the highest keratinase activity at 50°C and pH 7.0,10,43 
whereas the maximum keratinase activity found for 
Microbacterium sp. at 55°C and pH 7.0.19 The elevated kerati-
nase activity was attained at pH 10.0 and 7.00 for B cereus and 
Pseudomonas sp., respectively, in our study (Figure 4B).

The effects of reaction time (10-50 minutes) on extracellular 
keratinase enzyme activity shows that the highest activity was 
attained at 30 minutes (Figure 4C) for both species as Gupta 
et al,57 stated that incubation at 70°C for 30 minutes enhanced 
keratinase activity (21%) of B. subtilis RSE163.

The effects of metal ions (Na+, K+, Co2+, Ca2+, Mg2+, Fe2+, 
Hg2+, and Zn2+) were also studied (Figure 4D) by preincubat-
ing them with enzymes. Inhibitory effects of Hg2+ and Zn2+ 
were reported by Kainoor and Naik56 as well as Lin and Yin58 
in case of Bacillus sp. JB 99 and B. licheniformis YJ4, and their 
results are coincident with our study.

Hydrolysis of complex protein substrate responds to kerati-
nase activity efficiently, which had a broad spectrum of substrate 
specificity for soluble and insoluble substrates. Practically, 
keratinase can hydrolyze feather keratin with maximum activity, 
followed by casein, gelatin, and human scalp hair (Figure 4E) in 

our study. Similar findings were obtained by Gupta et al57 and 
Rajput et al,59 where the highest keratinase activity was found 
on chicken feather substrate by both B. subtilis RSE163 and 
B. pumilis KS12.

Crude proteins were estimated approximately to be 0.73 
and 0.57 mg/mL (Figure 5) from keratinases of B cereus and 
Pseudomonas sp., respectively, compared with standard con-
centration of BSA (Table 4) in this study. Deivasigamani and 
Alagappan60 reported that crude protein was found around 
1.44 mg/mL from keratinase-producing microorganisms, 
previously.

To study the chicken feather degradation rate (%), 96 hours 
of incubation was performed for B. cereus at optimized condi-
tions, whereas pH and temperature were 9.5 and 39°C in basal 
medium (Supplementary File 2), where the maximum degra-
dation was found (80% ± 0.025%) at 96 hours (Table 5).

An attempt was made to observe the effectiveness of pro-
duced keratinase enzyme over chemicals in dehairing process, 
as chemicals cause damage and reduce the quality of leather. 
Leather pieces were soaked with enzymes and chemicals 
(Na2S, CaO), separately for 16 hours in total. After 12 hours, 
100% dehairing with enzyme showed effectiveness over 
chemicals without any damaging of leather (Figure 6). After 
16 hours, Na2S caused damage to leather, while dehairing 
remain incomplete by CaO. Moreover, pulp of hair exhibited 
rough texture when chemical treatment was conducted 
(Supplementary File 3). In this study, the crude keratinase 
from B. cereus showed the best hide dehairing at 12 hours to 
dehair the hides, which is comparatively better than previous 

Figure 3. Phylogenetic tree construction. Phylogenetic tree showing relationship between  Bacillus cereus strain AIMST 4. Ca.8 and  

 Pseudomonas sp. B7 16S with other selected members of B. cereus and Pseudomonas sp.
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reports for B. cereus,61 Pseudomonas stutzeri K4,62 B cereus AT,49 
Pseudomonas aeroginosa MCM B-327,63 and B. safenis64 which 
required 24, 20, 18, 16 to 21, and 16 hours, respectively, for 
total dehairing process.

Partial purification of crude keratinase contained in the 
cell free supernatant by acetone precipitation eliminates 
interfering elements present in that supernatant. Although 
acetone is a good purifying agent for proteins, due to dena-
turing tendency, it is not commonly used in purification 
procedures. Maximum specific activity was observed for  
B. cereus and Pseudomonas sp. at 70% and 50% saturation 
level with ~1.35 and ~1.67 times purification fold, respec-
tively (Table 6), which was different from that reported by 
Thangam and Rajkumar.65

In addition to flask culture, large-scale keratinase produc-
tion was studied by batch cultivation, while it was found 
(136.0 ± 0.030) U/mL after 4 days (80 hours) of incubation, 
2-fold more than in shake flask culture (60 ± 1.0) U/mL 
(Table 7).

Conclusions
In the present work, it was shown that the keratinase pro-
duced from B. cereus can be a prominent leather dehairing 

Figure 4. Partial characterization of crude keratinase activity (enzyme-substrate reaction). Effects of (A) temperature, (B) ph, (C) reaction time, (D) metal 

ions, and (E) substrates.

Figure 5. Standard graph of Folin-Lowry assay.
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Table 4. Folin-Lowry standard assay for BSA.

COnCEnTRATIOn OF BSA (MG/ML) READInG 1 (A660) READInG 2 (A660) READInG 3 (A660) AVERAGE (A660)

0.0 0.000 0.000 0.000 0.000 ± 0.000

0.2 0.524 0.526 0.522 0.524 ± 0.002

0.4 0.900 0.904 0.903 0.902 ± 0.002

0.6 1.150 1.200 1.040 1.130 ± 0.081

0.8 1.550 1.630 1.600 1.593 ± 0.040

Abbreviation: BSA: bovine serum albumin.
Data represent mean ± SD for triplicate.

Table 5. Visual observation of chicken feather degradation (%) by Bacillus cereus in optimized conditions.

nAME OF ISOLATE InCUBATIOn PERIOD, h VISUAL DEGRADATIOn RATE, %

SJ 24 (20 ± 0.015)

48 (30 ± 0.026)

72 (50 ± 0.029)

96 (80 ± 0.025)a

Data represent mean ± SD for triplicate.
aBest result.
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agent that exhibited no detrimental effect on leather, whereas 
chemicals caused noxious effects. Thus, proposed poultry 
waste–degrading keratinase enzyme provides not only better 
dehairing but also better leather quality over chemicals. 
Moreover, enzymatic dehairing minimizes the dependence 
on harmful chemicals (sulfide, lime and amines) usually used 
in tanneries of Bangladesh, to save human health and wild 
life by diminishing water, soil, and overall environment 
pollution.
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