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Abstract: A rich array of reactions occur using N,N-dimethylformamide (DMF) or N,N-dimethyl
acetamide (DMAc) as reactants, these two amides being able to deliver their own H, C, N, and O
atoms for the synthesis of a variety of compounds. This account highlights the literature published
since June 2018, completing previous reviews by the author.
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1. Introduction

In 2009, I wrote a review highlighting that N,N-dimethylformamide (DMF) is much
more than a solvent of organic and organometallic chemistry [1]. A few years later, I was
successively solicited for a book chapter and a review devoted to the use of DMF and
N,N-dimethylacetamide (DMAc) as reagents in synthesis, which have been written with
J. Le Bras [2,3]. Reviews related to the DM (DM = DMF or DMAc) reactivity have been
published by others [4–7].

The purpose is now to highlight the recent literature, focusing on atom transfer from
DM to substrates. A few older reports, useful to place the subject in the appropriate context,
or omitted in the previous reviews are included. The processes which necessitate the pre-
requisite synthesis of DM derivatives such as the Vilsmeier–Haack reagents [8,9] and DMF
dimethyl acetal [10] are discarded. Color equations, based on literature proposals, allow
easily visualizing the DM atom(s) origin. DM may act as a nucleophilic or electrophilic
reagent; neutral, ionic, and radical species, such as those depicted in Scheme 1, may be key
intermediates. The reaction mechanisms will be, at best, briefly commented on.
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Under aerobic conditions, CuII mediated the cyanation of (hetero)arenes by the com-

bination of DMF and ammonium iodide (Scheme 2). Both Sun/Cheng’s [11] and Jiang/Ji’s 
[12] teams assumed a mechanism involving decomposition of NH4I, into NH3 and pro-
duction of CN⊖ from the addition of NH3 to I1 (Scheme 2c). The first team proposed the 
formation of ArCuCN from ArH and CuII followed by reductive elimination, while the 
second team suggested the iodination of ArH and subsequent CuII-mediated cyanation. A 
recyclable catalyst, obtained from the impregnation of Cu(NO3)·3H2O over mesoporous 
siliceous SBA-15 followed by calcination at 450 °C, was used for cyanation of N-substi-
tuted indoles with NH4I and DMF [13]. The NH4I/DMF association has also been used for 
syntheses, as reported in Chinese patents [14–18]. 

Scheme 1. Plausible key species implicated in the delivery of DM fragments (R = H or Me).

2. C Fragment

Under aerobic conditions, CuII mediated the cyanation of (hetero)arenes by the
combination of DMF and ammonium iodide (Scheme 2). Both Sun/Cheng’s [11] and
Jiang/Ji’s [12] teams assumed a mechanism involving decomposition of NH4I, into NH3
and production of CN	 from the addition of NH3 to I1 (Scheme 2c). The first team pro-
posed the formation of ArCuCN from ArH and CuII followed by reductive elimination,
while the second team suggested the iodination of ArH and subsequent CuII-mediated
cyanation. A recyclable catalyst, obtained from the impregnation of Cu(NO3)·3H2O over
mesoporous siliceous SBA-15 followed by calcination at 450 ◦C, was used for cyanation of
N-substituted indoles with NH4I and DMF [13]. The NH4I/DMF association has also been
used for syntheses, as reported in Chinese patents [14–18].

CuII-catalyzed cyanation of (hetero)aryl halides arose using ceric ammonium nitrate
and K2CO3 in DMF (Scheme 2d) [19]. According to Bora and co-workers, K2CO3 reacts
with [Ce(NO3)6](NH4)2 leading to (NH4)2CO3 which undergoes decomposition providing
NH3. The CuII-catalyzed reaction of the latter with DMF affords CuI and CN	. The reaction
of CN	 with ArCuX proceeds as disclosed in Scheme 2c. Regeneration of the catalyst is
assumed with ceric ammonium nitrate.
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3. CH Fragment

When carried out in the absence of ammonium iodide, the above Cu-mediated reaction
of imidazo [1,2-a]pyridines led to the formylation of the C3–H bond (Scheme 3(a1)) [12].
The Jiang/Ji team suggested the nucleophilic addition of the substrate to I1 followed by
homolytic cleavage of the C–N bond (Scheme 3(a2)). Trapping the radical species with
oxygen affords a peroxy radical, the decomposition of which gives the product.

According to Lin and co-workers and a reaction with 18O-labeled water, the annulative
formylation of o-alkynylanilines depicted in Scheme 3(b1) occurs via activation of the triple
bond by coordination to CuII, favoring 5-endo-dig cyclization of the substrate leading
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to a Cu complex which inserts into the C=N bond of I2 [20]. The subsequent reductive
β-H elimination affords an iminium ion that reacts with water to deliver the product
(Scheme 3(b2)).
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The S. Zhang/Jiang/Jia [21], Xie/Wang/Shang [22], and Weng/Ackermann [23]
teams reported annulations with the insertion of a methine fragment (Scheme 4). The addi-
tion of hydrazide to I1 is the key step to produce the 1,3,4-oxadiazole (Scheme 4a,b) [21]
while the synthesis of the pyrazolo[3,4-b]pyridines derivatives (Scheme 4c) [22] is, in
fact, due to a Friedel–Crafts-type nucleophilic addition of pyrazol-5-amine to the 2-
methylenecyclohexane-1,3-dione (Scheme 4d). The latter is formed by coordination of
diazo compound to the Rh catalyst leading to a rhodium-carbene which inserts into a C–
H bond of DM, subsequent β-nitrogen elimination delivering the methylene dione and
RCONHMe. The recent cyclization of 4-arylaminocoumarins (Scheme 4e) [23] involves
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the electrochemically NaI-mediated formation of I1 and a radical derivative of the sub-
strate which react together afford the coumarin derivative substituted with CH2NMeCOH
(Scheme 4f). Elimination of HCONHMe and subsequent NaHSO3-mediating cyclization
followed by aromatization provide 6H-chromeno[4,3-b]quinolin-6-one.
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amine ArC(NH2)=CHR1 formed from the substrate and ammonium acetate, to I1 formed 
from DMF and Selectfluor (Scheme 5(a3)). The resulting intermediate Ar(C=NH)CHR1-
CH2NMeCOH undergoes elimination of HNMeCOH giving Ar(C=NH)CR1=CH2. A nu-
cleophilic attack of the latter by ArCOCH2R1 is followed by annulation and aromatization. 
The unsymmetrical pyridines (Scheme 5(a1)) are formed via a rather similar mechanism 
which starts with homo-condensation of the substrate. The synthesis of 2,4-diphenylpyr-
idine from acetophenone, NH4Oac, and DMF or DMAc using NH4I instead of Selectfluor 
was previously reported but in no more than 6% yield [25]. In contrast, the synthesis of 
such compounds was efficiently catalyzed using RuCl3 [3,26] or a recyclable hypercross-
linked polymer-immobilized ruthenium catalyst noted as HCP–PPh3–Ru (Scheme 5b) 
[27]. 

 

Scheme 4. Annulation with methine insertion.

An annulation reaction involving the insertion of a nitrogen atom and a CH fragment
has been reported from the heating of aromatic ketones (ArCOCH2R1) in DMF or DMAc in
the presence of ammonium acetate and Selectfluor (Scheme 5(a1,a2)) [24]. The key step lead-
ing to symmetrical pyridines (Scheme 5(a2)) is the nucleophilic addition of the vinylamine
ArC(NH2)=CHR1 formed from the substrate and ammonium acetate, to I1 formed from
DMF and Selectfluor (Scheme 5(a3)). The resulting intermediate Ar(C=NH)CHR1-CH2NMe
COH undergoes elimination of HNMeCOH giving Ar(C=NH)CR1=CH2. A nucleophilic
attack of the latter by ArCOCH2R1 is followed by annulation and aromatization. The
unsymmetrical pyridines (Scheme 5(a1)) are formed via a rather similar mechanism which
starts with homo-condensation of the substrate. The synthesis of 2,4-diphenylpyridine
from acetophenone, NH4Oac, and DMF or DMAc using NH4I instead of Selectfluor was
previously reported but in no more than 6% yield [25]. In contrast, the synthesis of such
compounds was efficiently catalyzed using RuCl3 [3,26] or a recyclable hypercrosslinked
polymer-immobilized ruthenium catalyst noted as HCP–PPh3–Ru (Scheme 5b) [27].
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4. CH2 Fragment

Copper acetate associated with N-fluorobenzenesulfonimide promoted an efficient
one-pot three-component condensation leading to α-amino nitriles (Scheme 6) [28]. The
reaction involves the addition of a secondary aromatic amine to I1, giving ArNR1CH2
NMeCOH which is converted into ArNR1=CH2

⊕ via cleavage of the CH2–NMe bond.
Subsequent reaction of the iminium ion with TMSCN provides the α-amino nitrile.
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5. NC Fragment

To the best of our knowledge, no new report concerned cyanation reactions using the
NC fragment of DM.
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6. NMe2 Fragment
6.1. Aryl Halides and Tosylates

The amination of (hetero)aryl halides or tosylates with DM has been carried out
under various conditions (Scheme 7) [29–32]. With DMF, these reactions could occur via
reaction of the substrate with HNMe2 produced from thermal or catalytic decomposition
of DMF. Under basic conditions, an aromatic nucleophilic substitution (SNAr) process has
been discarded and Gong’s team pointed out that the mechanism is unclear [30]. Under
the experimental conditions of Scheme 7d, Ni-catalyzed-activation of the C–N bond of
DM could participate in the process [33,34], but the presence of water could disfavor the
coordination of DM to the transition metal [35]. Cleavage of the C–N bond of amides may,
however, arise under transition-metal-free conditions [36].

Recently, the Kozlowski/Handa team disclosed the dimethylamination of fluoro
(hetero)arenes with DMF in the presence of ammonium formate and light (Scheme 7e) [37].
According to computational studies and control experiments, the Van der Waals complex
formed from the electron-deficient fluorinated aromatic ring and DMF evolves under light
toward a charge transfer complex stabilized by ammonium formate. The subsequent
decomposition leads to ArNMe2 or ArF and HNMe2. The SNAr reaction between the two
latter species could also contribute to the product formation [37]. Under the optimum
conditions, switching the solvent of the reaction of octafluoronaphthalene from DMF to
DMAc decreased the yield of 1,3,4,5,6,7,8-heptafluoro-N,N-dimethylnaphthalen-2-amine
from 80% to traces.
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6.2. Benzyl Ammoniums and Organochlorides

Various N,N-dimethyl thioamides have been synthetized under aqueous conditions
from DMF and quaternary (hetero)benzyl ammonium iodides (Scheme 8a) [38] or pri-
mary (hetero)benzyl/alkyl chlorides (Scheme 8b) [39] using sodium disulfide or elemen-
tal sulfur and NaOH, respectively. The mechanism of these reactions is unclear. N,N-
Dimethylbenzothioamide was not detected using N,N,N-dimethyl benzylamine instead of
benzyl N,N,N-trimethyl ammonium iodide, and isolated in only 10% yield from the ammo-
nium salt in the presence of a radical scavenger (Scheme 8a). According to Cheng’s team,
the reaction leading to ArC=SNR3 involves radical cross-coupling between ArC·HNR2 and
Me2N· leading to ArCH(NR2)(NMe2) which evolves toward the corresponding imminium
before undergoing addition of sulfur species, while Ge, Zhou, and co-workers, on the basis
of controlling experiments and quantum chemical calculations, assumed a thioamidation
of R1CH2Cl arising via the base-mediated formation of R1C	HCl followed by addition to
a S7 cluster and then reaction with DMF.

6.3. Carbonylated Compounds

Jiang and co-workers reported a procedure also leading to thioamides, but based on
the use of alkyl or aryl aldehydes, DMF, and sodium sulfide under aqueous oxidation
conditions (Scheme 9a) [40]. According to the proposed mechanism, aqueous sodium
sulfide mediates the cleavage of C–N bond providing HNMe2 and H2S. The addition of
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sulfur anion to R1CH=N⊕Me2 formed from the condensation of R1CHO with HNMe2,
followed by oxidation leading to the thioamide.
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Scheme 9. Thioamidation.

Denitration of nitroketones mediated with sulfur and aqueous trimethylamine in
DMF provided α-ketothioamides (Scheme 9(b1)) [41]. Zhang and co-workers proposed
that the ketothiolation of the substrate is followed by nucleophilic attack of dimethylamine
produced from decarbonylation of DMF (Scheme 9(b2)).

Halopyridines, especially 2,3-dibromopyridine, promote the Pd-catalyzed amidation
of arylglyoxylates with DMAc (Scheme 10(a1)) [42]. The reaction occurs via Pd-catalyzed
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esterification of the carboxylate with the halopyridine followed by amidation of the result-
ing ester with I3 (Scheme 10(a2)), the latter being issued from the addition of the in situ
formed 2-bromopyridin-3-olate to DMAc.
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The Liu/Guo team disclosed the synthesis of 2-oxo-acetamidines from a mixture of
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Scheme 11. Amidination of methyl ketones.

A CuI-catalyzed benzannulation leading to functionalized N,N-dimethylnaphthalen-
1-amines or N,N-dimethylquinolin-8-amine was reported under basic conditions by the
Yuan/Zhou team using DM, bromo-(hetero)aryl ketones, and terminal alkynes in water
(Scheme 12(a1)) [44]. One of the key steps would be the addition of I3 to the alkynylCu-
coordinated carbonyl of the ketone (Scheme 12(a2)).

N,N-Dimethylquinolineamines have also been obtained from β-(2-aminophenyl)-α,β-
ynones, DMF, and aqueous sodium hydroxide (Scheme 12b) [45].

N,N-dimethylbenzamide has been formed as a side-product of the base-promoted de-
halogenation of aryl halides with PhCHO/DMF [46,47], or in 22% yield from the treatment
of benzaldehyde with t-BuOK at 90 ◦C in DMF [46].
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7. O Fragment

In DMF, the SmI3/CuI-promoted condensation of α-halo ketones resulted in an un-
expected hydroxylation reaction (Scheme 13(a1)) [48]. Liu’s team demonstrated that the
reaction arises via a tribenzoylcyclopropane, which affords the corresponding α-hydroxy-
1,4-diketone (Scheme 13(a2)) through the participation of two DMF entities (Scheme 13(a3)).

Zoidis and co-workers revealed a competing transesterification in the course of N-
alkylation of N-(benzoxycarbonylmethyl)hydantoins with ethyl iodide and sodium hydride
in DMF (Scheme 14a) [49]. According to the authors, the reaction occurs via attack of the
DMF-zwitterionic mesomer I6 on EtI, yielding the ammonium salt Me2N⊕=CHOEt which
suffers from the addition of hydride leading to Me2NCH(OEt)H. Dissociation of the latter
gives EtO	 which undergoes an SN2 reaction with the benzyl ester.

Catalysis with silyl-molybdenum complexes of the polymerization of dihydroorganosi-
lanes in DMF led to the participation of the DMF-oxygen atom affording polysiloxanes
(Scheme 14b) [50].
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8. CO Fragment

A recent review summarizes carbonylations using diverse CO surrogates including
DMF [51].

The use of DMF as the solvent has favored carbonylations with oxalic acid [52],
Mo(CO)6 [53,54], or formylpyrrolidine [55] as the CO source, or carbon monoxide pres-
sure [56].
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DM was not the CO source of the amide functionality obtained from Pd-catalyzed
hydrocarbonylation of alkenes in DM under CO pressure, only the NMe2 moiety was
involved [3,57]. To the best of our knowledge, no new report concerns the carbonylation
reaction using the CO fragment of DM.

9. CONMe2 Fragment

Examples leading to side compounds containing the CONMe2fragment are included
in Section 15.

In DMF, ligation to CrCl2 of the tripeptide formed from 2-amino-2-methylpropanoic acid
followed by oxidation afforded the anionic urea CrV complex depicted in Scheme 15 [58].
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Scheme 15. Formation of a 3,3-dimethylurea derivative.

The oxidation in DMF of benzyl alcohol, benzaldehyde, benzoic acid, styrene, phenyl
acetylene, and corresponding p-substituted substrates using a mesoporous copper catalyst
named HKUST-1-Cu led to cleavage of the Ar-function bond giving N,N-dimethylarylamides
(Scheme 16) [59].
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Scheme 16. Oxidative cleavage of functionalized arenes.

The carbamoylation of the double bond of enamides and styrenes with DMF arose un-
der oxidative conditions mediated with Fe catalysis at 65–80 ◦C (Scheme 17a) [60] or visible
light at room temperature (Scheme 17b) [61], respectively. Refluxing 1,1-diphenylethylene in
DMF with di-tert-butyl peroxide led to a low yield of N,N-dimethyl-3,3-diphenylacrylamide
even under Cu catalysis (Scheme 17c) [62].

In the presence of peroxides, the reaction of β-dicarbonyl compounds with DMF under
catalysis with either a copper supported Mg–Al hydrotalcite derived oxide (Scheme 18a) [63]
or a maghemite–copper oxide nanocomposite (Scheme 18b) [64]afforded enol carbamates,
while a soluble catalyst—Cu(OTf)2—gave, according to Zou’s team, 2-carbamoyl-1,3-
dicarbonyl compounds (Scheme 18c) [62]. Given the NMR chemical shifts attributed to the
latter, especially those of the putative 2-benzoyl-N,N-dimethyl-3-oxo-3-phenylpropanamide,
the right structure is not obvious and remains an open question. Mail sent to J.-P. Zou
remained without an answer.
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Scheme 17. Carbamoylation of activated double bonds.

Mao, Zhang, and co-workers reported the thiolation of the C–H bond of DMF using
di-tert-butyl peroxide and either 1,2-di-p-tolyldisulfane (Scheme 19(a1)) or arylsulfonyl
hydrazides and aluminum chloride (Scheme 19(a2)) [65], while Bi, Feng, Geng, and co-
workers recently used tert-butyl hydroperoxide and S-aryl arenethiosulfonates under
visible-light irradiation (Scheme 19b) [66]. This last procedure is, however, ineffective for
DMF thiolation with 1,2-di-p-phenyldisulfane [66]. According to the authors [65,66], these
reactions involve the radical I4. Jia’s team, in the course of the study of functionalization of
styrenes with thiosulfonates and arylboronic acids in acetone/DMF, also proposed that
S-methyl dimethylcarbamothioate isolated as a by-product was formed from the reaction
of S-methyl 4-methylbenzenesulfonothioate with I4 (Scheme 19c) [67].

Thiocarbamation of 2-arylimidazo[1,2-a]pyridines with elemental sulfur and DMF
has been carried out with di-tert-butyl peroxide and Cu catalysis at 120 ◦C [68]. The
reaction was promoted with N-bromosuccinimide (Scheme 20(a1)) and also occurred using
6-phenylimidazo[2,1-b]thiazole as the substrate (Scheme 20(a2)). The Cui/Tang team
proposed a radical mechanism with I4 reacting with sulfur leading to Me2NCOS·, and
possibly also NBS giving Me2NCOSBr. Both species could react with the substrate to
deliver the isolated product.
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Scheme 20. Thiocarbamation of heterocycles.

All the above processes of this section involve the participation of radical I4 formed
by catalyst/peroxide-mediated homolytic cleavage of DMF.

Hexafluorophosphate benzotriazole tetramethyl uronium (HBTU) is a peptide cou-
pling reagent frequently used [69–71]. An impurity with an abundance of 0.09% was
detected by Badalassi and co-workers in the Peptide Q API solution obtained from the
HBTU-mediated Peptide Q cyclization in DMF [72]. This impurity was identified as be-
ing 1H-benzo[d][1–3]triazol-1-yl dimethylcarbamate formed from the addition of DMF to
HBTU as depicted in Scheme 21.
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10. H Fragment

The chemoselective reduction of α-ketoamides arose from treatment with sodium
hydroxide and water in DMF (Scheme 22) [73]. Deuterium labeling experiments led Wu
and co-workers to assume hydride delivery from HCOONa produced from the hydrolysis
of DMF with hydrated NaOH.
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The association of t-BuOK, DMF, and visible-light irradiation mediated the dehalo-
genation of (hetero)aryl fluorides, chlorides, bromides, and iodides (Scheme 23a) [74],
while the reductive cleavage of 4-methoxybenzenediazonium tetrafluoroborate occurred
under light-free conditions (Scheme 23b) [75]. According to Qu/Kang’s and Taillefer’s
teams [74,75], these reactions implicate the carbamoyl anion I7 and, via electron transfer,
the carbamoyl radical I4. Such a reactivity of DMF under t-BuOK conditions has been
exploited for transition-metal-free Matsuda–Heck type reactions [75].
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11. RC Fragment

Heterocycles containing the CR fragment have been synthetized from a variety of
amino substrates (Scheme 24) [76–79]. Under the experimental conditions of Scheme 24a,
activation of the carbonyl group of DMF by HMDS favors the nucleophilic addition of the
arylamine leading to an intermediate that undergoes internal addition of the other nucle-
ophilic moiety of the substrate. In the presence of imidazolium chloride (Scheme 24b–d),
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the addition of imidazole to HCl-activated carbonyl of DM leads to C3H3N2COR which
undergoes nucleophilic addition with the substrate.

Using both t-BuONa and amine-borane in DM, Y.-F., Wang, and co-workers carried
out the C-methylation or C-ethylation of N,N-dimethyl-2-phenylacetamide and various ary-
lacetonitriles in fair to high yields while the reaction of ethyl 2-phenylacetate was much less
efficient (Scheme 25a) [80]. One year later, in collaboration with the team of Z. Wang, they
disclosed the methylenation of 2-arylacetamides under similar conditions (Scheme 26) [81].
Another year later, they reported the N-monomethylation and N-monoethylation of pri-
mary anilines with the NaH/Me2NH-BH3/DM association (Scheme 25b) [82]. Interestingly,
the use of DMF or d7-DMF with Me2NH-BH3 and Me2NH-BD3 allowed the controllable
installation of N-CH2D, N-CHD2, and N-CD3 units [82]. The proposed N-methylation
mechanism of anilines includes deprotonation of ArNH2 mediating addition to DM leading
to anionic species ArNHCRO	NMe2 which evolves toward ArN=CRNMe2. The ensuing
reduction with Me2NH-BH3 provides ArNHCHRNMe2 [82]. The base-promoted elimina-
tion of HNMe2 gives ArN=CHR which undergoes reduction leading to ArNH(CH2R).
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The difference between the results—methylation versus methylenation—of N,N-
dimethyl-2-arylacetamides (Scheme 25a versus Scheme 26) is surprising but the authors
did not cite the first report and, consequently, did not make comments. N,N-Dimethyl-
2-phenylacetamide (Scheme 25a) [80] and 2-(4-methoxyphenyl)-N,N-dimethylacetamide
(Scheme 26) [81] were treated at 120 ◦C with same amounts of t-BuOK and amine-borane.
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Y.-F. Wang’s team assumed that the methylation product implicates the reduction of the
methylenation product [80]. According to the two reports [80,81], deprotonation of the
substrate (noted ArCH2E) mediates addition to DMF leading to ArECHCH(OH)NMe2
which evolves toward the imminium ArECHCH=N⊕Me2. Subsequent reduction with
Me2NH-BH3 into ArECHCHH(NMe2) is followed by base-mediated elimination of HNMe2
leading to ArEC=CHH and then the methylation product. The nature of the final product
could depend on the reaction time. Indeed, the methylenation product was isolated after
40 min while the methylation reaction went on for 11 h. Moreover, decreasing the reaction
time to 5 h afforded a mixture of the two products (Scheme 27(a1)) [80]. The hypothesis
of the effect of the reaction time, however, disagrees with the reduction of acrylonitrile
in 5 min under the t-BuOK/Me2NH-BH3/HCONMe2 conditions (Scheme 27(a2)) [80]. In
conclusion, the interpretation of the results depicted in Schemes 25a and 26 remains an
open question.
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Scheme 27. Methylation versus methylenation and hydrogen transfer.

Liang’s team revealed the triflic anhydride-mediated formylation of N-methylindole de-
picted in Scheme 28(a1) [83]. The reaction proceeds through nucleophilic addition of the sub-
strate to enolium triflate of DMF giving the corresponding iminium (Scheme 28(a2)) [83,84].
Subsequent hydrolysis delivers the product.
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12. HCNMe2 Fragment

Mechanistic investigations of the reaction depicted in Scheme 25a led Y.-F. Wang’s
team to observe a slow reaction of the methylation product with the amine-borane/DMF
system (Scheme 29a) [80]. The iminium intermediate ArCMe(CN)CH=N⊕Me2, produced
by deprotonation of the substrate and addition to DMF as documented above, is reduced
with amine-borane.
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The 3-carbonyl group of isatins underwent both hydrosilylation and amino-methylation
using hydrosilanes and Pd catalysis in DMF (Scheme 29(b1)) [85]. According to Wu’s
team, Pd0 produced from the silane-mediated reduction of Pd(OAc)2, inserts into the Si
–H bond of the silane giving R’3SiPdH, which undergoes two different hydrosilylations
(Scheme 29(b2)). That of DMF affords (R’3SiO)HCHNMe2 which transforms into [(R’3Si
O)]	[HCH=NMe2]⊕, while that of the C3 carbonyl of isatin provides O-silylated indolin-2-
one which tautomerizes into the corresponding silyl enol ether. The addition of the latter
to the iminium species gives the product.

13. HC-O Fragment

1,3-Bromoesters have been isolated from the reaction of aryl cyclopropanes with NBS,
DMF, and H2O (Scheme 30(a1)), which involves bromination of the three-membered ring
leading to carbocation ArR1C⊕CH2CH2Br [86]. The subsequent attack of the oxygen of
DMF via SN1 or SN2 mechanism affords ArR1C(OCH=N⊕Me2)(CH2CH2Br) which under-
goes hydrolysis delivering the bromoester. The reaction of 1,2-diphenylcyclopropane under
the same experimental conditions arose with good diastereoselectivity (Scheme 30(a2)).
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14. RC=O Fragment

The regioselective 2-formylation of 3-bromobenzofuran and 3-bromobenzothiophene
was achieved with NaHMDS and DMF at low temperature in THF, while the C5 position
was favored at room temperature (Scheme 31a) [87]. Formylation of a variety of five-
membered heteroarenes succeeded at room temperature with in situ generated amide base
(Scheme 31b) [88]. The latter reactions proceed via proton abstraction and nucleophilic
addition of the resulting carbanion to DMF.

The transamidation of amines has been carried out under a variety of conditions [89].
A rather surprising procedure using methyl benzoate under microwave irradiation in DMF
achieved the formylation of aliphatic primary and secondary amines (Scheme 32a) [90].
Jeon and Yang speculated a transition state implicating amine, methyl benzoate, and DMF.
L-Proline at 150 ◦C [91] and FeIII salts in refluxing toluene [92] were used to catalyze
the formylation of benzylamine with DMF (Scheme 32b,c). The reaction of L-proline
with DMF would precede the nucleophilic addition of the amine, while FeIII would form
a DMF complex that reacts with the amine. Triflic acid catalyzed the formylation of
tetrahydroisoquinoline with DMF (Scheme 32d) [93]. In fact, formylations with DMF arose
at 150 ◦C even in the absence of an additive, in fair to high yields from various aliphatic
amines and a low yield from p-methoxyaniline (Scheme 33a) [94].
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Potassium and sodium tert-butoxides mediated the formylation and acetamidation
of primary aliphatic and arylamines with DM (Scheme 33b–d) [95–97]. The teams of
Dash [96]and Cheng/Chen [97] performed the reactions with DMF and DMAc at room
temperature (Scheme 33c,d), while, in contrast to DMF, the Li/Yu team carried out the
reactions with DMAc at 130 ◦C and under microwave irradiation to reduce the reaction
time (Scheme 33b) [95]. The t-BuOK-mediated reaction of cyclopropylamine provided
the transamidation product in a poor yield at room temperature and N-(prop-1-en-1-
yl)acetamide in fair yield at 80 ◦C (Scheme 32e) [96]. Effective transamidations of primary
amines with DM were reported under catalysis with imidazolium chloride at 150 ◦C
(Scheme 33f) [98] or using 1–2 equiv. of ammonium iodide at 125–145 ◦C (Scheme 33g) [99].

Basic conditions implicate the deprotonation of the amine and the tetrahedral ionic
species (R1HN)CRO	(NMe2) which converts into the product. According to the Li/Yu
team, the mechanism depends on the nature of the base: no radical character of the t-
BuONa-based reaction while two pathways were plausible with t-BuOK [95]. With t-BuOK,
(R1HN)CRO	(NMe2) would be obtained either from the reaction between R1HN	 and
a I6/t-BuOK complex or via the equilibrium R1HN	
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The imidazolium chloride-based reaction (Scheme 33f) would involve the protonation
of DM, promoting the nucleophilic addition of imidazole leading to C3H3N2COR. Subse-
quent amine addition gives C3H3N2C(OH)R(NHR1) which evolves toward the product via
elimination of imidazole.

Various acidic conditions in DM, in particular HCl catalysis at 120 ◦C, achieved the
formation of N-phenylamides from β-ketobutylanilides (Scheme 34a) [100]. According to
Chen’s team, the substrate decomposes into the corresponding anilide which undergoes
reaction with protonated DMF. In fact, the same laboratory subsequently reported the
amidation of primary arylamines using a stoichiometric amount of aqueous HCl in DM at
100 ◦C (Scheme 34b) [101]. Recently, Karpoormath’s team used a similar procedure for ami-
dation with DMF of primary and secondary amines (Scheme 34c) [102]. Martínez-Pascual
and co-workers, who performed the formylation of anilines and secondary aliphatic amines
using the beforehand prepared DMF.HCl complex, reported a domino reaction leading to
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4-arylpiperazine-1-carbaldehydes from anilines, bis(2-chloroethyl)amine hydrochloride,
and DMF (Scheme 34d) [103].Camphor sulfonic acid was the optimum carboxylic acid for
N-formylation of 2-aminophenols at 100 ◦C (Scheme 34e) [104]. In contrast, Lewis acids
such as tert-butyldimethylsilyl triflate promoted the room temperature formylation of pri-
mary or secondary aliphatic amines and anilines (Scheme 33h) [105]. Heating was required
for the amidation of arylamines mediated with graphene oxide under neat conditions
(Scheme 34f) [106].
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Scheme 33. Amidation of aliphatic amines and arylamines.

N-Amidation of aryl and aliphatic amines arose in high yields at 80–150 ◦C under
CuCl2 (Scheme 33i) [107] or PdCl2 catalysis (Scheme 33j) [108] while Co(OAc)2 as catalyst
was efficient only from aliphatic amines (Scheme 33k) [109]. The Cu-catalyzed reaction
was carried out in the presence of 1,2,4-triazole. Jagtap’s team assumed that this additive
undergoes addition to CuII-coordinated DM, resulting in the formation of HNMe2and
CuII-coordinated (1,2,4-triazol-1-yl)COR. Nucleophilic addition of R1R2NH to the latter
followed by elimination of 1,2,4-triazole and CuII affords the product [107]. Such a pathway
contrasts with the proposal of Gong and co-workers who assumed the direct amine addition
to the DMF/CoII complex [109] as above alleged under FeIII catalysis [92]. No mechanism
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was indicated by L. Zhang’s team for the Pd-catalyzed reaction [108]; the yield decreased in
the absence of NEt3 (Scheme 33j), leading us to suspect a pathway similar to that mediated
by CuII.
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Formylation and acetylation of hydrazides with tert-butyldimethylsilyl triflate and
DM effectively occurred at room temperature (Scheme 35) [105].
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Siddiki, Shimizu, and co-workers disclosed the esterification of primary and secondary
alcohols with DMAc using CeO2 at 155 ◦C in the presence of HY zeolite (SiO2/Al2O3)
(Scheme 36a) [110]. HY zeolite, enclosed in a paper filter placed at the upper portion of
the reaction vessel, traps the dimethylamine formed from the CeO2-promoted cleavage of
the C–N bond of DMAc, which concomitantly affords a CeOCOMe species. Nucleophilic
addition to the latter of the alcoholate formed from CeO2-mediated deprotonation of the
alcohol provides the ester.
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ary alcohols with DMAc using CeO2 at 155 °C in the presence of HY zeolite (SiO2/Al2O3) 
(Scheme 36a) [110]. HY zeolite, enclosed in a paper filter placed at the upper portion of 
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Scheme 36. CeO2-promoted alcoholysis of DMAc and CuBr2-catalyzed ring opening/esterification
of cyclopropyl carbinols.

Treatment at 140 ◦C in DM of cyclopropyl carbinols with catalytic amounts of CuBr2
provided alk-3-en-1-yl formates or acetates (Scheme 36b) via a copper alkoxide complex
which evolves toward a homoallylic copper alcoholate [111]. Nucleophilic attack of the
latter on DM results in the formation of the ester.

The formyl moiety of DMF would be involved in the formation of benzyl formate
identified as a side reaction of the oxidation of benzyl bromide with a Zr-photocatalyst in
DMF under air atmosphere [112].

Quaternary carbons have been synthetized from gem-bis(boronates), DMF and al-
lyl methyl carbonates [113], (hetero)aryl iodides, or alkenyl bromides [114] using the
procedures disclosed in Scheme 37. According to Xu and co-workers, the lithium salt
obtained from treatment of R1R2C[B(pin))]2 with n-BuLi, reacts with DMF to afford
R1R2C=CH[OB(pin)]. Transmetallation with R’PdX (R’ = substituted allyl, Ar, CH=CHAr)
leads to R1R2C=CH(OPdR’) which is in equilibrium with the tetrahedral intermediate
R1R2C(PdR’)(CH=O). Then, reductive elimination of Pd0 liberates R1R2CR’(CH=O).
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tive conditions with sodium persulfate in water leading to short reaction times in the ab-
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Li’s team but with catalytic ammonium persulfate under oxygen atmosphere and light 
assistance for the C-3 functionalization of 1-methylquinoxalin-2(1H)-one by DMF or 
DMAc (Scheme 38f) [124]. The teams of Han and Y. Zhang used the chelating properties 
of the 8-aminoquinolyl group for the regioselective NiII-catalyzed coupling of N-(quino-
lin-8-yl)benzamides with DMAc, the use of di-tert-butyl peroxide as oxidant leading to 
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The NiII-catalyzed selective carbamoylation of 1,1-diphenylethene with DMAc under per-
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15. RC=ON(CH2)Me Fragment

In 1976, Minisci’s team disclosed the reaction of heteroarenes with DMF in the presence
of sulfuric acid and oxidants [115]. Thus, 4-ethyl pyridine provided a mixture of 4-ethyl-N,N-
dimethylpicolinamide and N-((4-ethylpyridin-2-yl)methyl)-N-methylformamide in yields
and ratios depending on the oxidant (Scheme 38a). This seminal report was followed by
intensive studies on the radical fragmentation of DM by Minisci and co-workers [116–118].
Then, the promotion of such reactions under sunlight, especially in the presence of TiO2,
was disclosed by Caronna and co-workers (Scheme 38b) [119]. Subsequently, Weng’s team
reported that the amidoalkylaion method reported by the Huang/Zhu team [120] was
improved using a photocatalyst and visible light (Scheme 38c) [121]. Togo’s team previously
highlighted the decisive effect of UV light on the amidoalkylation of 4-methylquinoline
using DMAc, benzoyl peroxide, and trifluoroacetic acid (Scheme 38(d1)) [122]. Various
quinolines (Scheme 38(d2)), isoquinolines, and phenanthridines were amidoalkylated un-
der such conditions [122]. Then, Gambarotti and Truscello reported oxidative conditions
with sodium persulfate in water leading to short reaction times in the absence of acids
(Scheme 38e) [123]. Water as the solvent was also subsequently used by J. Li’s team but with
catalytic ammonium persulfate under oxygen atmosphere and light assistance for the C-3
functionalization of 1-methylquinoxalin-2(1H)-one by DMF or DMAc (Scheme 38f) [124].
The teams of Han and Y. Zhang used the chelating properties of the 8-aminoquinolyl group
for the regioselective NiII-catalyzed coupling of N-(quinolin-8-yl)benzamides with DMAc,
the use of di-tert-butyl peroxide as oxidant leading to selective reaction of a C(sp3)−H
bond adjacent to nitrogen of DMAc (Scheme 38(g1)) [125]. The NiII-catalyzed selective car-
bamoylation of 1,1-diphenylethene with DMAc under peroxide conditions in the presence
of 2-methyl-N-(quinolin-8-yl)benzamide (Scheme 38(g2)) revealed the radical character of
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the process [125]. Under Cu2O catalysis, oxidation of styrene with Na2S2O8 in DMF pro-
vided a 3:1 mixture of N-cinnamyl-N-methylformamide and N,N-dimethylcinnamamide
(Scheme 38h) [126]. The Ni(cod)2/t-BuOOH association in DMAc mediated the selective
carbamoylation of α,α-diaryl allylic alcohols while amidation was a competitive path-
way in DMF (Scheme 38(i1)) [127]. Both pathways involve a radical 1,2-aryl migration
succeeding to the reaction of the substrate with either I9 (Scheme 38(i2)) or I4.

Molecules 2021, 26, x FOR PEER REVIEW 
 33 of 52 
  

 

 

 

 

 

Scheme 38. Cont.



Molecules 2021, 26, 6374 33 of 50
Molecules 2021, 26, x FOR PEER REVIEW 
 34 of 52 
  

 

 

 

 
 

 

N
C Me

Me
H

O Cu2O (0.1 equiv.)
Na2S2O8 (4 equiv.)

100 °C, 48 h
+

h.

Ph Ph Ph
C

N
C

Me
H

O
C

N

O
Me

Me

HH

+
A B

45%, A/B = 3:1
 Scheme 38. Cont.



Molecules 2021, 26, 6374 34 of 50
Molecules 2021, 26, x FOR PEER REVIEW 
 35 of 52 
  

 

 

 
Scheme 38. Carbamoylation versus amidation. 

The CuO-catalyzed reaction of cinnamic acids with DMAc and di-tert-butyl peroxide 
led to decarboxylative alkenylation giving the corresponding N-cinnamyl-N-methyla-
cetamides (Scheme 39(a1)) while 3-methylbut-2-enoic acid afforded (N-methylacetam-
ido)methyl 3-methylbut-2-enoate (Scheme 39(a2)) [126]. Cross-coupling with the elimina-
tion of the sulfonyl or nitro group was also observed from the reaction of vinylsulfones, 
((phenylethynyl)sulfonyl)benzene and β-nitrostyrenes using DM in the presence of either 
a diaryl ketone under visible-light irradiation (Scheme 39b) [128] or a peroxydisulfate 
(Scheme 39c) [129]. 

 

 

 

Scheme 38. Carbamoylation versus amidation.

The CuO-catalyzed reaction of cinnamic acids with DMAc and di-tert-butyl peroxide
led to decarboxylative alkenylation giving the corresponding N-cinnamyl-N-methylace
tamides (Scheme 39(a1)) while 3-methylbut-2-enoic acid afforded (N-methylacetamido)
methyl 3-methylbut-2-enoate (Scheme 39(a2)) [126]. Cross-coupling with the elimina-
tion of the sulfonyl or nitro group was also observed from the reaction of vinylsulfones,
((phenylethynyl)sulfonyl)benzene and β-nitrostyrenes using DM in the presence of either
a diaryl ketone under visible-light irradiation (Scheme 39b) [128] or a peroxydisulfate
(Scheme 39c) [129].

Molecules 2021, 26, x FOR PEER REVIEW 
 35 of 52 
  

 

 

 
Scheme 38. Carbamoylation versus amidation. 

The CuO-catalyzed reaction of cinnamic acids with DMAc and di-tert-butyl peroxide 
led to decarboxylative alkenylation giving the corresponding N-cinnamyl-N-methyla-
cetamides (Scheme 39(a1)) while 3-methylbut-2-enoic acid afforded (N-methylacetam-
ido)methyl 3-methylbut-2-enoate (Scheme 39(a2)) [126]. Cross-coupling with the elimina-
tion of the sulfonyl or nitro group was also observed from the reaction of vinylsulfones, 
((phenylethynyl)sulfonyl)benzene and β-nitrostyrenes using DM in the presence of either 
a diaryl ketone under visible-light irradiation (Scheme 39b) [128] or a peroxydisulfate 
(Scheme 39c) [129]. 

 

 

 

Scheme 39. Cont.



Molecules 2021, 26, 6374 35 of 50
Molecules 2021, 26, x FOR PEER REVIEW 
 36 of 52 
  

 

 

 

 
Scheme 39. Cross-coupling of α,β-unsaturated acids, vinyl sulfones, ((phenylethynyl)sulfonyl)benzene and β-nitrosty-
renes. 

Treatment at 100 °C of styrene with CuF2 catalyst and t-BuOOH led to a complicated 
mixture in DMF while effective production of N-methyl-N-(3-oxo-3-phenylpropyl)acet-
amide arose in DMAc (Scheme 40) [126]. Various vinylarenes undergo such an oxyalkyl-
ation (Scheme 40). 

 
Scheme 40. Oxyalkylation of styrenes. 

The above reactions involve radical intermediates I9 and/or I4. 
Borylation [130–132], silylation [133], and amidation [134] of N-adjacent C–H bond 

of DMAc have been achieved with bis(pinacolato)diboron and Rh or Ir catalysis (Scheme 
41a,b), triethylsilyl hydride, Ru catalysis, and tert-butylethylene as the hydrogen acceptor 
(Scheme 41c), and N-haloimides under blue light irradiation (Scheme 41d). The transition-
metal catalysis could involve the C(sp3)−H bond oxidative addition to the metal center 
[135,136] while the photochemical conditions promote the formation of radical I9 [134]. 

Scheme 39. Cross-coupling of α,β-unsaturated acids, vinyl sulfones, ((phenylethynyl)sulfonyl)benzene and β-nitrostyrenes.

Treatment at 100 ◦C of styrene with CuF2 catalyst and t-BuOOH led to a complicated
mixture in DMF while effective production of N-methyl-N-(3-oxo-3-phenylpropyl)acetamide
arose in DMAc (Scheme 40) [126]. Various vinylarenes undergo such an oxyalkylation
(Scheme 40).
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Scheme 40. Oxyalkylation of styrenes.

The above reactions involve radical intermediates I9 and/or I4.
Borylation [130–132], silylation [133], and amidation [134] of N-adjacent C–H bond of

DMAc have been achieved with bis(pinacolato)diboron and Rh or Ir catalysis (Scheme 41a,b),
triethylsilyl hydride, Ru catalysis, and tert-butylethylene as the hydrogen acceptor (Scheme 41c),
and N-haloimides under blue light irradiation (Scheme 41d). The transition-metal catalysis
could involve the C(sp3)−H bond oxidative addition to the metal center [135,136] while
the photochemical conditions promote the formation of radical I9 [134].
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16. RC-ONMe2 Fragment 
Under AgOTf catalysis at 130 °C in DM, cyclopropenones underwent ring opening 

producing 5-amino-2-furanones (Scheme 42) [137]. Matsuda and co-workers proposed a 
reaction arising from the addition of the oxygen atom of DM to the Ag-coordinated car-
bonyl group of the cyclopropenone. 

Scheme 41. Borylation, silylation, and amidation of N-adjacent C–H bond of DMAc.

16. RC-ONMe2 Fragment

Under AgOTf catalysis at 130 ◦C in DM, cyclopropenones underwent ring opening
producing 5-amino-2-furanones (Scheme 42) [137]. Matsuda and co-workers proposed
a reaction arising from the addition of the oxygen atom of DM to the Ag-coordinated
carbonyl group of the cyclopropenone.
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ing to a previous report of Kobayashi’s team [139], the anionic intermediate produced 
from the addition of enolate I10 to the substrate is protonated with an H of the Me moiety 
of DMAc. 
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Mn, Rh, or Ni catalyst associated with t-BuOK performed effective C-alkylation of 
DMAc with primary alcohols (Scheme 44a–f). Hydrogen transfers are involved but plau-
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gen origin in the final product. The reactions occur via transition-metal-catalyzed oxida-
tion of the alcohol (R’CH2OH) followed by base-mediated condensation with DMAc lead-
ing to the corresponding α,β-unsaturated amide—R’CH=CHCO(NMe2)—which was 
sometimes isolated as a by-product (Scheme 44a,d and e). According to the teams of Mil-
stein [140] and Gupta and Balaraman [141], hydrogenation of the latter with H2 formed 
from alcohol oxidation provides the final product (Scheme 44a,b), whereas experiments 
with PhCD2OH led the teams of Rueping and El-Sepelgy to assume that the Mn-catalyzed 
alcohol oxidation produced the hydrogenated species IMn [142]. Subsequent insertion of 
the C=C bond into the Mn–H bond followed by H transfer would provide the product 
(Scheme 44c). According to Chen’s team (Scheme 44d), the hydridorhodium species is-
sued from Rh-catalyzed dehydrogenation of the alcohol adds to R’CH=CHCO(NMe2) af-
fording an oxo-π-allylrhodium complex [143]. The reaction of the latter with R’CH2OH 
would deliver the product and the Rh alcoholate RhOCH2OR’ which would be the active 
catalytic species. Madhu, Balaraman, and their co-workers (Scheme 44e) performed a deu-
terium labeling experiment with p-ClC6H4CD2OD which led to a 16:36:48 mixture of D0, 
D1, and D2 3-(p-chlorophenyl)-N,N-dimethylpropanamide [144]. The formation of the D0 
product “is in agreement with the microreversibility of the initial alcohol dehydrogena-
tion process” [144]. Yang, Zhou, Tang, and their co-workers (Scheme 44f) carried out la-
beling experiments with PhCD2OH and t-BuOD as an additive, but to ascribe the origin 
of hydrogens in α- and β-positions was also tedious [145]. It seems remarkable that the 
above Ni-catalyzed conditions led to the alcohol oxidation rather than to the C–N bond 
cleavage [33] of DMAc. 

Scheme 42. [3 + 2] Annulation.

17. H1,2CC=ONMe2 Fragment, or H and H1,2CC=ONMe2 Fragments

N,N-dimethyl-4,4-diarylbutanamides have been synthetized at room temperature
from base-mediated addition of DMAc on 1,1-diarylethylenes (Scheme 43) [138]. According
to a previous report of Kobayashi’s team [139], the anionic intermediate produced from the
addition of enolate I10 to the substrate is protonated with an H of the Me moiety of DMAc.
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Scheme 43. Base-promoted addition of DMAc.

Mn, Rh, or Ni catalyst associated with t-BuOK performed effective C-alkylation of
DMAc with primary alcohols (Scheme 44a–f). Hydrogen transfers are involved but plausi-
ble hydrogen exchange between alcohol and DMAc led to uncertainty about the hydrogen
origin in the final product. The reactions occur via transition-metal-catalyzed oxidation of
the alcohol (R’CH2OH) followed by base-mediated condensation with DMAc leading to the
corresponding α,β-unsaturated amide—R’CH=CHCO(NMe2)—which was sometimes iso-
lated as a by-product (Scheme 44a,d,e). According to the teams of Milstein [140] and Gupta
and Balaraman [141], hydrogenation of the latter with H2 formed from alcohol oxidation
provides the final product (Scheme 44a,b), whereas experiments with PhCD2OH led the
teams of Rueping and El-Sepelgy to assume that the Mn-catalyzed alcohol oxidation pro-
duced the hydrogenated species IMn [142]. Subsequent insertion of the C=C bond into the
Mn–H bond followed by H transfer would provide the product (Scheme 44c). According
to Chen’s team (Scheme 44d), the hydridorhodium species issued from Rh-catalyzed dehy-
drogenation of the alcohol adds to R’CH=CHCO(NMe2) affording an oxo-π-allylrhodium
complex [143]. The reaction of the latter with R’CH2OH would deliver the product and the
Rh alcoholate RhOCH2OR’ which would be the active catalytic species. Madhu, Balara-
man, and their co-workers (Scheme 44e) performed a deuterium labeling experiment with
p-ClC6H4CD2OD which led to a 16:36:48 mixture of D0, D1, and D2 3-(p-chlorophenyl)-
N,N-dimethylpropanamide [144]. The formation of the D0 product “is in agreement with
the microreversibility of the initial alcohol dehydrogenation process” [144]. Yang, Zhou,
Tang, and their co-workers (Scheme 44f) carried out labeling experiments with PhCD2OH
and t-BuOD as an additive, but to ascribe the origin of hydrogens in α- and β-positions
was also tedious [145]. It seems remarkable that the above Ni-catalyzed conditions led to
the alcohol oxidation rather than to the C–N bond cleavage [33] of DMAc.

Madsen and Azizi disclosed a transition-metal-free C-alkylation of DMAc with ben-
zylic alcohols, through a reaction mediated by t-BuOK or t-BuONa [146]. Use of 2 equiv. of
the base provided the saturated amide in fair yields while lower amounts led to a mixture
of the saturated and unsaturated amides (Scheme 44g). No reaction occurred with aliphatic
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alcohols such as hexan-1-ol and heptan-1-ol. According to the authors, the reaction occurs
thanks to the dual role—base and radical initiator—of both bases (that differs from an above
hypothesis, see Section 14 [95]) which initiates the formation of radical anion ArCH·O	

from ArCH2OH. A subsequent radical chain pathway involving DMAc affords ArCH=CH
CO(NMe2) and I8. Single-electron transfer from I8 to the unsaturated amide followed by
reaction with ArCH2OH provides the product and regenerates ArCH·O	. Experiments
with PhCD2OH did not allow to propose hydrogen distribution more accurately than the
one shown in Scheme 44g.
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mation of 2-(2-(dimethylamino)-2-oxoethyl)-N-(quinolin-8-yl)benzamides rather than 
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Scheme 44. C-Alkylation of DMAc.

The NiII-catalyzed reaction of N-(quinolin-8-yl)benzamides with DMAc using Ag2SO4
and NaOCOt-Bu (Scheme 45) instead of (t-BuO)2 (Scheme 38(g1)) favored the formation of
2-(2-(dimethylamino)-2-oxoethyl)-N-(quinolin-8-yl)benzamides rather than that of 2-((N-
methylacetamido)methyl)-N-(quinolin-8-yl) [125]. The reactions disclosed in Scheme 38(g1)
and Scheme 45 differ strongly from that previously reported under oxygen and Ni/Cu
catalysis which provided 2-(quinolin-8-yl)isoindoline-1,3-diones via carbonylation using
DM as the carbon source of carbonyl group [2,3,147].

Molecules 2021, 26, x FOR PEER REVIEW 
 41 of 52 
  

 

 
Scheme 45. C(sp2)−H/C(sp3)−H rather than C(sp2)−H/C(sp3)−H cross-coupling. 

Concomitant addition of Grignard reagents and TMSCN to DMF leading to α-amino 
nitriles was promoted with Ti(Oi-Pr)4 catalysis (Scheme 46(a1)) through, according to Lan-
nou/Sorin’s team, the addition of the Grignard reagent, transmetallation followed by re-
action with TMSCN as depicted in Scheme 46(a2) [148]. 

 

N
C Me

Me
H

O

N
C Me

Me
H

R1 CN

a2.
R1MgBr

TMSCN

Ti(Oi-Pr)4
N

C Me

Me
H

R1 OMgBr

N
C Me

Me
H

R1 OTi(Oi-Pr)3

N
C Me

Me
H

R1 O Ti(Oi-Pr)3
SiMe3NC

C N
Me
MeR1

H

CN

 
Scheme 46. C-Alkylative cyanation of DMF. 

18. RC and O Fragments 
Various reactions implicating the insertion of arynes into the N–C or C=O bonds of 

amides have been reported [7]. In the presence of both KF and K2CO3, 2-(trimethylsi-
lyl)phenyl trifluoromethanesulfonate reacts with DMF and either p-toluenesulfonyl chlo-
ride or 2-bromoacetophenone to provide 2-formylphenyl benzenesulfonate (Scheme 47a) 
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followed by base-mediated cyclization and aromatization. 

Scheme 45. C(sp2)−H/C(sp3)−H rather than C(sp2)−H/C(sp3)−H cross-coupling.

Concomitant addition of Grignard reagents and TMSCN to DMF leading to α-amino
nitriles was promoted with Ti(Oi-Pr)4 catalysis (Scheme 46(a1)) through, according to
Lannou/Sorin’s team, the addition of the Grignard reagent, transmetallation followed by
reaction with TMSCN as depicted in Scheme 46(a2) [148].
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18. RC and O Fragments

Various reactions implicating the insertion of arynes into the N–C or C=O bonds of
amides have been reported [7]. In the presence of both KF and K2CO3, 2-(trimethylsilyl)phenyl
trifluoromethanesulfonate reacts with DMF and either p-toluenesulfonyl chloride or 2-
bromoacetophenone to provide 2-formylphenyl benzenesulfonate (Scheme 47a) [149] or
benzofuran-2-yl(phenyl)methanone (Scheme 47b) [150], respectively. Both reactions involve
benzoxetene IBO or ortho-quinone methide IQM obtained via KF-mediated formation of
benzyne, and subsequent insertion into the C=O bond of DMF (Scheme 47c). The addition
of the sulfonate followed by aqueous work-up affords 2-formylphenyl benzenesulfonate.
The bicyclic compound is produced from addition to bromoacetophenone followed by
base-mediated cyclization and aromatization.
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19. HCO and C-O Fragments

Recently, the Qi/Liu team proposed a Sm/CuI-mediated reaction between DMF, aryl
halides, and esters or diesters leading to functionalized diaryl methanols (Scheme 48) [151].
The mechanism is unclear. Formylation of ArX following by some coupling between two
molecules of ArCHO and the ester could be involved [151].
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20. H and NMe2 Fragments

The Leuckart-type reaction between wet DMF and aldehydes or ketones arose at
140–160 ◦C under catalysis with various Lewis [152–154] or Brønsted [93] acids (Scheme 49).
The use of DCON(CD3)2 led to the d7-reductive amination product [93,152]. The acidic
conditions cause the formation of HCOOH and HNMe2 from HCONMe2 and H2O. The
subsequent condensation of the primary amine with the substrate (R1R2C=O) generates
the iminium cation R1R2C=N⊕Me2 which undergoes reduction with HCOOH leading to
R1R2CH(NMe2).
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lecular hydroamination, with preservation of the oxidation state of the catalyst [155]. Lin 
and co-workers assumed that oxygen oxidizes CuI into CuII [156], a reaction probably pro-
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21. CH1,2 andNMe2 Fragments

While Marinelli’s team isolated (1H-indol-2-yl)(phenyl)methanone in 60% yield from
microwave heating (140 ◦C) in DMF of o-phenylethynyl aniline in the presence of 0.2 equiv.
of CuCl (Scheme 50a) [155], Lin and co-workers subsequently obtained (4-(dimethylamino)
quinolin-3-yl)(phenyl)methanone in 71% yield from the reaction at 120 ◦C of the same
substrate, in the same solvent with the same amount of CuCl, but under oxygen atmo-
sphere, the yield increased to 82% with DMSO as the additive (Scheme 50b) [156]. As
Marinelli’s report was not cited by Lin’s team, no explanation of the reactivity difference
was provided. The discrepancy between the two reports is plausibly due to the oxidation
medium of the second paper. According to DFT calculations reported in the first paper,
activation of the triple bond by coordination to a CuI(DMF) complex promotes intermolec-
ular hydroamination, with preservation of the oxidation state of the catalyst [155]. Lin
and co-workers assumed that oxygen oxidizes CuI into CuII [156], a reaction probably
promoted by DMSO [157,158]. This redox system is associated with the thermal decom-
position of DMF, a decisive step of the proposed mechanism, which agrees with labeling
experiments using DCON(CD3)2 and H13CON(CH3)2. Scheme 50c slightly differs from
that proposed by the authors. The pivotal role of the experimental conditions on the
Cu-catalyzed reaction of o-phenylethynyl aniline has to be highlighted. Indeed, Lin’s
team previously reported the production of 2-phenyl-1H-indole-3-carbaldehyde from o-
phenylethynyl aniline under Cu(OCOCF3)2

.xH2O catalysis and O2 atmosphere in DMF
at 120 ◦C (Scheme 3(b1)) [20], that is under experimental conditions very close to those
they subsequently used (Scheme 50b) [156] but the striking reactivity difference was again
neither explained nor pointed out by the authors.

Hajira’s team disclosed the CuII-catalyzed aminomethylation of imidazopyridines
with DMF and t-BuOOH (Scheme 51) [159]. According to the authors, the reaction arises
via addition to the substrate of H2C=N⊕Me2, formed as depicted in Scheme 50c but using
t-BuOOH as the oxidant.
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22. CH andN Fragments

Recently, the Liu and Guo team disclosed the synthesis of symmetrical 3,5-diarylpy
ridines from the KI/K2S2O8-mediated reaction of styrenes with DM, especially DMF
(Scheme 52(a1)) [160]. In contrast to the examples shown in Scheme 5(a2), DM provided
both the nitrogen atom and the methine fragment. The α,β-unsaturated aldehyde depicted
in Scheme 52(a2) has been identified as intermediate. After the formation of the correspond-
ing aldimine, [4 + 2] cycloaddition with styrene is followed by KI-mediated N-Me bond
cleavage and aromatization. Unsymmetrical 3,5-diarylpyridines have been isolated using
1:1 mixtures of two different styrenes (Scheme 52(a3)).
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23. Conclusions

The present review shows that various new procedures have continued to be disclosed
over the last years using DMF and DMAc as sources of building blocks for the synthesis of
an array of organic compounds. For processes involving atom(s) of the Me2NCO moiety of
DM, efficiency and selectivity are usually higher with DMF than with DMAc. In contrast,
the latter is generally the best for carbamoylation reactions. Intensive mechanism studies
were sometimes required to determine the atom origin as exemplified for a rather banal
reaction such as the formylation with HCON(CH3)2, the formyl moiety coming from CO
H, CH and O of H2O, or CH and O of O2. Some uncertainty nevertheless remains for a
few reactions.

Numerous procedures above documented have been used for syntheses with other
amides as sources of building blocks; others could also be efficient. Another remark concern
the alarm to the potential safety hazards associated with using DM in particular chemical
conditions [161,162] and the toxicity of these solvents [163].
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