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ABSTRACT
Forkhead box class O family member proteins (FoxOs) of transcription factors are essential
regulators of cellular homeostasis, including glucose and lipid metabolism, oxidative stress
response and redox signaling, cell cycle progression, and apoptosis. Altered FoxO1 expres-
sion and activity have been associated with glucose intolerance, dyslipidemia and compli-
cations of diabetes. In the liver, they direct carbons to glucose or lipid utilization, thus
providing a unifying mechanism for the two abnormalities of the diabetic liver: excessive
glucose production, and increased lipid synthesis and secretion. In the pancreas, FoxO1 is
necessary to maintain b-cell differentiation, and could be promising targets for b-cell
regeneration. In endothelial cells, FoxOs strongly promote atherosclerosis through sup-
pressing nitric oxide production and enhancing inflammatory responses. In the present
review, we summarize the basic biology and pathophysiological significance of FoxOs in
diabetes.

INTRODUCTION
Forkhead box class O family member proteins (FoxOs) of tran-
scription factors control many cellular processes, including cell
cycle and survival, and metabolism1,2. FoxOs consist of four
members, namely FoxO1 (also known as FKHR), FoxO3a (also
known as FKHRL1), FoxO4 (also known as AFX1) and FoxO6.
In addition to the nature and multitude of FoxOs regulatory
mechanisms, as well as the variety of gene expression programs
regulated by FoxOs, accumulated evidence has led to the inte-
grating hypothesis that FoxOs function to maintain cellular
homeostasis in response to internal and external environmental
changes. Analyses of FoxOs ablation in animals have provided
insight into their physiological significance. Global ablation of
FoxO1 is lethal; it results in embryonic cell death because of
impaired vascular development3,4. FoxO3a-null mice showed
age-dependent infertility, and had abnormal ovarian follicular
development5 and a decrease in the neural stem cell pool6. Glo-
bal ablation of FoxO4 enhances colon inflammation in
response to inflammatory stimuli7. Global ablation of FoxO6
has no effects on learning function, but results in impaired

memory consolidation8. Therefore, the main role of FoxOs
appears to be homeostasis regulation, especially in response to
stress.
Here, we focused on recent developments in the biology of

FoxOs, including regulatory systems for the activity of FoxOs,
and processes that are regulated by these transcription factors.
We further described the regulation of FoxOs through post-
translational modifications, including the mechanisms by which
FoxOs regulate transcription of target genes. Finally, we
described the pathophysiological significance of FoxOs,
especially in glucose and lipid metabolism, and diabetic
complications.

REGULATION OF THE FOXOS ACTIVITY
The activity of FoxOs is mainly regulated by a complex array
of post-translational modifications, which can be activating or
inactivating1. Post-translational modifications change nuclear
import and export of FoxOs, modify deoxyribonucleic acid
(DNA)-binding affinity, and alter the pattern of transcriptional
activity for target genes. FoxOs share significant sequence
homology and possess four distinct functional motifs, namely,
forkhead, nuclear localization, nuclear export and transactiva-
tion domains (Figure 1). These domains are highly conserved,Received 15 February 2017; accepted 28 February 2017
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and FoxO1 and FoxO3a are larger (>650 amino acids) than
FoxO4 and FoxO6, which are nearly 500 amino acids in length.
FoxOs have nuclear localization and export sequences within
the C-terminal DNA-binding domain. Two response elements
are recognized by FoxOs: Daf-16 family member-binding ele-
ment (50-GTAAA[T/C]AA)9,10 and insulin-responsive element
(50-[C/A][A/C]AAA[C/T]AA)11,12. FoxOs are reported to have
higher affinity for the Daf-16 family member-binding ele-
ment13. Kinases and interactions with other proteins modulate
the effectiveness of these nuclear localization and export
sequences, making the basis of FoxOs shuttling between in and
out of the nuclear compartment. The cytoplasmic sequestration
of FoxOs is mediated by a combination of binding partners
and changes in the properties of FoxOs. The chaperone protein
14-3-3 permits the active export by binding to FoxOs in the
nucleus14–17. It is also able to inhibit re-entry into the nucleus
by blocking the nuclear localization signal.

Phosphorylation
FoxOs are phosphorylated by various kinds of protein kinases,
thereby modifying different sites on FoxOs, and altering their
subcellular localization, DNA binding affinity and transcrip-
tional activity1,2. Major factors for the regulation of FoxOs’
activity as transcriptional factors are insulin and insulin-like
growth factor-1 (IGF-1), through the phosphoinositide-3 kinase
(PI3K)/Akt signaling pathway. Both insulin and IGF-1 induce
the PI3K/Akt-dependent phosphorylation of FoxOs, which pro-
motes its interaction with 14-3-3, leading to its nuclear exclu-
sion and eventual ubiquitylation-dependent proteasomal
degradation18. Thus, it is well established that insulin, IGF-1
and PI3K/Akt play key roles in repressing the transcriptional
activity of FoxOs. By contrast, protein kinases including c-Jun
N-terminal kinases, p38, adenosine monophosphate-activated
protein kinase, cyclin-dependent kinase 1 and macrophage
stimulating 1 facilitate the nuclear localization of FoxOs, and
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Figure 1 | Structure and regulation of forkhead box class O family member proteins (FoxOs). (a) Schematic diagram showing the different domains
that characterize human FoxOs. FoxOs share a highly conserved forkhead deoxyribonucleic acid-binding domain (FHD), which binds to conserved
sequences in the target genes. Acetylation and phosphorylation sites are depicted only in FoxO1 as a representative. (b) A model for FoxO1
regulation through insulin-induced and phosphorylation-dependent degradation. A, acetylation site; aa, amino acids; NES, nuclear export sequence;
NLS, nuclear localization sequence; P, phosphorylation site; TAD, transactivation domain.
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increase their transcriptional activity. Blocking FoxOs binding
to 14-3-3 also promotes its nuclear localization19. It has been
reported that the phosphorylation of FoxOs by Akt also dis-
rupts its interactions with DNA. Phosphorylation of FoxOs at
the second of the three Akt sites (Ser256 for FoxO1) introduces
a negative charge in the positively charged DNA-binding
domain, thereby inhibiting DNA binding.

Acetylation
Similar to phosphorylation-dependent regulation, acetylation
has been shown to both increase and decrease the transcrip-
tional activity of FoxOs, and alter their biological functions.
DNA binding activity of FoxOs is reduced by acetylation and
enhanced by deacetylation20,21. Histone acetyltransferase and
histone deacetylases control the effect of acetylation on FoxOs.
Acetylation of FoxO1 at K222, K245, K248, K262, K265, K274,
and K294 was reported to regulate its DNA binding affinity
and sensitivity to Akt phosphorylation22–24. FoxO3a is also
acetylated at K242, K259, K271, K290 and K569 by stress stim-
uli25. Interestingly, increased acetylation of FoxO3a results in
the expression of proapoptotic genes (Bim, tumor necrosis fac-
tor-related apoptosis-inducing ligand, and FasL), whereas the
more deacetylated forms are linked to the expression of anti-
oxidant and cytoprotective genes. The binding of FoxOs to cyc-
lic adenosine monophosphate response element-binding pro-
tein-binding protein (CBP) and its paralog p300 is essential for
the transactivation of target genes. However, acetylation itself
attenuates the transcriptional activity of FoxOs20. In FoxO1,
cyclic adenosine monophosphate response element-binding pro-
tein-induced acetylation at two basic residues, K242 and K245,
located in the C-terminal region of the DNA-binding domain
reduces its DNA-binding affinity and transcriptional activity24.

Other regulation
Peroxisome proliferator-activated receptor gamma (PPARc)
coactivator 1-alpha is known as an example of close linkages
between FoxOs post-transcriptional modifications and tran-
scriptional cofactor interactions26. PPARc coactivator 1-alpha
promotes FoxOs GlcNAcylation27. GlcNAcylation in turn
directs FoxOs toward gluconeogenic genes through interactions
with additional cofactors or target gene promoter sequences.
The interaction can be disrupted by insulin/IGF-1 signaling. In
addition, the amount of active FoxOs is constantly replenished
by deacetylation enzymes, such as the sirtuins (SIRTs)28. The
presence of multiple acetylation sites (seven lysines in FoxO1)
provides the potential for considerable promoter specificity
through this mechanism. This system results in the dynamic
activation of FoxOs, which is important for quick changes in
transcriptional programs.

PATHOPHYSIOLOGICAL ROLES OF FOXOS IN DIABETES
Liver
The roles of FoxOs have been extensively examined in insulin
target tissues. The liver adapts to feeding through several

insulin-mediated events including increasing glucose uptake
into hepatocytes, suppressing gluconeogenesis and glycogenoly-
sis, and upregulating glycogen synthesis. FoxO1 plays a major
role in regulating the insulin response, and the liver is one of
its critical sites of action. In fasting, the downregulation of
insulin action causes gluconeogenesis through a gene induc-
tion of glucose-6-phosphatase and phosphoenolpyruvate car-
boxykinase. This response is largely dependent on the
interaction between Akt and FoxO1. Constitutive expression
of FoxO1 in liver rises fasting blood glucose29. Conversely,
liver-specific ablation of FoxO1 develops fasting hypo-
glycemia30,31. The mechanism behind these phenotypes can be
straightforwardly explained; fasting activates FoxO1, in which
it is dephosphorylated at the Akt sites and localized to the
nucleus. It results in the transcriptional induction of two glu-
coneogenic enzymes, glucose-6-phosphatase catalytic subunit
and phosphoenolpyruvate carboxykinase32, leading to increased
hepatic glucose production. In the fed state, insulin signaling
activates insulin receptor, PI3K, and then subsequently acti-
vates Akt. Akt then phosphorylates FoxO1, leading to its
nuclear exclusion and inactivation with subsequent suppres-
sion of gluconeogenesis.
The activity of FoxO1 as a regulator of blood glucose is also

modulated by processes other than Akt phosphorylation; the
balance between acetylation and deacetylation is the second
order of regulation. Deacetylation of FoxO1 by Sirt1 under cel-
lular stress conditions, including that induced by oxygen free
radicals, activates FoxO1, overcoming the nuclear exclusion
effect of Akt, and promoting the nuclear translocation/retention
and expression of FoxO1 target genes involved in gluconeogen-
esis33. Other deacetylases, class IIa histone deacetylases, have
been identified as positive regulators of hepatic FoxO1 in
response to glucagon signaling during fasting. They are phos-
phorylated by adenosine monophosphate-activated protein
kinase, and they translocate to the nucleus, at which they
deacetylate and activate FoxOs, inducing the transcription of
gluconeogenic genes34.
Other mechanisms have also been reported to play a role in

FoxO1 regulation and hepatic glucose metabolism. X-
Box binding protein 1, a transcription factor involved in the
unfolded protein response that induces the expression of genes
involved in endoplasmic reticulum membrane folding, has been
shown to increase insulin sensitivity. This activity is indepen-
dent of its transcriptional effects, and it can be explained by its
direct binding to FoxO1 as a chaperone to promote toward
proteosomal degradation35. It has also been reported that O-
linked N-acetylglucosamine modification plays a specific role in
regulating the gluconeogenic function of FoxO136,37. This glyco-
sylation event increases the transcriptional activity of FoxOs
independent of nuclear translocation, and results in the upregu-
lation of gluconeogenic genes including glucose-6-phosphatase
and phosphoenolpyruvate carboxykinase. Paradoxically,
hyperglycemia also induces O-linked N-acetylglucosamine mod-
ification. It results from PPARc coactivator 1-alpha binding to

728 J Diabetes Investig Vol. 8 No. 6 November 2017 ª 2017 The Authors. Journal of Diabetes Investigation published by AASD and John Wiley & Sons Australia, Ltd

R E V I EW A R T I C L E

Tsuchiya and Ogawa http://onlinelibrary.wiley.com/journal/jdi



O-linked N-acetylglucosamine transferase, and targeting it
toward nuclear FoxO127.
The second area of liver metabolic function regulated by

FoxOs is lipid metabolism. FoxO1 has an important role in the
insulin-dependent regulation of hepatic very-low-density
lipoprotein (VLDL) production and persistence of VLDL in the
circulation. It is mainly mediated by the transcriptional upregu-
lation of two important proteins, apolipoprotein C-III and
microsomal triglyceride transfer protein38. They play a major
role in the regulation of circulating triglycerides during fasting.
As discussed previously, in the absence of insulin, the activity
of Akt is suppressed, and FoxO1 is transcriptionally active. It
causes the upregulation of microsomal triglyceride transfer pro-
tein, the rate-limiting enzyme in hepatic VLDL production,
thereby increasing VLDL secretion. In addition, FoxO1 activa-
tion also results in increased transcriptional activity and the
hepatic secretion of apolipoprotein C-III. In the circulation, this
apolipoprotein inhibits the activity of lipoprotein lipase, which
is responsible for the hydrolysis and uptake of the triglyceride
component of VLDL and chylomicrons, thus prolonging the
persistence of VLDL39. In contrast, feeding inactivated FoxO1,
shutting down both these mechanisms and inhibiting post-
prandial hyperglycemia. Under the condition of insulin resis-
tance, this suppression of the activity of FoxO1 does not occur,
resulting in both hyperglycemia and hypertriglyceridemia.
Studies using various constitutive active mutations of FoxO1

protein suggested both positive and negative effects of FoxOs
on lipid production and accumulation. One mouse model car-
rying constitutively active FoxO1 using a single Ser253-mutated
phosphorylation site led to increased hepatic triglyceride levels,
but lower levels in the circulation40. Another mouse model of
the expression of constitutively active FoxO1 using alanine sub-
stitution at all three Akt phosphorylation sites was associated
with normal hepatic triglyceride levels32, but increased the
activity of FoxO1 and led to the suppression of a number of
proteins required for lipid synthesis, including sterol regulatory
element binding protein-1c, acetyl-CoA carboxylase-a and fatty
acid synthase32. These inconsistent data are difficult to explain
unambiguously; however, the mutated forms of FoxOs might
behave in unexpected ways.
Perhaps the best systems in which to study the net effects of

FoxOs on hepatic and serum lipid homeostasis are liver-specific
multiple FoxO knockouts. It has been reported that ablation of
FoxO1 caused a decrease in plasma glucose content without a
significant effect on lipid metabolism, but simultaneous knock-
out of FoxO1 and FoxO3a resulted in hepatic steatosis, and
increased hepatic lipid secretion and serum triglyceride levels41.
Although the precise mechanism of these effects could be unde-
termined, these authors showed a negative transcriptional effect
of FoxO3a, particularly in the FoxO1 and FoxO3a combination,
on two important genes of lipid synthesis, namely fatty
acid synthase and 5-hydroxy-3-methylglutaryl-coenzyme A
reductase.

b-Cells
b-Cell function is regulated by FoxO1 through a dual mode of
action. FoxO1 inhibits b-cell proliferation during hyper-
glycemia, insulin resistance or differentiation in the developing
fetal pancreas. In contrast, FoxO1 protects b-cells against oxida-
tive stress-induced damage by glucose or lipid loading. Among
the many regulators of b-cell development and mass, pancreatic
and duodenal homeobox factor-1 (Pdx1) expresses in all pan-
creatic cells during embryonic development, and is restricted to
b-cells in the adult pancreas42. FoxO1 negatively regulates the
expression of Pdx1 by competing with the transcription factor
FoxA2 for binding to the Pdx1 promoter43. This effect, along
with downregulation of neurogenin 3 and Nkx61, which are
required for the development of the four endocrine cell lineages
of the pancreas and b-cell development, respectively, mediates
the inhibitory effect of FoxO1 on b-cell differentiation44. At the
same time, the nuclear translocation of FoxO1 accompanies
nuclear exclusion of Pdx1, and it is considered as an alternative
mechanism to inhibit b-cell proliferation43. Interestingly, FoxO1
ablation at different time-points during b-cell development
results in vastly different phenotypes, suggesting that FoxO1
appears to have different physiological functions at different
stages of pancreas development45. Loss-of-function animal
models of FoxO1 clearly showed that it suppresses b-cell prolif-
eration and function46,47. Removal of one FoxO1 allele in mice
rescues the defects in b-cell development caused by b-cell-speci-
fic inactivation of Pdx148. Furthermore, FoxO1 haploinsuffi-
ciency partially restores the decrease of b-cell proliferation in
insulin receptor substrate-2-knockout mice43, and b-cell-specific
Pdk1-knocuout mice48. The role of FoxO1 as a negative regula-
tor of insulin signaling in b-cells in vivo is supported by the
fact that selective overexpression of Akt in b-cells increases b-
cell survival and size49. A report has shown that overexpression
of FoxO1 promotes the proliferation of pancreatic cells through
the induction of the expression of cyclin D1, when they are
cultured under low-nutrition conditions50. In terms of failure of
b-cell function observed in type 2 diabetes, although multiple
factors are likely to underlie the metabolic abnormalities, a
widely held theory is that b-cell chronically exposed to hyper-
glycemia causes deterioration of their function, a phenomenon
known as ‘glucose toxicity’51. Chronic oxidative stress has been
proposed to induce glucose toxicity, under which intracellular
glucose concentrations exceed the glycolytic capacity of b-cells.
Under these conditions, glucose is shunted to the enolization
pathway, resulting in the generation of superoxide anions and
induction of b-cells’ apoptosis52. In contrast to its inhibitory
effects on b-cell proliferation, FoxO1 prevents b-cell dysfunc-
tion from oxidative stress-induced damage47. Oxidative stresses
overcome the effect of insulin/PI3K/Akt signaling on FoxO1
nuclear exclusion by two potential mechanisms through c-Jun
N-terminal kinases activation. C-Jun N-terminal kinases activa-
tion can either directly inhibit insulin-induced Akt activation or
promote the nuclear translocation of FoxO1 in b-cells32.
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Nuclear FoxO1 is targeted to promyelotic leukemia protein-
containing subdomains, at which it is deacetylated by Sirt1,
resulting in increased expression of the Ins2 gene transcription
factors, NeuroD and MafA53. In conclusion, under physiological
conditions, FoxO1 regulates b-cell formation and function
through a dual mode of action that requires balanced activity
of FoxO1. Activated FoxO1 suppresses b-cell proliferation, but
promotes survival by increasing stress resistance. Thus, FoxO1
hyperactivation or hypoactivation could result in b-cell failure.
Recent reports have shed light on clinical potential in the

field of regenerative medicine; manipulation of FoxOs could
convert non-b-cells to insulin producing cells. Genetic inactiva-
tion of FoxO1 in intestinal endocrine cells results in the expan-
sion of the enteroendocrine neurogenin-3-positive progenitor
cell pool, and the appearance of functional insulin-producing
cells that express all markers of mature pancreatic b-cells, and
secrete insulin in response to physiological and pharmacological
cues. The insulin-producing cells generated by FoxO1 inactiva-
tion in intestinal endocrine cells are able to alleviate diabetes
caused by the b-cell toxin streptozotocin54. Furthermore, FoxO1
inhibition in gut organoid generated from inducible pluripotent
stem cells using a dominant-negative mutant or lentivirus-
encoded small hairpin ribonucleic acid promotes generation of
insulin-positive cells that express all markers of mature pancre-
atic b-cells with releasing C-peptide55. Thus, gut-targeted
FoxO1 inhibition might be a promising strategy to treat human
diabetes.

Muscle
FoxO1 promotes the proliferation of myoblasts, the fusion of
mononucleated monocytes into myotubes in myogenic lineage
specification, and the breakdown of muscle fibers. FoxO1
remains inactive during myoblast proliferation, perhaps through
a PI3K/Akt-independent mechanism of nuclear exclusion; Rho-
associated protein kinase ROCK, a downstream effector of the
small GTPase Rho, directly phosphorylates FoxO1 during
myoblast proliferation, at the same time it suppresses myoblast
differentiation56. In addition to the regulation of myocyte prolif-
eration, mice overexpressing FoxO1 show downregulation of
slow-twitch muscle genes, suggesting that FoxO1 directs myo-
genic lineage specification57. Consistently, muscle-specific
FoxO1 ablation switches fiber type to MyoD-containing
fast-twitch myofibers, accompanied with decrease of myogenin-
containing slow-twitch myofibers58. Additionally, FoxO1
suppresses MyoD-dependent myogenesis in cultured C2C12
myoblasts. These effects are mediated by a functional and phys-
ical interaction of FoxO1 with Notch1 independent of FoxO1’s
transcriptional function, which leads to co-repressor clearance
from the Notch effector Csl, resulting in the activation of Notch
target genes. It involves a direct interaction with Csl, and subse-
quent stabilization of the FoxO1/Notch1 complex. In vivo stud-
ies of FoxO1 inactivation or overexpression showed that it
greatly affects skeletal muscle mass. Mice overexpressing FoxO1
lose glycemic control as a result of a decrease in skeletal muscle

mass57. In addition to suppression of the myogenic program,
this effect is associated with systemic muscle atrophy, a condi-
tion that results from the breakdown of muscle fibers. Indeed,
transgenic overexpression of FoxO1 in skeletal muscle results in
severe muscular atrophy associated with an upregulation of
MAFbx/atrogin-1 and muscle ring-finger protein 1 expres-
sion59. Conversely, muscle-specific deletion of FoxO members
protects from muscle loss as a result of the role of FoxO in the
induction of autophagy–lysosome and ubiquitin–proteasome
systems60. In the setting of low-nutrient signaling, the report
has shown that FoxOs are required for Akt activity, but not for
mTOR signaling. FoxOs control several stress-response path-
ways, such as the unfolded protein response, ROS detoxifica-
tion, DNA repair and translation, suggesting FoxOs in
coordinating a variety of stress-response genes during catabolic
conditions. Consistently, muscle-specific deletion of FoxO1,
FoxO3a and FoxO4 completely rescued the reduction of muscle
mass in muscle-specific insulin and IGF-1 receptors knockout
mice61.
FoxO1 also affects glucose and lipid metabolism in skeletal

muscle through the expression of three enzymes that switch
from the oxidation of carbohydrates during fasting as a major
energy source to fatty acids. Under energy deprivation, FoxO1
promotes the expression of pyruvate dehydrogenase kinase-4,
the enzyme that represses glucose oxidation by blocking the
activity of pyruvate dehydrogenase62. At the same time, FoxO1
overexpression increases the expression of lipoprotein lipase in
C2C12 myoblasts, and increases the plasma levels of the fatty
acid translocase CD36, which facilitates fatty acid uptake into
skeletal muscle63. In summary, the expression or activity of
FoxO1 is increased during fasting to maintain energy home-
ostasis through the utilization of lipids rather than carbohy-
drates as the energy source. In starvation, FoxO1 plays a role
to supply energy through the breakdown of muscle protein,
which consequently causes muscle loss and atrophy, and under-
lies glucose intolerance in insulin resistance.

Adipocytes
Adipose tissue has a pivotal role in the regulation of energy
homeostasis as energy reservoirs that store triglycerides and
mobilize them by oxidization during energy deprivation64. In
adipocytes, FoxO1 suppresses adipogenesis; expression of a con-
stitutively active form of FoxO1 prevents the differentiation of
a preadipocytic cell line65. FoxO1 regulates the expression and
activity of two master adipogenic transcription factors, PPARc
and C/EBPa. It suppresses expression of PPARc through direct
binding to its promoter, and activity of PPARc by competi-
tively inhibiting the formation of the PPARc/RXR functional
complex66. On the contrary, FoxO1 physically interacts with C/
EBPa to promote expression of adiponectin65. A dominant-
negative form of FoxO1, with a truncated C-terminal transacti-
vation domain, promotes adipogenesis in vitro66, and restores
the adipocyte differentiation of embryonic fibroblasts from
insulin receptor-knockout mice. FoxO1 haploinsufficiency also
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restores adipocyte counts and size in mice fed a high-fat diet67.
Adipose tissue-specific FoxO1 transgenic mice that express
dominant-negative FoxO1 in white adipose tissue show glucose
tolerance and insulin sensitivity, and increases in energy expen-
diture under normal as well as high-fat diet-feeding68. FoxO1
inhibition in brown adipose tissue increases oxygen consump-
tion and the expression of genes promoting mitochondrial
metabolism, PPARc coactivator 1 and uncoupling protein 1.
The anti-adipogenic actions of FoxO1 appear to be under the
control of insulin signaling, because cells lacking the insulin
receptor, insulin receptor substrate or Akt show increased
FoxO1 activation and impaired differentiation69–71.
Acetylation-dependent alteration of FoxO1 also affects the

biology of adipocytes. Sirt1- and Sirt2-mediated FoxO1 deacety-
lation inhibits adipocyte differentiation. They simultaneously
prevent FoxO1 nuclear exclusion, showing that FoxO1 might
also be involved in these suppressive effects in adipocytes72.
FoxO1 suppresses adipogenesis at the early stages of adipocyte
differentiation, and at the end-stage of clonal expansion and
terminal differentiation by inducing cell cycle arrest through
upregulation of the cell cycle inhibitor, p2167. These observa-
tions suggest that FoxO1 has a dual function in white and
brown adipose tissue. It regulates energy and nutrient home-
ostasis through energy storage in white adipose tissue, whereas
it regulates energy expenditure in brown adipose tissue.

Endothelial cells
In endothelial cells, it has been found that FoxO1 inhibits and
increases transactivity of endothelial nitric oxide (NO) synthase
(NOS)73 and inducible NOS74, respectively, supporting the
expected proatherogenic role of FoxO under insulin-resistant
states in type 2 diabetes. Indeed, endothelial cells from endothe-
lium-specific FoxO-1/3a/4-deficient mice show marked
increases of endothelial NOS (eNOS)-dependent NO produc-
tion and inhibition of nuclear factor kappa-B activation. In a
model of advanced atherosclerosis and metabolic dysfunction
(endothelium-specific FoxO-1/3a/4-deficient mice with low-den-
sity lipoprotein-receptor-null background), the animals showed
strong protection against the development of vascular dysfunc-
tion and atherosclerosis induced by a Western diet75. The mice
showed increased arterial relaxation in response to acetyl-
choline, indicative of increased bioavailability of NO. Consistent
with these findings, aortae from these mice showed reduced
endothelial inflammation, oxidative stress and atherosclerosis.
In this model of metabolic and vascular dysfunction, no effect
on metabolic parameters or glucose homeostasis was observed.
These data suggest a relatively straightforward mechanism
whereby increasing insulin sensitivity in the endothelium has a
favorable effect on NO bioavailability and atherosclerosis.
Intriguingly, under standard diet feeding, the endothelium-

specific FoxO-1/3a/4-deficient mice were glucose-intolerant
accompanied with hepatic insulin resistance76. In liver sinu-
soidal endothelial cells of the mice, as expected, eNOS-derived
NO levels increased. Surprisingly, the excess of NO blunted

hepatic insulin sensitivity through tyrosine nitration of the insu-
lin receptor in liver. The report suggests that the eNOS-derived
NO has been shown to have a pathophysiological role in obe-
sity-related insulin resistance at an early stage76. Complemen-
tary studies of hyperinsulinemia produced similar results, and
pharmacological eNOS inhibition in a model of early insulin
resistance partially restored glucose intolerance. It will be inter-
esting to confirm whether, despite insulin resistance and glu-
cose intolerance, FoxOs deletion in the endothelium has a
favorable effect on endothelial cell function in atherosclerosis-
prone vessels.

Macrophages
Myeloid ablation of all three FoxO isoforms increased the pro-
liferation rate of granulocyte-macrophage progenitors in bone
marrow, resulting in elevated peripheral numbers of monocytes
and granulocytes associated with decreased gene expression
related to cell cycle inhibitors, such as cyclin-dependent kinase
inhibitors, to enhance atherosclerotic lesion formation in mice
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Figure 2 | Roles of forkhead box class O family member proteins in
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element-binding protein 1c.
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with low-density lipoprotein-receptor-null background77. The
FoxO-1/3a/4-deficient macrophages showed reduced sensitivity
to cholesterol-induced apoptosis and increased levels of markers
of oxidative stress. Furthermore, macrophages from the mye-
loid-specific FoxO-1/3a/4-deficient mice showed impaired insu-
lin signaling, a hallmark of the insulin-resistant state. Similarly,
reduced hepatic insulin signaling was associated with inducible
NOS-dependent NO production accompanied with increases of
protein cysteine nitrosylation and tyrosine nitration in the liver.
Inhibition of reactive oxygen species in these mice with the
anti-oxidant N-acetyl-L-cysteine reversed the increase in periph-
eral white blood cell and monocytes counts, atherosclerotic
lesion formation, and the insulin-resistant phenotype. These
findings are not always consistent with the two other reports
showing that FoxO1 increases inflammation in macrophages by
enhancing the expression of C-C chemokine receptor type 278,
interleukin-1b79 or components of toll-like receptor-4 signal-
ing80. However, these findings provide a significant insight in
the pathophysiological significance of myeloid FoxOs in the
context of atherosclerotic lesion formation.

CONCLUSIONS
The multiple actions of FoxOs in glucose and lipid-regulating
organs suggest FoxO as master regulators of energy metabo-
lism. In addition, accumulating evidence on other organ cells,
such as endothelial cells, macrophages and gut epithelial cells,
strongly suggests crucial roles of FoxOs to maintain whole-body
homeostasis and diabetes-related diseases (Figure 2). In light of
the different cellular functions, regulation of FoxOs by antago-
nists in some disease states or agonists in normal and disease
conditions might be useful in treating or preventing a wide
variety of disorders. A further understanding of their function
will provide essential insight into both basic and clinical
processes.
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