
ORIGINAL RESEARCH
published: 14 April 2015

doi: 10.3389/fncom.2015.00040

Frontiers in Computational Neuroscience | www.frontiersin.org 1 April 2015 | Volume 9 | Article 40

Edited by:

Nicolas Brunel,

University of Chicago, USA

Reviewed by:

Paolo Del Giudice,

Italian National Institute of Health, Italy

Gianluigi Mongillo,

Paris Descartes University, France

*Correspondence:

Netta Haroush,

Network Biology Research

Laboratories, Faculty of Electrical

Engineering, Technion—Israel Institute

of Technology, Fishbach Bldg.,

Room 425, Haifa 32000, Israel

neta.hs@gmail.com

Received: 06 January 2015

Accepted: 16 March 2015

Published: 14 April 2015

Citation:

Haroush N and Marom S (2015) Slow

dynamics in features of synchronized

neural network responses.

Front. Comput. Neurosci. 9:40.

doi: 10.3389/fncom.2015.00040

Slow dynamics in features of
synchronized neural network
responses
Netta Haroush 1, 2* and Shimon Marom 1, 2

1Department of Physiology, Faculty of Medicine, Technion—Israel Institute of Technology, Haifa, Israel, 2Network Biology

Research Laboratories, Faculty of Electrical Engineering, Technion—Israel Institute of Technology, Haifa, Israel

In this report trial-to-trial variations in the synchronized responses of neural networks

are explored over time scales of minutes, in ex-vivo large scale cortical networks. We

show that sub-second measures of the individual synchronous response, namely—its

latency and decay duration, are related to minutes-scale network response dynamics.

Network responsiveness is reflected as residency in, or shifting amongst, areas of the

latency-decay plane. The different sensitivities of latency and decay durations to synaptic

blockers imply that these two measures reflect aspects of inhibitory and excitatory

activities. Taken together, the data suggest that trial-to-trial variations in the synchronized

responses of neural networks might be related to effective excitation-inhibition ratio being

a dynamic variable over time scales of minutes.

Keywords: response variability, neural networks, excitation-inhibition balance, excitation-inhibition interaction,

electrical stimulation, bicuculline, APV

1. Introduction

Evoked transient synchronous activity is acknowledged as significant in both normal and patho-
logical neural conditions (Uhlhaas et al., 2009). In mammalian brains, as well as in their ex-vivo
reduced experimental preparations (slices, cultured networks), an evoked transient synchronous
activity has a temporally-stretched spike like shape in the population firing rate trace, a characteris-
tic time scale (ca. 100ms), the flavor of a threshold-governed event and a refractory period that lasts
several seconds (Slovin et al., 2002; Derdikman et al., 2003; Eytan and Marom, 2006; Gullo et al.,
2010; Weihberger et al., 2013). With these properties in mind we adhere to a previously offered ter-
minology and use the nameNetwork Spike (NS) to designate evoked transient synchronous activity
(Eytan and Marom, 2006; Shew et al., 2009). Trial-to-trial variations in the occurrence and the fine
structure of stimulus evoked NSs were reported in both anesthetized and behaving animals as well
as in reduced ex-vivo preparations (Vogels et al., 1989; Snowden et al., 1992; Arieli et al., 1996; Sha-
haf et al., 2008; Weihberger et al., 2013). The response variations reflect a multitude of factors that
determine the network excitability status at the time of stimulus arrival. These include neuronal
and synaptic noise, refractoriness of neuronal and synaptic activities and the context of ongoing
activity within which a stimulus is applied (Arieli et al., 1996; Fox et al., 2006; Faisal et al., 2008;
Weihberger et al., 2013).

Here we took advantage of a relatively controlled experimental approach to large-scale cortical
networks developing ex-vivo, in order to expose the nature of response variations under repeated
input over an extended range of time scales (from milliseconds to many minutes). We provide
indications for the existence of a hierarchy of timescales in the structure of trial-to-trial response
variations, ranging from sub-seconds to many minutes. We then show that response dynamics
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over minutes are reducible to the interplay of two instantaneous
(i.e., single NS, sub-second scale) observables: (1) the latency
from stimulus to the peak of the NS firing rate envelop, and (2)
the decay duration from that peak to baseline activity. We show
that these two instantaneous measures of the network excitabil-
ity state—latency and decay duration—are differentially sensitive
to specific pharmacological blockers of inhibitory and excita-
tory synaptic transmissions, suggesting that long-term network
response variations reflect a dynamic excitation-inhibition ratio.

2. Materials and Methods

2.1. Cell Preparation
Cortical neurons were obtained from newborn rats (Sprague-
Dawley) within 24 h after birth using mechanical and enzy-
matic procedures described in earlier studies (Marom and Sha-
haf, 2002). The neurons were isolated and plated directly onto
substrate-integrated multi electrode arrays. They were allowed to
develop into functionally and structurally mature networks over
a period of 2 weeks and were used in experiments within the
period of 2–6 weeks post plating. The number of plated neurons
was in the order of 450,000, covering an area of about 380 mm2

with heat-inactivated horse serum (5%), glutamine (0.5mM),
glucose (20mM), and gentamycin (10µg/ml), and maintained
in an atmosphere of 37◦C, 5% CO2 and 95% air in an incu-
bator as well as during the recording phases. An array of 60
Ti/Au extracellular electrodes, 30µm in diameter, spaced 500µm
from each other (MultiChannelSystems, Reutlingen, Germany)
was used. The insulation layer (silicon nitride) is pretreated
with polyethyleneimine (Sigma, 0.01% in 0.1 M Borate buffer
solution).

2.2. Electrophysiology
A commercial amplifier (MEA-1060-inv-BC, MCS, Reutlingen,
Germany) with frequency limits of 150–3,000 Hz and a gain
of × 1024 was used for obtaining data. Data was digitized using
an acquisition board (PD2-MF-64-3M/12H, UEI, Walpole, MA,
USA). Each channel was sampled at a frequency of 16 kHz, and
detects electrical activity that might be originated from several
sources (typically 2–3 neurons) as the recording electrodes were
surrounded by several cell bodies. We have used a Simulink-
based software for on-line control of data collection (see Zrenner
et al., 2010 for more details). Voltage stimulation was applied
in the form of a mono-phasic square pulse 200µs 800–950 mV
through extracellular electrodes using a dedicated stimulus gen-
erator (MCS, Reutlingen, Germany). Action potentials times-
tamps were detected on-line by threshold crossing of negative
voltage. Detection of NSs was performed off-line using a previ-
ously described algorithm (Eytan and Marom, 2006) based on
threshold crossing of the network firing rate (binned to 3ms).

2.3. Pharmacology
Inhibitory synaptic transmission was blocked with Bicuculline-
Methiodide (Sigma-Aldrich) that was incrementally added to the
bathing solution (final concentrations used: 0.5, 1, 1.5, 2, 2.5,
3, 4, 5, and 7µM). Excitatory synaptic blocker (APV; amino-5-
phosphonovaleric, Sigma-Aldrich) was added to networks that

are already under a Bicuculine blockade. Specifically, APV was
added to networks that respond to stimuli in (or close to) a 1:1
manner, and where further application of Bicuculline did not
change their response probability (5–12µM Bicuculline). Final
APV concentrations used were 50, 150, and 300µM. In all the
experiments with pharmacological manipulations the stimula-
tion rate was chosen to be 1/5 s−1 or slower, thus maintaining
high response probabilities; once tuned, the stimulation rate was
kept fixed for each network throughout the experiment.

2.4. Data Analysis
2.4.1. Firing Rate Histograms and Responsiveness

Once a NS was detected within 1 s following a stimulus, action
potentials recorded in all the electrodes within 1500 ms following
the stimulus were extracted. Post-stimulus time histograms were
constructed using a 1ms time bin, and smoothed with a 5ms
moving average. The latency measure was defined as the time
between stimulus onset and the first maximum of the smoothed
firing rate histogram. To compute the decay duration, the firing
rate histogram was further smoothed by a wider window of 30–
100ms, thus avoiding impacts of oscillations within that phase on
the measure. Decay duration was defined as the time between the
histogram first maximum and the first drop below 0.15 spikes/ms
along the falling phase of the NS.

2.4.2. Fano Factor

Network activity was represented as a point process (NS trains,
composed of absolute detection times, i.e., not referenced to stim-
ulation times). The variance of the network activity under repeat-
ing stimulation over extended time periods (24 h) was estimated
by calculating its Fano factor (Scharf et al., 1995; Lowen and
Teich, 1996). Count sequences Z(T(n)) were calculated using log-
arithmically spaced bin sizes T(n). For each count sequence the
Fano factor, FF(T), defined as the variance of Z(T) divided by the
mean of Z(T), was plotted as a function of the bin size T. The
same analysis was applied to a surrogate data set generated by
randomizing the inter-NS-intervals. The final rising section of the
FF curves was fitted to a power law (αTβ ).

2.4.3. Autocorrelation

The time series of latency and decay duration were used
to calculate the autocorrelation of these processes, as if they
were equally spaced in time, resulting in a warped time axis.
Therefore, the autocorrelation was computed for “serial index
lags” (see Figure 5A), instead of actual time lags, according to
∑n−l

i= 1
(xi−µ̂)(xl+i−µ̂)
∑n

i= 1(xi−µ̂)2
Where the lag l is the difference between the

serial indexes, in the stream of successful responses.

3. Results

The basic experimental procedure involved recording of activ-
ity while repetitively stimulating the network from a single site
with constant amplitude at a constant rate. The data reported
here originate from experiments (n = 27 networks) in which
the stimulation amplitude was between 800 and 950 millivolts,
delivered at a constant rate in the range of 1/3–1/12 s−1 (in
different preparations and/or experimental sessions). The data
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were reduced to a series of network spike time-stamps using a
threshold-based criterion for identification of synchronous activ-
ity (evoked as well as spontaneously occurring; see Section 2).

The wide range of time scales present in neural population
activity under stimulation is shown in Figure 1A demonstrates
a typical evoked network spike; the latency from stimulus to the
peak of the network spike, as well as the decay of activity from
that peak, are processes that take place within the tens and hun-
dreds of milliseconds, constituting the shortest timescales in our
neuronal population data. The next timescale in the hierarchy
is the network spike refractory period, which is the minimal

time between two consecutive network spikes, ranging between
1 and 10 s (Robinson et al., 1993; Maeda et al., 1995; Eytan and
Marom, 2006). The network refractory period is thus more than
one order of magnitude longer compared to the abovementioned
characteristic latency and decay times.

To identify further, slower timescales in the dynamics of
network spikes under ongoing stimulation at a constant rate,
we resorted to a measure of statistical variance that was intro-
duced by Teich and colleagues for the analysis of spike number
distributions (Teich, 1992). Specifically, time series of network
spike occurrence were sliced to bins of T seconds durations, and

FIGURE 1 | Time hierarchy of network activity. (A) shows a typical

response to a single trial. The black trace depicts the network firing rate,

binned at 1ms and smoothed by a 5ms moving average; the gray trace

is a further smoothed version (30ms moving average, in this case) of the

falling phase of the NS, used to evaluate the decay duration. Both traces

are normalized to their maximal firing rate. (B) depicts the variance over

mean (i.e., Fano factor) of NSs count (Z) as a function of the integration

time bins (T ); data were collected from 8 networks that were continuously

stimulated over 24 h at 1/5 s−1. The Gray lines depict identical analysis of

the surrogate data set. The red line designates a power law with a unity

exponent for reference purposes. The inset of (B) shows the same

analysis for the cases of spontaneously evoked NSs (seven networks,

24 h time series). An intuitive example for temporal structures in network

activity, which may give rise to such scale-free variations, is shown in (C)

the range of fluctuations in the NS firing rate under repeating stimuli is

comparable when calculated over 100, 300, and 1000 s bins (data is

taken from one of the networks used for (B). (D,E) demonstrate

consecutive network responses, displaying two examples from a

spectrum of observed response modes (every third response was

removed to enhance visual clarity). Traces colored in red demonstrate

instances of short vs. long response latencies; traces colored in green

demonstrate instances of short vs. long decay durations.
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the variance-to-mean ratio of event counts, a.k.a. Fano factor,
was calculated as a function of T. Figure 1B shows the results
of this analysis; the data originates from eight different networks
(black lines) that were stimulated for 24 h at a rate of 1/5 s−1.
The gray lines depict results of the same analytic procedure,
applied to shuffled, surrogate data sets. At the very high tem-
poral resolutions the Fano factor goes to unity, reflecting the
Poisson nature of probability to capture an event within short
time bins; this segment has no physiological significance. As T
approaches the timescale of 1 s, the Fano factor starts declining,
as the uniquely defined refractory period introduces regularity
into the time series. (It is acknowledged that the stimulation cycle
time is also a determinant at this temporal scale, but see below
described analysis of spontaneous activity.) Should refractoriness
be the sole source of temporal complexity, one would expect that
the Fano factor will approach zero as T further increases, beyond
the seconds scale. Apparently this is not the case: as the tempo-
ral resolution further decreases (i.e., larger T), the Fano factor
steadily increases. The slopes at the right hand straight segments
of the Fano factor curves (lower temporal resolutions) follow a
power-law with an averaged exponent value of 0.64 ± 0.14, as if
increasingly longer temporal structures are revealed by integrat-
ing the activity over longer temporal scales. In order to rule out
the possibility that the increase of variability is a result of a drift
in network responsiveness, we compared the response probabil-
ity during the first hour and the last hour of the data and found
no difference (0.22± 0.096 and 0.213± 0.075, respectively). The
inset of Figure 1B demonstrates a similar phenomenon in the
spontaneous activity recorded form 7 other networks over 24 h;
the average exponent value here was 0.89±0.0.21. Figures 1D, E

recorded from two different networks, demonstrate different pat-
terns of responsiveness, instances selected from a wide spectrum
of possible temporal structures: one having a rather cyclic nature
(D) and the other is more irregular (E); in these examples the
responsiveness patterns of networks were stable throughout 50
min of recordings.

The analyses described above suggest that the temporal struc-
ture of series of network spikes under repeated stimuli markedly
deviates from an independent and identically distributed process.
While the limit of refractoriness is reasonably understood and
well documented in the literature (Robinson et al., 1993; Maeda
et al., 1995; Weihberger et al., 2013), the origin of correlations
between evoked responses beyond the few seconds scale is poorly
understood and, to the best of our knowledge, not described. In
what follows we focus on response dynamics within the range
of 10–1000 s. Many independent sources might contribute to
the above dynamics of network responses over minutes. The
data shown in Figures 1A–E suggest that these multiple sources
may be reflected in immediate measurable response features. We
chose to focus on the probability to evoke a network spike, as well
as features of the network spike rise and falling phases, which—
as shown below—seem related to each other. These relations are
explored, at the level of pooled data, in Figure 2. For each evoked
network spike we calculated the fraction of responses to stimuli
in the vicinity of that network spike through a symmetric window
of 10 preceding and 10 following stimulation events. Response
latency and decay were defined as explained in Methods (see
Figure 1A). Figure 2A shows a strong relation between response
probability and latency of individual responses, in data pooled
from 17 networks. The relation between response probability and

A B

FIGURE 2 | Sensitivity of response latency (A) and decay (B) to

response probability. Latency (A) and decay duration (B) values of single

responses were grouped according to their local response probability range

in a data set of 4146 responses pooled from 17 networks stimulated at

1/3–1/5 s−1 over 50 min. The upper and lower edges of each box mark the

75 and 25 percentiles of the data; the circle within the box represents the

group’s median. Whiskers are extended up to an equivalent of ±2.7 standard

deviations of each group;the fraction of outliers—i.e., falling outside the

whiskers—is indicated in the plot. Note the inverse relation between

response probability and latency.
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decay duration is less obvious in the pooled data set. Previously
reported studies show that the above features—response prob-
ability, latency and decay—as expressed in spontaneous activity
(rate of occurrence, rise and falling phases of NSs, respectively),
are sensitive to blockers of inhibitory and excitatory synaptic
transmission (Maeda et al., 1995; Eytan and Marom, 2006; Gullo
et al., 2010). We therefor studied the relations between bath con-
centration of synaptic blockers and the above features of the
evoked responses. We gradually increased the concentration of
Bicuculline (an antagonist of GABAA receptors) from 0.5µM up
to 7µM, and in each concentration we exposed the network to
a series of 40 stimuli delivered at a low constant rate (within the
range of 1/5–1/12 s−1). Figure 3 summarizes the results of these
experiments (six networks). Overall, application of Bicuculline
resulted in increased network response probability (Figure 3D),
and decreased latency (Figure 3E). In addition—as may be seen
in Figure 3F—gradual block of inhibitory synapses results in
increased decay duration. Networks displaying baseline activities
marked by high response probability and short latencies were not
significantly affected by Bicuculline application (data not shown).

It is taken for granted that the coupling between network
excitatory and inhibitory activities is such that, based on the
results of Figure 3 no claim may be made regarding exclusive
effects of Bicuculline on inhibition, as application of the drug
may indirectly result in enhanced excitation. To expose—even
if partially—the contribution of excitatory resources to network
responsiveness, we applied increasing concentrations of APV, an
NMDA antagonist, in the presence of high concentration (5µM
up to 12µM) of Bicuculline. Under these conditions the respon-
siveness of the network is effectively determined by excitatory
synaptic transmission. Admittedly, alternative blockers of exci-
tatory transmission could have been used here; however, as we
were interested in slow dynamics—the time course of network

spike evolution, as well as long range correlations within series of
responses, we chose to block the slow excitatory synaptic trans-
mission. Figure 4 summarizes the effect of this experimental pro-
cedure (four networks). Within the applied range of APV dosage
(50–300µM), response probability remained more or less sta-
ble and the response latency was practically unaltered; but the
network spike decay duration became significantly shorter. As
might be expected, considering the network spike as an excitable
event of the network, higher doses of APV (>300µM) induced
a decrease of response probability accompanied by an increase
of response latency (data not shown). The overall picture emerg-
ing from the experiments of Figures 3, 4 is that response latency
is more sensitive to the availability of inhibition, whereas decay
duration shows greater sensitivity to the availability of excita-
tion, at least when estimated at relatively disinhibited regimes. Of
course, other features of the NS were also affected by application
of these synaptic blockers; for instance, NS amplitude increases
under bicuculline, but is not systematically affected by APV. We
focus on latency and decay.

Let us assume, based on the above results, that latency and
decay duration represent aspects of inhibition and excitation.
With this assumption in mind one might consider the use
of the relations between these two measures of the individual
response, as means to explore the stability (or, instability) of
network excitation-inhibition ratio. The long term dynamics of
both measures—latency and decay—as well as the interaction
between them, may be intuited from the four examples shown
in Figure 5. These four examples (pulled out from a data set of
17 networks) represent the two extremes of a spectrum revealed
by repeatedly stimulating networks at 1/3–1/5 Hz over 50 min;
this spectrum extends from narrow confined dynamics, through
seemingly capricious, to well-organized several minutes-long tra-
jectories across the latency-decay plane. Figure 5A shows the

FIGURE 3 | Effects of inhibitory transmission on network

responsiveness. In (A–C) consecutive network responses to repeating

stimulation (1/6 s−1) at different Bicuculline doses from a single network

are shown (to enhance visual clarity every other response was omitted).

(D–F) summarize the sensitivities of response probability, response

latency, and response decay duration to Bicuculine (six networks).

Box-plots represent the pooled distributions of local response probability

(D) and response latency (E) collected from all six networks, each

presented with 40 stimuli at ten increasingly applied doses. Out of 2400

responses, there are 0.0167 outliers of local response probability, 0.033

outliers of latency and 0.083 outliers of decay duration, designated by

the circles outside the whiskers.
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A B C

D E F

FIGURE 4 | Effects of excitatory transmission on network

responsiveness. APV is added on top of Bicuculine blockade (see Section

2), inducing an extreme case of effectively excitatory networks. (A–C) show

consecutive network responses to slow (>1/7 s−1) repeating stimulation at

different APV doses from a single network; to enhance visual clarity every

other response was omitted. Sensitivities of response probability, latency and

decay duration to APV are summarized in (D–F) using box-plots representing

the pooled distributions of response probability (D), latency (E) and decay

duration (F) collected from four networks, each presented with 40 stimuli at

four increasing doses. Out of 640 responses, there are 0.081 outliers of

response probability, 0.00625 outliers of latency, and 0.0031 outliers of

decay duration.

autocorrelation function of latency and decay series from two
networks exhibiting oscillating autocorrelation of both measures,
over minutes. Figure 5B represents latency-decay pairs obtained
from individual responses of these two networks, forming well
organized trajectories that persist many minutes. Although the
autocorrelations of latency and decay in Figure 5A are highly
coordinated, their ratio is not at all fixed, as may be inferred from
the trajectories of Figure 5B. Rather, the ratio of latency to decay
covers a wide dynamic range in their joint plane, markedly devi-
ates from the main diagonal. (Note: the top panel of Figure 5A
is calculated from the same network used to produce the pop-
ulation firing rate traces in Figure 1C). The dynamics shown in
Figures 5A,B represent a case that is extreme: these well-formed
dynamics occupy relatively short segments of the entire data set.
Most of the networks studied here did not exhibit coherent tra-
jectories that last as long. Rather, their dynamics ranged between
long lasting correlations (hundreds of seconds, Figure 5C top
inset) to no correlation at all (Figure 5C bottom inset). Figure 5D
demonstrates the latency-decay joint distribution from these
networks and their vagrant responsiveness pattern; the colored
lines depict segments of 50 consecutive responses, compara-
ble with the colored trajectory-segments lengths presented in
Figure 5B. The existence of long lasting correlations does not
seem to be related to the spread of latency and decay duration
of a given network. It might, however, be related to a higher
center of mass along the decay axis. Overall, to the extent that
latency and decay duration are proxies of inhibition and exci-
tation, the data of Figure 5 implies that E/I should be treated
as a dynamic variable over long temporal scales, rather than a
parameter.

Note that the dependency of the Fano factor on T (Figure 1B)
is consistent for all networks (which would suggest the same

dynamics for network excitability), yet the dynamics in the
latency-decay plane and the autocorrelations structure are very
diverse. This gap can be bridged by the fact that the data used in
Figure 5 consist of relatively short recording segments (50 min),
while the analyses shown in Figure 1B is calculated over long
recordings (24 h). Figure 1C demonstrates in a more intuitive
manner how such high order statistics analysis may yield simi-
lar results over a diverse dataset. The power law growth of the
FF with a growing observation window suggests a scale-free vari-
ance of activity; indeed, when the firing rate of the network is
calculated over different time bins, the fluctuations on different
timescales spans comparable ranges.

4. Discussion

We provide experimental indications linking slow variations in
network responsiveness over the scale of minutes, to sub-second
features of individual responses, and point to a potential con-
nection between these variations and a dynamical excitation-
inhibition ratio. The sequence of our arguments begins with a
description of correlations in time series of stimulus-evoked NSs
occurrence, beyond the few seconds scale. We show that net-
work responsiveness is inversely correlated with response latency.
Aided by pharmacological manipulations, we point to differen-
tial sensitivity of the NS’s latency and decay to excitatory and
inhibitory synaptic transmission. We then reduce the multidi-
mensional data of long-term population response variability to
instantaneous changes in these two readily observable measures.
Hence, we offer a method to instantaneously estimate the net-
work state in terms of its E/I ratio directly at the population level.
While not free of limitations, this estimation of E/I ratio is less
sensitive to synaptic filtering introduced to estimations that are

Frontiers in Computational Neuroscience | www.frontiersin.org 6 April 2015 | Volume 9 | Article 40

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Haroush and Marom Slow dynamics in synchronized network responses

A

B

C

D

FIGURE 5 | Latency-decay relations. Latency and decay duration were

estimated from a data set of 17 networks during 50 min of repeating

stimulation at 1/3–1/5 s−1. Examples for the different manners by which

latency and decay duration behave and interact are presented. (A) depicts

the autocorrelations of the time series of latency (black/red traces) and decay

duration (gray traces) from two different networks, recorded over 50 min;

both manifesting oscillations persisting over minutes. The autocorrelations

are displayed with two lag-axes: the upper axis (black) displays gaps

between serial numbers of consecutive successful responses (see Section

2), while the lower axis (light blue) displays an estimation of the actual time

lags, evaluated from the average inter-response-intervals. Pairs of latency

and decay duration of individual responses, obtained from the two networks

of (A) (accordingly colored), are plotted using a log-log scale in (B),

demonstrating organized activity of repeating trajectories on the

latency-decay plane. The gray dots represent individual responses from a

single trajectory, the colored curves depict the smoothed version of this

trajectory (calculated using a moving average procedure), and the gray

curves depict 50 min of the smoothed traces of latency-decay pairs from

each network. (C) shows the autocorrelation of latency and decay duration

time series from two other networks demonstrating the more common

cases, where networks vagrantly explore the latency-decay plane with no

apparent repeating trajectories. The latency series autocorrelations are

depicted by the colored lines, and the decay series autocorrelations are

depicted in gray. The top inset displays a case of long lasting correlations,

while the bottom inset demonstrates a case of no correlation at all in both

measures. The latency-decay traces of these networks are displayed in (D),

the colored lines demonstrate an apparently disorganized wandering across

the latency-decay plane within a trace of 50 consecutive responses.

based on intracellular measurements. We demonstrate a spec-
trum of manners at which latency and decay duration behave and
interact. To the extent that latency and decay reflect aspects of
inhibitory and excitatory network activity, our observation sug-
gests a view on the excitation-inhibition ratio being a dynamical
variable over extended time scales; an interpretation discussed in
what follows.

Excitation-inhibition ratio is a determinant of network activ-
ity signature (Brunel, 2000). It is often assumed—based on the-
oretical considerations—that this ratio is balanced (Shadlen and
Newsome, 1994; van Vreeswijk and Sompolinsky, 1996; Shadlen
and Newsome, 1998; Vogels et al., 2005). Experimental efforts
to validate the balanced excitation-inhibition assumption are
not conclusive: alongside supportive observations (Haider et al.,
2006; Okun and Lampl, 2008; Xue et al., 2014), the balanced
E/I assumption was challenged by others (Stevens and Zador,

1998; Wehr and Zador, 2003; Heiss et al., 2008). The obser-
vations reported in the present study do not contradict the
abstract notion of effective excitation and inhibition being some-
how matched such that networks remain globally responsive
over time. Rather, we point to the statistical nature of fluc-
tuations in the ratio between effective exciting and inhibiting
forces, as reflected in features of network responsiveness. These
results may justify opening a discussion on the mechanism by
which the effective ratio is self-organized, a mechanism that gives
rise to broadly distributed fluctuations. The framework of self-
organized criticality is one possible path to take (Plenz and Schus-
ter, 2014); but many other paths toward self-organization are
plausible, paths that involve machineries at multiple spatial and
temporal scales.

We imagine at least three challenges that are entailed by
the above notion of excitation-inhibition ratio as a dynamical
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system variable, rather than a parameter. The first challenge con-
cerns modeling. The level of organization of the observed phe-
nomenon (variability of population response) precludes models
that focus onmicroscopic, this-or-that channel or synaptic recep-
tor mechanisms underlying the rich network dynamics. In fact,
even the pharmacological manipulations we have applied are lim-
ited relative to the range of synaptic transmission mechanisms
involved in propagation in these networks; for instance, much
of the activity is propagated through AMPA receptors, which
we have not blocked. It might be more appropriate to use the
terms “exciting forces’ and “restoring forces” rather than “exci-
tation” and “inhibition,” thus shifting the load from local synap-
tic processes toward a richer repertoire of potential mechanisms
that contribute to changes in network dynamics. Models that are
formulated in terms of global adaptation of both exciting and
restoring forces and their interaction with time scales of stimu-
lation and spontaneous activity are wanted. Such models might
shed light on possible connections between the dynamics of stim-
ulus evoked responses reported here and the well-documented
complex statistics of spontaneous series of network spikes (Segev
et al., 2002; Beggs and Plenz, 2003; Wagenaar et al., 2006; Maz-
zoni et al., 2007). The second challenge we envision is related to
functional aspects of network activity in general, and the impacts
of slow dynamics of exciting and restoring forces on the effi-
cacy of different representation schemes, in particular. Whether
such schemes involve population or spike-time “neural codes,”
their sensitivity to slow network dynamics should be considered.
One might imagine scenarios where slow network dynamics of

the kind described here can have constructive impacts on the
ability of neural systems to explore and adapt to a changing
environment. The third challenge is even more general; it con-
cerns the inherent tension between approaches that heavily rely
on structural measures and approaches that are more concerned
with “effective” measures in providing insightful information on
neural systems dynamics and function. The multiple timescales
of network responsiveness as well as the dynamic exciting-
restoring forces, emerge from an allegedly stable structure, at least
in terms of the number of excitatory and inhibitory neurons and
the number of their synapses. Indeed, it is difficult to imagine
the dynamics over minutes as presented here being determined
by ongoing changes in structural network parameters. In this
respect our results further contribute to recent calls that chal-
lenge attempts to relate the structure of neural networks to their
dynamics (Marder et al., 2014).

Whether or not our interpretations that are based on in-vitro
experimental analyses may be generalized, the very possibility of
network-level exciting and restoring forces being dynamical vari-
ables seems to deserve serious consideration by those interested
in theoretical and applied aspects of neural response variation.
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