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Abstract

Citrus root weevil (Diaprepes abbreviates) causes significant yield loss in citrus, especially in Florida. A promising source of control for
this pest is biological control agents, namely, native entomopathogenic nematodes (EPNs) within the genus Steinernema. Two species of
endemic EPN in Florida are S. diaparepesi, abundant within the central ridge, and S. khuongi, dominating the flatwood regions of the state.
These citrus-growing regions differ significantly in their soil habitats, which impacts the potential success of biological control measures.
Although the genome sequence of S. diaprepesi is currently available, the genome sequence of S. khuongi and identity of the symbiotic
bacteria is still unknown. Understanding the genomic differences between these two nematodes and their favored habitats can inform suc-
cessful biological control practices. Here, MiSeq libraries were used to simultaneously sequence and assemble the draft genome of
S. khuongi and its associated symbionts. The final draft genome for S. khuongi has 8,794 contigs with a total length of �82 Mb, a largest
contig of 428,226 bp, and N50 of 46 kb; its BUSCO scores indicate that it is > 86% complete. An associated bacterial genome was assem-
bled with a total length of �3.5 Mb, a largest contig at 116,532 bp, and N50 of 17,487 bp. The bacterial genome encoded 3,721 genes,
similar to other Xenorhabdus genomes. Comparative genomics identified the symbiotic bacteria of S. khuongi as Xenorhabdus poinarii.
These new draft genomes of a host and symbiont can be used as a valuable tool for comparative genomics with other EPNs and its sym-
bionts to understand host range and habitat suitability.
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Introduction
Entomopathogenic nematodes (EPNs) are a group of nematodes
that are cosmopolitan in distribution and cause disease in
insects. Commercially used as biological control agents for soil
insects in the field and the greenhouse systems (Georgis et al.
2006; Denno et al. 2008; Lacey and Georgis 2012; Nicolopoulou-
Stamati et al. 2016), these nematodes are broadly classified into
two families, Steinemernatidae and Heterorhabditidae (Kaya and
Gaugler 1993). Each family is symbiotically associated with a
specific genus of entomopathogenic bacteria Xenorhabdus and
Photorhabdus, for Steinemernatidae and Heterorhabditidae, re-
spectively (Adams et al. 2006). This close and specific association
between EPN and bacteria form an insecticidal complex that is ef-
fective against a wide range of insect hosts (Stock and Blair 2008).

Citrus is one of the major crops of Florida, totaling over 56% of
the total citrus produced in the United States (Cowell et al. 2018).
Among different pests of citrus, the citrus root weevil, Diaprepes
abbreviatus (Linnaeus) is one of the most damaging pests (Nigg
et al. 2001; Campos-Herrera et al. 2019). This insect is polyphagous
and can damage other crops and ornamental plants. It was first
detected in Florida during the mid-1960s (Beavers and Selhime
1975) and is spreading to other states including Southern Texas
and Southern California (Lapointe 2008). In Florida, over 100,000
acres of citrus are infested causing 72 million dollars in losses

(Stuart et al. 2008). Citrus root weevil can result in the rapid de-

cline of citrus trees and overwhelm the entire groove within a
short time. The severity of the infection and increasing infesta-

tion of this pest has prompted the use of diverse management

strategies including chemical and biological control. Within

known biological control strategies, EPNs are one of the most
well-studied and widely used for citrus root weevil in Florida

(Campos-Herrera et al. 2013; Duncan et al. 2013). Different species

of commercially available nematodes within the genus
Steinernema and Heterorhabditis have been tested in laboratory and

field settings (McCoy et al. 2000; Shapiro and McCoy 2000; Duncan

et al. 2013). Originally, Steinernema carpocapsae and Heterorhabditis

bacteriophora were used but then replaced by S. riobrave and
H. indica due to a shown greater efficacy against D. abbreviatus,

based on insects mortality (Stuart et al. 2008). However, field

efficacy of nonnative EPN to control the weevil was variable and

some applications failed to control insect populations. Major
factors responsible for the variability of the applied treatments

are a regional variation of soil habitat (Duncan et al. 2001; McCoy

et al. 2002) and diverse community structures of native EPN

within different ecological regions (Duncan et al. 2003, 2007). In
Florida, citrus is grown in two distinct climates, flatwood and

central ridge. The infection rates of native EPN to citrus root wee-

vil larvae varied between these ecoregions with higher population
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diversity and lower insect damage among central ridges and vice
versa among the flatwood region (Duncan et al. 2003; Futch et al.
2005). Within the different species of the native EPN, S. diaprepesi
was isolated from the larvae of the citrus root weevil and was
found to be highly effective in controlling the pest. However, the
population of this nematode is more frequent within citrus
orchards in the central ridge (Nguyen and Duncan 2002; El-Borai
et al. 2007b; El-Borai et al. 2007a). In 2009 a novel population of a
Steinernema species was recovered during the field study along
the flatwood region of Florida (El-Borai et al. 2009). Initially, it was
coined as “SxArc” as s member of S. glaseri. The occurrence of this
species was frequent in the subsequent survey of nematodes
(Nguyen and Buss 2011; Campos-Herrera et al. 2013; Campos-
Herrera et al. 2016). Later it was identified as a new species S.
khuongi based on morphological differences and DNA sequence
analyses (Stock et al. 2019).

Despite the potential as a biological control agent, the lack of
efficacy in the field has hindered the wide adaptation of EPN.
Some effort has been made through artificial selection of desired
traits such as increased tolerance to environmental conditions,
desiccation, and ultraviolet light, as well as improved host-
seeking ability, virulence, and resistance to nematicides. Most of
these traits are unstable, have reduced overall fitness, or result in
inbreeding depression resulting in poor efficacy (Burnell 2002;
Glazer 2015; Lu et al. 2016). Native nematodes usually provide
better insect control compared to commercially available nemat-
odes as they are better adapted in the local environmental condi-
tion (Gaugler 1988; Gaugler et al. 1997; Duncan et al. 2003; Hiltpold
2015). Crucial traits determining the efficacy of EPN as a biologi-
cal control agent are infectivity, persistence, and storage stability.
Identification of new species, availability of genomic sequences,
and comparative genomics can help to address which genetic
features contribute to the virulence and adaptability of one spe-
cies to certain environmental conditions. This study aimed to si-
multaneously sequence the nematode S. khuongi and its bacterial
symbiont native to the Florida flatwood region. Our goal was to
identify the bacterial associate and characterize different geno-
mic features of both nematode and bacteria to aim in informing
novel EPN biological control agent development.

Materials and methods
Nematode culture
EPN infective juveniles (IJs) of S. khuongi “webber” strain were
originally isolated from Florida citrus groves, and then cultivated
in Galleria mellonella (waxworm) larvae at Citrus Research and
Education Center (CREC), Lake Alfred, FL. Some strains were re-
ceived from CREC and reinoculated into the wax worm, after
emerging IJs were collected using modified White traps (Kaya and
Stock 1997) at the Department of Entomology and Nematology,
Gainesville, FL. Nematodes were stored in a tissue culture flask
for subsequent identification, genomic DNA extraction, and to
maintain the culture (Stock and Goodrich-Blair 2012).

DNA isolation
Approximately 10,000 IJs were washed 10 times with a 0.8% NaCl
solution. Surface sterilization of nematode was done by using
4 mM Hyamine 1622 solution (Sigma-Aldrich, USA) for 30 minutes
and again washed with 0.8% NaCl for 3 times (Lu et al. 2017). The
sterilized nematode were flash-frozen and thawed immediately
twice for DNA extraction. High molecular weight genomic DNA
was extracted using a phenol-chloroform method (Donn et al.
2008). The DNA pellet was further resuspended in 100 ll Tris-

EDTA buffer. University of Florida’s campus-wide
Interdisciplinary Center for Biotechnology Research (ICBR)
NextGen DNA Sequencing Core Facility (Gainesville, FL) per-
formed library preparation and sequencing using MiSeq Illumina
sequencing platform with 2X300v3 format.

Genome assembly
A total of �24 million 300-nt reads were generated from the se-
quencing. The sequence quality of the raw reads was analyzed
using FastQC (Andrews 2010). Quality trimming, read filtering,
and removing adapter contamination were performed using
Trimmomatic/0.36 (Bolger et al. 2014). Clean reads were subjected
to de novo assembly using the SPAdes/3.13.0 assembler
(Bankevich et al. 2012) with Kmer size of 21, 33, 55, 77, 99, and
127. Assembly obtained from kmer 127 was used for downstream
evaluation based on the best N50 value. The preliminary genome
assembly of the nematode was likely contaminated with the
symbiotic bacteria and other contaminants. To remove the possi-
ble contaminant from the assembly all contigs were queried
against the NCBI nucleotide database using megablast (with E-
value cutoff < 1e-05) and taxonomy was assigned to each contig
(McGinnis and Madden 2004). Each contig was mapped and
indexed to the raw read using Bowtie2 (Langmead and Salzberg
2012). Diagnostic visualization of each contig based on GC%, cov-
erage, and taxonomic annotation was done using Blobtools v1.0
(Kumar and Blaxter 2011; Laetsch and Blaxter 2017). Based on the
taxonomic annotation of each contig in Blobplot (Figure 1) each
contigs sets belonging to nematode and proteobacteria were sep-
arated. After removing all the contaminants from the nematode
set of contigs, the completeness of the genome was assessed us-
ing BUSCO V3.02 (Sim~ao et al. 2015) and the nematode BUSCO
profile (https://busco-archive.ezlab.org/v3/datasets/nematoda_
odb9.tar.gz). Nematode BUSCO genes are expected to be the core
genes and most probably present in every newly sequenced
genome. A higher number of BUSCO genes in the assembly is
indicative of completeness of the assembly. The quality of the
assembly and the genome statistics were determined using
Quast 2.3 (Gurevich et al. 2013).

Reassembly of bacteria, annotation, and
comparative genomics
Each Steinernema species are symbiotically associated with only
one specific species of the genus Xenorhabdus
(Enterobacteriaceae, which belongs to the gamma subdivision of
the Proteobacteria) (Stock and Blair 2008). To assemble the
Xenorhabdus spp. of the S. khuongi First we retained all contigs
classified as Proteobacteria in the preliminary nematode assem-
bly. We then filtered all the contigs belonging to other proteobac-
terial species with a high level of identity. We extracted all the
read mapped to the contigs to generate the Xenorhabdus-enriched
raw sequence dataset. These putative Xenorhabdus raw reads
were reassembled using Spades/3.13.0 assembler using optimized
settings for bacterial genome assembly (Bankevich et al. 2012).
The quality of the genome assembly was determined as described
above. Annotation of the bacterial genome was done by using
Pathosystems Resource Integration Center (PATRIC) RASTtk-
enabled Genome Annotation Service (Brettin et al. 2015) and
shown in Figure 2. Known homologs to antibiotic-resistance
genes, drug targets, transporter, and virulence factor genes were
identified using PATRIC by known homology of known sequences
in the following databases: Comprehensive Antibiotic Resistance
Database (CARD) (McArthur et al. 2013), DrugBank 4.0 (Law et al.
2014), Therapeutic Target Database (TTD) (Zhu et al. 2010),
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Transporter Classification Database (TCDB) (Saier et al. 2016),
PATRIC_VF (Mao et al. 2015), Virulence Factor (VFDB) (Chen et al.
2016), and the National Database of Antibiotic-Resistant
Organisms (NDARO). A k-mer-based AMR gene detection method
was used to annotate antimicrobial resistance (AMR) genes,
which utilizes PATRIC’s curated collection of representative AMR
gene sequence variants (Wattam et al. 2017). To characterize the
closest relative of the newly sequenced bacterial genome we gen-
erated the phylogenetic tree using a codon tree in PATRIC
(Wattam et al. 2017). Genomes 28 previously sequenced
Xenorhabdus species (Table 1) were used to generate the tree. The

codon tree used cross-genus families (PGFams) as homology
groups. 100 single-copy genes were selected from each genome.
The alignment of each protein sequence was done using MUSCLE
(Edgar 2004), and their corresponding nucleotide were aligned us-
ing the codonalign function of Biopython (Cock et al. 2009) within
PATRIC (Davis et al. 2020). Concatenated trees of proteins and nu-
cleotide were generated from 100 rounds of bootstrapping in
RAxML analysis (Stamatakis et al. 2008; Stamatakis 2014).
Klebsiella pneumoniae subsp. pneumoniae KPNIH19 was used as an
outgroup. The trees were visualized using FigTree software ver-
sion 1.4.4 (http://tree.bio.ed.ac.uk/software/figtree/) and shown

Figure 1 Blobplot (Taxon annotated GC-coverage scatter plot) of the contigs from the genome assembly. Each contig is plotted respective of their GC
content and the depth of coverage. Each dot plot represents the contigs for the BLAST annotation with significant matches that are colored by putative
taxon of origin. (A) Contigs from the preliminary assembly before removing the contaminants and the endosymbionts. (B) All contigs from the final
assembly of the nematode draft genome. (C) All Putative proteobacterial contigs from preliminary assembly. (D) Contigs of the reassembled
endosymbionts genome.
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in Figure 3. We assessed the synteny of newly assembled bacteria
and X. poinarii str G6 using a web-based program called D-GENIES
(Cabanettes and Klopp 2018), and using minimap2 for alignment,
shown in Figure 4. To confirm the identity of the bacteria, the ge-
nome sequence was compared with other previously reported
genomes from other Xenorhabdus spp. using Pyani version 0.2.7

(Pritchard et al. 2016). Pyani is a Python 3 module that can calcu-
late Average Nucleotide Identity (ANI) using MUMmer and blast.
Pyani was also used to calculate tetra-nucleotide frequencies
(TETRA) correlation indexes. In this study, 26 complete genomes
of different species/strains of Xenorhabus and one species of
Photorhabdus were analyzed (Figure 5).

Figure 2 Graphical display of bacterial genome annotation. (A) Circular graphical display of the distribution of the bacterial genome annotations.
The outermost region is the contigs, followed by CDS on the forward strand, CDS on the reverse strand, RNA genes, CDS with homology to known
antimicrobial resistance genes, CDS with homology to known virulence factors, GC content and GC skew, respectively. The colors of the CDS on the
forward and reverse strand indicate the subsystem genes. The circular display has been limited to the 215 longest contigs of the 468 contigs in the
genome. (B) The subsystem annotation of the genome that implements a specific biological process.

Table 1 List of Xenorhabdus spp. with NCBI Taxon ID and PATRIC genome ID numbers considered for the phylogenetic studies

NCBI Taxon ID PATRIC Genome ID Genome Name

351659 351659.4 Xenorhabdus koppenhoeferi strain DSM 18168
626 626.21 Xenorhabdus _sk
351673 351673.4 Xenorhabdus cabanillasii strain DSM 17905
53341 53341.3 Xenorhabdus japonica strain DSM 16522
406818 406818.4 Xenorhabdus bovienii SS-2004
290111 290111.6 Xenorhabdus ehlersii strain DSM 16337
1034471 1034471.3 Xenorhabdus ishibashii strain DSM 22670
351671 351671.5 Xenorhabdus doucetiae strain FRM16¼DSM 17909
1354304 1354304.4 Xenorhabdus poinarii G6
1873484 1873484.3 Xenorhabdus sp. 30TX1
1873482 1873482.3 Xenorhabdus sp. DL20
351676 351676.4 Xenorhabdus kozodoii strain DSM 17907
1429873 1429873.3 Xenorhabdus sp. NBAII XenSa04
290110 290110.6 Xenorhabdus budapestensis strain DSM 16342
40578 40578.4 Xenorhabdus beddingii strain DSM 4764
351672 351672.4 Xenorhabdus griffiniae strain BMMCB
742178 742178.3 Xenorhabdus sp. GDc328
351656 351656.5 Xenorhabdus vietnamensis strain DSM 22392
406817 406817.27 Xenorhabdus nematophila ATCC 19061
351614 351614.4 Xenorhabdus stockiae strain DSM 17904
351679 351679.5 Xenorhabdus hominickii strain ANU1
351674 351674.5 Xenorhabdus miraniensis strain DSM 17902
290109 290109.7 Xenorhabdus innexi strain HGB1681
351675 351675.7 Xenorhabdus mauleonii strain DSM 17908
880157 880157.4 Xenorhabdus khoisanae strain MCB
1851572 1851572.3 Xenorhabdus sp. KK7.4
1851571 1851571.3 Xenorhabdus sp. KJ12.1
290112 290112.3 Xenorhabdus szentirmaii strain US123
1427518 1427518.5 Xenorhabdus szentirmaii DSM 16338
1128953 1128953.3 Klebsiella pneumoniae subsp. pneumoniae KPNIH19
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Results
de novo assembly of nematode genome sequence
We sequenced the S. khuongi genome using the Miseq Platform
generating �24 million raw reads, equivalent to 7 Gb (�70x). The
genomic DNA extraction for sequencing was done from the nem-
atode without removing endosymbionts (proteobacteria), so it is
inevitable that the preliminary assembly is contaminated
with endosymbionts and other contamination. The preliminary
assembly consists of 65,846 contigs with total length of
151,364,689 bp. The megablast of the preliminary contigs with
E-value cutoff < 1e–05 and visualization of contigs in Blobplot di-
vided the contigs into 8 different taxon groups (Nematoda �33%,
Proteobacteria �13%, No distinct hit on database �22%, Chordata
�12%, Arthropoda �10%, Bacteroidetes and Actinobacteria �1%,
and Other �5%; Figure 1). All the contigs that were assigned for
Proteobacteria, Bacteriodetes, and Actinobacteria were removed
from the preliminary nematode contigs. The final assembly of
the nematode was obtained with mean contigs coverage of �41x.

The final draft genome has 8,794 contigs with a total length of

81,789,282 bp (�82 Mb) with a largest contig of 428,226 bp. The av-

erage GC content of the genome is 47.88% with N50 of 46 kb. The

BUSCO assessment of the draft genome against the Nematoda

database indicated 86.6% (850) completeness. A total of 982 nem-

atode genes were searched. Among those genes, 81.3% (798) are

complete and single copy, 5.3% (52) complete and duplicated

genes, 6.5% (64) fragmented genes, and 6.9% (68) missing genes.

Comparisons of Steinernema genomes can be found in Table 2.

Reassembly of bacteria, annotation, and
comparative genomics
Approximately 2.5 million quality trimmed raw read was mapped

to putative proteobacterial contigs from the first preliminary as-

sembly of the genome. Raw read mapped to proteobacterial con-

tigs contribute approximately 10% of the initial filtered read sets.

Proteobacterial contigs belonging to the genus Xenorhabdus

were filtered and its corresponding raw reads used for optimized

Figure 3 Phylogenetic tree of the selected species of Xenorhabdus. Phylogenetic tree based on a combined analysis of amino acid and nucleotide
sequences of single-copy genes from each species. The tree is drawn by using Randomized Axelerated Maximum Likelihood (RAxML version 8) with 100
bootstrap replicates. Bootstrap value for each node is shown. The tree is drawn to scale. Clades are labeled according to Tailliez et al. (2010).
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bacterial genome reassembly resulted in 468 contigs with a total
length of 3,484,021 bp (�3.5 Mb). The longest contig of the genome is
116,532 bp long, a contig N50 of 17,487 bp, and an average GC con-
tent of 45%. Based on the annotation statistics and a comparison to
other genomes in PATRIC within this same species, this genome
appears to be of good quality. Annotation of the genome resulted
in 3,721 protein-coding sequences (CDS), 29 transfer RNA (tRNA)
genes, and 3 ribosomal RNA (rRNA) genes (Figure 2). The genome
annotation included 940 are hypothetical proteins and the remain-
ing 2781 proteins with functional assignments. Protein with
the functional assignment included 906 proteins with Enzyme
Commission (EC) numbers, 735 with Gene Ontology (GO) assign-
ments, and 639 proteins that were mapped to KEGG pathways.

The taxonomic identification of symbiotic bacteria associated
with S. khuongi is still unknown. To validate the identity and place
the genome in the bacteria we constructed the phylogenetic tree
applying a multigene approach using the whole genome sequen-
ces. Multigene phylogeny provides robust phylogeny compared to

using single genes, and these resolved trees are essential to study
the co-evolution of bacteria with their nematode hosts and the
information can be used for the classification of strain and
new isolate within the same genera (Tailliez et al. 2010). The
phylogenetic tree built in the PATRIC server was similar to the
phylogenetic tree derived from the distance analysis of four
concatenated protein-coding sequences as described by Tailliez
et al. 2010. Single-copy genes from 30 different strains/isolates
of bacteria were used to construct the tree with the RAxML
algorithm (Table 1). A total of 45,907 amino acids and 137,721
nucleotides were aligned to construct the trees (Figure 3). In the
codon tree, bacterial sequences isolated from bacteria associated
with S. khuongi (Xenorhabdus_sk) formed a cluster close to
Xenorhabdus poinarii str. G6 (GeneBank Accession: FO704551.1)
isolated from S. glaseri (Ogier et al. 2014) within clade CX-I among
the Xenorhabdus genus.

Endosymbiont X. poinarii is known to be associated with
different species of EPNs for example S. glaseri (Akhurst 1986)

Figure 4 D-GENIES dot plots (using Minimap2 aligner) indicating collinearity of Xenorhabdus sp from S. khuongi with the Xenorhabdus poinarii str G6 from
S. glaseri.
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S. cubanum (Fischer-Le Saux et al. 1999). These two already identi-

fied nematode species that harbor X. poinarii are phylogenetically

related, and belong to the same clade within the Steinernema gen-

era (Nadler et al. 2006; Stock et al. 2019). Phylogenetic classifica-

tion of S. khuongi based on the large subunit region (28S)

clustered S. cubanum, S. glaseri, and S. khuongi very close to each

other into the same clade also known as “glaseri-group” of

Steinernema spp. (Stock et al. 2019).
The genome assembly of Xenorhabdus poinarii str. G6

(GeneBank Accession: FO704551.1) was also annotated in PATRIC

to compare the genome characteristics of the bacteria. The

genomes of two strains have almost the same GþC content but

some differences in the number of tRNA and rRNA genes.

Sequencing, assembly, and annotation information of

Xenorhabdus sp. sk and Xenorhabdus poinarii str. G6 is shown in

Table 3.

The D-GENIES genome-wide comparison of Xenorhabdus sk to

the reference X. poinarii str G6 shows that these genomes are

highly collinear at the genome level. The symbiotically associated

bacteria of S. khuongi seem to be very close to X. poinarii (Figure 4).
Because of this close relationship, it may be difficult to speci-

ate based on phenotypic characteristics. Speciation using the

DNA-DNA hybridization (DDH) technique provides better insight

into genomic interrelationship and offer a reliable answer to dif-

ferentiating species (Rosselló-Mora and Amann 2001). The bioin-

formatics method that mirrors the DDH is the average nucleotide

identity (ANI) between genomes (Richter and Rosselló-Móra

2009). Average nucleotide identity values (ANI %) of the whole-

genome assembly were calculated between S. khuongi bacterial

symbionts (Xenorhabdus sp. sk), 26 Xenorhabus genome assemblies

available in GenBank, with Photorhabdus asymbiotica genome as an

outgroup. An ANI calculation performed with MUMmer indicated

Figure 5 Heatmap of average nucleotide identity based on MUMmer (ANIm) based on whole genome alignment of 26 Xenorhabdus species 1 Photorhabdus
asymbiotica and Xenorhabdus sp from S. khuongi. The left heatmap shows ANIm percentage identity. Dendrogram shows similarity according to ANIm
identity scores. The right heat map shows the Tetra nucleotide frequency correlation coefficient of the above-mentioned species genome alignment.

Table 2 Features of Steinernema spp. draft genomes

Steinernema Carpocapsae Scapterisci Feltiae Glaseri Monticolum Feltiae (NW) Diaprepesi Khuongi

Estimated genome
size (Mb)

84.5 79.4 82.4 92.9 89.3 121.6 118 82

N50 (bp) 7,362,381 90,783 47,472 37,444 11,556 60,433 11,474 42,000
Number of scaffolds/

contigs
16 2,877 5,839 7,515 14,331 4,678 35,545 8,794

GC content (%) 45.7 47.98 46.99 47.63 42.01 NA 45.01 47.88
N content (Mb) NA 0.76 2.76 3.37 4.34 0 0 0
N content (%) 0.54 0.96 3.36 3.64 4.87 0 0
Maximum scaffold

size (bp)
20,922,283 1,149,164 1,470,990 339,094 110,081 1,315,981 1,706,490 428,226

Predicted genes 91,957 31,378 33,459 34,143 36,007 32,304 NA NA
Complete BUSCO 87% 84.5% 84.32% 59.4% 69.2% 87.27% 85% 86.6% (850)
Single-copy BUSCOs NA 79.3% 80.55% 57.8% 65.4% 76.68% 79.60% 81.3% (798)
Duplicated BUSCOs NA 5.2% 3.77% 1.6% 3.8% 10.59% 5.40% 5.3% (52)
Fragmented BUSCOs 7% 8.1% 8.15% 12.9% 12.5% 7.33% 7.10% 6.5% (64)
Missing BUSCOs 6% 7.4% 7.54% 27.7% 18.3% 5.40% 7.90% 6.9% (68)
Reference Serra et al. (2019) Dillman et al. (2015) Fu et al. (2020) Baniya et al. (2020) This study
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that the genome Xenorhabdus sp. from S. khuongi had 97% se-
quence similarity with that of X. poinarii str. G6. Similarly, tetra-
nucleotide correlation between these two species was 99.8%.
Average nucleotide identity (ANIb) using BlastN at NCBI was also
calculated whose result indicated that these two bacteria share
96.5% sequence identity. The average nucleotide identity (ANI) of
94 to 96% is generally used as the cutoff value to separate bacte-
rial species based on their genome sequences (Konstantinidis and
Tiedje 2005; Richter and Rosselló-Móra 2009). Not only does our
newly sequenced genome share approximately 97% average nu-
cleotide identity (ANIm and ANIb) with X. poinarii str G6, but it
also has a higher tetranucleotide correlation coefficient of 99.8%.
These results can be used as conclusive evidence to prove that
the bacterial symbiont associated with S. khuongi is X. poinarii
(Figure 5).

Discussion
The symbiotic association of specific bacteria within the gut of
EPNs makes the genome sequencing of only one partner difficult.
Due to their close association, it is nearly impossible to get clean
DNA of only one species. Working with the newly identified nem-
atode species makes it more complex because of the unknown
association of co-bionts. The use of a blob-plot allows each contig
from the assembly are separated based on the taxonomy and GC-
coverage and can easily discern the nematode, bacterial sym-
bionts, and other contamination if any present, in the assembly
(Figure 1). This approach proves to be a robust tool that reduces
the cost of the sequencing and cuts the complexity of the
host-symbionts system as a simple metagenomic project and
provides better insight to differentiate the unique genomes

captured during sequencing. This approach is also feasible for

the system where lab culture and isolation of symbionts are not

possible (Kumar and Blaxter 2011).
The nematode S. khuongi is endemic to the environmental con-

dition of the Flatwood region of Florida Citrus orchards. This re-

gion has a devastating problem with the citrus weevil (Stuart

et al. 2008)). The availability of the genome of the nematode and

associated bacteria can serve as a valuable resource to analyze

various genetic factors that enables this nematode to thrive in

these specific environmental conditions, and that also further

improve it as a more effective biological control agent. As we are

reporting the draft genomes of the nematode and bacteria, we

anticipate some genome variation between isolates sequenced in

the future. Although methods like flow cytometry can accurately

predict the size of the genome and check for heterozygosity,

the genome reported here is similar to those within its genus.

Because our genome has nearly 9,000 gaps, to improve the qual-

ity of the genome it is recommended to combine short reads like

ours with additional sequencing of long-insert DNA libraries

from other technologies. However, even in their current state,

these genomes should be valuable tools for comparative and

functional genomics. Rather than sequence members of a symbi-

otic association we sequenced, assembled, and analyzed the ge-

nome of both symbionts and host of the EPN in one sequencing.

This method of experiment and analyzing the data saves the

time and cost of sequencing, but also retrieves valuable informa-

tion that is hard to recover using more conventional methods.

Data availability
All genome sequencing data generated in this study for both

nematode and bacteria are deposited at the NCBI database under

the BioProject number PRJNA670677 for nematode and

PRJNA670736 for bacteria.
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Richter M, Rosselló-Móra R. 2009. Shifting the genomic gold standard

for the prokaryotic species definition. PNAS. 106:19126–19131.
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