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Abstract

Transposition of two retroelements (Ulysses and Penelope) mobilized in the course of hybrid dysgenesis in Drosophila virilis
has been investigated by in situ hybridization on polytene chromosomes in two D. virilis strains of different cytotypes
routinely used to get dysgenic progeny. The analysis has been repeatedly performed over the last two decades, and has
revealed transpositions of Penelope in one of the strains, while, in the other strain, the LTR-containing element Ulysses was
found to be transpositionally active. The gypsy retroelement, which has been previously shown to be transpositionally
inactive in D. virilis strains, was also included in the analysis. Whole mount is situ hybridization with the ovaries revealed
different subcellular distribution of the transposable elements transcripts in the strains studied. Ulysses transpositions occur
only in the strain where antisense piRNAs homologous to this TE are virtually absent and the ping-pong amplification loop
apparently does not take place. On the other hand small RNAs homologous to Penelope found in the other strain, belong
predominantly to the siRNA category (21nt), and consist of sense and antisense species observed in approximately equal
proportion. The number of Penelope copies in the latter strain has significantly increased during the last decades, probably
because Penelope-derived siRNAs are not maternally inherited, while the low level of Penelope-piRNAs, which are faithfully
transmitted from mother to the embryo, is not sufficient to silence this element completely. Therefore, we speculate that
intrastrain transposition of the three retroelements studied is controlled predominantly at the post-transcriptional level.
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Introduction

Transposable elements (TEs) are repetitive sequences capable of

moving in genomes under certain conditions, and they are widely

observed in practically all organisms studied so far. The diversity

of TEs and the degree to which they burden eukaryotic genomes

are highly variable. In mammals, including humans, mobile

genetic elements constitute up to 50% of the genome [1], while

only 15–20% of the comparatively small Drosophila genome is

composed of TEs [2]. Different classes of transposons, such as

LTR-containing retroelements, LINEs and DNA transposons, are

also represented to different degrees in the genomes of various

organisms. Host organisms employ multiple strategies to silence

TEs and viruses to prevent them from amplifying in the genome,

because the vast majority of parasite insertions are likely to be

deleterious and impose a fitness cost on the rest of the genome

[3,4]. Recent data accumulated from Ceanorharbditis elegans and

Drosophila, strongly suggest that RNA interference represents one

of the most efficient host processes for silencing transcription and

uncontrolled movement of parasite DNA [5,6,7]. Even though

eukaryotic genomes have developed multiple systems for silencing

TEs, certain families of TEs sometimes go out of control and are

able to amplify and jump throughout the chromosomes [8]. The

hybrid dysgenesis (HD) syndrome, described in Drosophila melano-

gaster and Drosophila virilis, represents such a case, where multiple

transpositions of TEs lead to harmful consequences [9,10].

In D. melanogaster the HD syndrome is usually observed in the

progeny of interstrain crosses when the female parent does not

carry active copies of a certain TE (P, I or hobo), while the male

parent carries multiple copies of a given element. Briefly, in D.

melanogaster the dysgenic traits in the F1 progeny from a dysgenic

cross usually include high levels of sterility, gonadal atrophy,

occurrence of multiple visible and chromosomal mutations, and

other genetic abnormalities. Although in D. virilis we observed

virtually the same abnormalities, HD syndrome in this species is

unusual in the fact that several transposable elements belonging

not only to different families but also to different classes of TE are

mobilized by the dysgenic crosses [10,11,12]. In our earlier studies,

we showed that in D. virilis, similar to D. melanogaster, there are

strains of three cytotypes, namely, neutral, M-like and P-like

strains, depending upon their roles in HD [11]. In D. melanogaster

strains of M-cytotype do not contain functional P-elements and

produce partially sterile progeny when crossed with males from P-

strains carrying multiples copies of full-size P-elements while

neutral strains do not produce significant proportion of sterile

progeny when crossed either with M-like or P-like strains [9]. In D.

virilis strains named by analogy with D. melanogaster ‘‘M-like

strains’’, including the wild-type strain 9 used in the present study,

usually contain only heterochromatic, highly diverged copies of

Penelope retroelements. Furthermore, such diverged copies of

Penelope are located in such strains mainly in the pericentromeric

heterochromatin [13]. These strains produce high levels of
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gonadal sterility and other manifestations of HD when crossed

with males of strain 160, which represents the only strong P-like

strain described in D. virilis so far and contains multiple copies of

Penelope probably playing an important role in HD [10]. In situ

hybridization on polytene chromosomes and Southern blot

analysis revealed mobilization of several unrelated TEs in the

progeny of dysgenic crosses. These elements include Helena, Paris,

Tv1, Telemac, Ulysses and Penelope [12,14]. Among these, Ulysses

which represents a typical retroelement with LTRs of 2 kb in size

and two ORFs, was the first element described in D. virilis and

subsequently found in several visible mutations, including white,

obtained in the progeny of dysgenic crosses [10,14]. Furthermore,

this element was found at the breakpoints of inversions detected in

the progeny of dysgenic crosses and, hence, it was implicated in

the formation of aberrations never before found in D. virilis [15]. In

contrast to Ulysses, another well studied LTR-containing retro-

element gypsy, previously described in D. virilis (gypsyDv) [16], was

never found in mutations in the progeny of dysgenic crosses [12].

It has been shown by different methods that multiple active

copies of Penelope are present in strain 160, while strain 9 does not

carry full-size Penelope copies in the euchromatic chromosome arms

[10,17]. Highly diverged and apparently ancient copies of Penelope,

termed ‘‘Omega’’ (V), located mostly in the heterochromatic

chromocenter, were, however, detected and investigated in both

strains studied [13]. In situ hybridization with polytene chromo-

somes and Southern blotting analysis showed that contrary to

Penelope, full-size Ulysses copies are found in all D. virilis strains

studied so far, with an average of 10–15 copies per strain [18].

There is molecular and genetic evidence suggesting that the TE

‘‘Penelope’’ plays an important role in D. virilis HD [10,17]. The

Penelope retroelement does not belong to one of the previously well

studied classes of TE, but rather represents its own superfamily

characterized by the presence of a reverse transcriptase (more

closely related to telomerases than the those of other retro-

transposons) and a very unusual endonuclease containing the GIY-

YIG domain [13]. Penelope-like elements (‘‘PLEs’’) have been

described in recent years in various animals from rotifers to fish

and reptiles [19,20,21].

In our previous studies, the injection of Penelope-containing

constructs into the embryos of a D. virilis strain 9 lacking active

Penelope resulted in multiple mutations in the progeny. It was

shown that almost half of all visible mutations isolated in these

experiments were due to insertions of Ulysses [10], which, contrary

to Penelope, has nearly symmetrical distribution in the parental

strains [18].

Recently, we have monitored the biogenesis of small RNAs

homologous to various D. virilis transposons and measured the

transmission levels of corresponding siRNAs and piRNAs in

various inter-strain crosses. Using P-like strain 160 and a few

neutral D. virilis strains that contain multiple full-size and

potentially functional Penelope copies, however, we detected no

obvious correlation between dysgenic traits and maternally

deposited Penelope-derived piRNA levels [22]. Therefore, we

sought to expand these studies in order to reveal correlations

between the levels of naturally occurring transposition in D. virilis

laboratory strains and RNA production and/or the biogenesis of

the TE-derived small RNAs in question.

Herein, we demonstrate asymmetric transposition of Penelope

and Ulysses in the laboratory strains of D. virilis without performing

dysgenic crosses. By RNA whole-mount in situ hybridization a

different subcellular strain specific localization of the TEs

transcripts was revealed. Furthermore, we show that processing

of Penelope and Ulysses transcripts lead to the formation of different

classes of small RNAs that may be implicated in transposition

control of these TEs. For comparison, we have also investigated

expression of gypsyDv, which is based upon previous studies lost

transposition activity in D. virilis and is not mobilized by dysgenic

crosses in this species [12].

Results

Analysis of transpositions of Penelope and Ulysses in two
D. virilis strains by in situ hybridization on polytene
chromosomes

In the course of investigations performed over the past 20 years

we detected asymmetric transpositions of Penelope and Ulysses in D.

virilis strain 160 and strain 9. Using in situ hybridization with

salivary gland polytene chromosomes, we failed to detect any

transpositions of Ulysses in strain 160, which preserved stable

pattern of the transposon distribution in the chromosomes. On the

other hand, the number of Penelope copies in this strain increased

from 37 to 53 since 1991. We detected 27 new sites of Penelope

hybridization and the disappearance of 11 previously observed

sites in the chromosomes of the strain 160. Interestingly, nearly

half of the new sites–12–were found in the chromosome 2

(Table 1). It is noteworthy that we failed to detect Penelope

hybridization to chromosome 6 (microchromosome), not only in

strain 160, but also in all other D. virilis strains studied in our

laboratory [18].

While we did not find new sites for Ulysses in strain 160, we did

reveal active transposition of this TE in M-like strain 9. It is

noteworthy that all the chromosomes of strain 9 were involved in

the transposition process by Ulysses (Table 1). It is necessary to note

that even though transpositions of retroelements do not occur by a

‘‘cut and paste’’ mechanism, in strain 9 we detected six new sites of

insertion in parallel with the disappearance of four ‘‘old’’ sites

detected in 1991. Such a phenomenon was described in D.

melanogaster, when certain copies of the retroelement gypsy or I-

element disappeared without a trace from a few cytological

locations [23,24].

Characteristically, the presumably inactive gypsyDv taken for

comparison exhibited practically identical preferentially hetero-

chromatic distribution in the chromosomes of the D. virilis strains

studied, which was preserved without any change during the

whole period of observation (Table 1). It is noteworthy that a vast

majority of the same, probably heterochromatic, cytological sites

contain gypsyDv in all other laboratory and geographic D. virilis

strains studied so far (data not shown), which implies that this TE

has probably lost its transposition ability in this species. It is

noteworthy that both Ulysses and gypsyDv are often found in

nearcentromeric sites (i.e. 19D, 29F, 39F, 49F and 59F) while

Penelope with one exception are not found in these presumably

heterochromatic regions (Table 1).

Since we detected different transposition behavior of Penelope

and Ulysses depending upon the strain, it was of significant interest

to monitor the transcription of various TEs, including these

retroelements, in the strains compared.

Transcription analyses of various TEs and transcripts
subcellular localization

Previously it was shown by Northern analysis that Penelope

transcription is significantly induced in the ovaries of dysgenic

hybrids between females of strain 9 and males of strain 160 [10].

However, transcription of other TEs has not been analyzed either

in parental strains 9 and 160 or in their hybrids. Therefore, we

explored a transcription of several transposons by a set of

complementary methods. In order to detect a presence of

transcripts, semiquantitative RT-PCR was performed on cDNA

Intrastrain Mobility of D. virilis Retroelements
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from both strains with specific primers to the transposons. It was

also of interest to investigate the transposon transcription

separately in female gonads and carcasses. RT-PCR products

were detected for all elements studied both in ovaries and in the

carcasses, but the presence of some transcripts was shown to be

strain specific (Figure 1A). Thus, Penelope and Helena transcripts

were amplified only in strain 160, what is not unexpected,

because functional copies of these particular TEs are not present

in strain 9 [12]. On the other hand, Ulysses and gypsyDv are

transcribed in ovaries and in the carcasses of both strains 9 and

160 (Figure 1A).

Surprisingly, quantitative RT-PCR (qRT-PCR) experiments

revealed a comparatively low but significant level of Paris

transcription in strain 9, while full-size copies of this TE were

previously reported either to be lacking or represented by only one

euchromatic copy in this strain [12,17]. The transcripts detected

may either emerge from this single copy or result from read

through transcription of Paris heterochromatic diverged sequences.

qRT-PCR experiments demonstrated that the transcription levels

of Ulysses and gypsyDv in strain 9 are similar to those in strain 160

(Figure 1B).

Northern blot analysis corroborates the qRT-PCR data, and

demonstrates approximately the same level of Ulysses and gypsyDv

transcription in the ovaries of both strains. Moreover RNAs

homologous to these TEs are represented in Northern blots by

identical bands (presumably splicing forms) in both strains

(Figure 1C).

It is noteworthy that Ulysses probe did not reveal any significant

hybridization with D. melanogaster RNA because the representatives

of Ulysses family are absent in the genome of this species. D. virilis

gypsy probe hybridized with D. melanogaster RNA and revealed full-

size transcript (7 kb) and several additional bands probably

resulted from splicing (Figure 1C).

At the next stage, in order to monitor subcellular localization of

TE transcripts in the ovaries, we performed RNA in situ

hybridizations with Penelope, Ulysses and gypsyDv sense and

antisense probes. Localization of Penelope sense transcripts is

shown in Figure 2A, B. It is evident that strong hybridization of

Penelope in strain 160 is restricted to the cytoplasm of nurse cells,

and, to a lesser extent, to the nuclei of nurse cells, while the

ovaries of strain 9 do not contain any label, as expected. We

observed only very weak hybridization with a probe revealing

antisense Penelope transcript in strain 160 (data not shown). In

contrast to Penelope, a probe revealing sense transcript of Ulysses

detected multiple signals in the nuclei of nurse cells in both strains

in the form of discrete putative nascent transcripts as well as

single strong signals (one per nucleus) probably representing RNA

processing sites (foci) (Figure 2E). This hybridization pattern

resembles I-element localization in D. melanogaster ovaries [25].

Interestingly, in strain 9 the labeling seems to be more

Table 1. Copy number of Penelope, Ulysses and gypsyDv in polytene chromosomes of D. virilis strains 9 and 160.

Time of analysis

1991–1992 2008

Chromosome Transposon strain 9 strain 160 strain 9 strain 160

X Penelope - 1D, 8D, 9D, 10B, 11A, 18C - 6C, 8D, 9C, 10B, 11A, 12C

gypsyDv 11A, 19D 11A, 18D, 19D 11A, 19D 11A, 18D, 19D

Ulysses 17D/18A, 19D 18B, 19C, 19D 2C, 9A, 17D/18A, 19D 18B, 19C, 19D

2 Penelope - 20E, 20 F/G, 22D, 23F, 28F - 20E/F, 22D, 23B, 23D, 23F, 25D, 24B, 26F,
27D/E, 27E, 27G, 29B (2 sites), 29C, 29H

gypsyDv 23CD - 23C -

Ulysses 21A, 24 B/C, 25F/G,
26C, 29F

23H, 29D 20D, 21A, 22E, 24B,
25F/G, 26C

23H, 29D

3 Penelope - 30A, 32F, 34F, 35B, 37C,
38A, 38E/F, 38F, 39A/B,
39E, 39F

- 30A, 32A, 32C, 32F, 33B/C, 33E, 34F, 35B,
37C, 38E/F, 39A/B, 39E, 39F

gypsyDv 39F 39F 39F 39F

Ulysses 33C, 34A, 37D/E 32A/B, 35E 33C, 34A 32A/B, 35E

4 Penelope - 40B, 40E, 42C, 45B, 45F,
46B, 46E/F, 47A, 49F*

- 40B, 40E, 40F, 42C, 44C, 45B, 45D, 45F,
46B, 46E, 47A, 49F*

gypsyDv 49F* 46B, 49F* 49F* 46B, 49F*

Ulysses 42C, 49F* 49F* 40B, 42C, 49F* 49F*

5 Penelope - 51A, 52E, 55F, 56F,
58F, 59C

- 50D/E, 51A, 51E, 57B, 57D, 58F, 59F

gypsyDv - - - -

Ulysses 51C, 52D, 52E, 53B,
55D, 58F

53C, 53F, 54C, 55F, 59F 51C, 52D, 52E, 53B 53C, 53F, 54C, 55F, 59F

6 Penelope - - - -

gypsyDv 60CD 60CD 60CD 60CD

Ulysses 60C 60A, 60B/C 60A, 60C 60A, 60B/C

Copy number was determined by in situ hybridization analysis within the last two decades (1991–2008). When performing in situ hybridization analysis in 2008, we
excluded a few Ulysses sites that were polymorphic in 1991 (did not contain Ulysses in 100% of larvae). Asterisks indicate site 49F where all three TEs were found.
doi:10.1371/journal.pone.0021883.t001
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pronounced in the cytoplasm of nurse cells in comparison with

strain 160 (Figure 2C, D). On the other hand, in approximately

90% of strain 160 ovarioles, quite distinct large foci close to the

nuclear membrane are seen (Figure 2E). These structures, where

in D. melanogaster accumulation of I-element and other TEs

transcripts takes place, probably represent the sites of processing

of various TEs RNAs leading to their retention in the nuclei [25].

Characteristically, the foci are never seen in the ovarioles of strain

9, which correlates with the active transposition of Ulysses in

strain 9. A significant signal is also observed in the cytoplasm of

centripetal and squamous follicle cells in the ovaries of both

strains (Figure 2F). Whole mount detection of sense gypsyDv

transcripts revealed rather weak hybridization in the cytoplasm of

nurse cells in both strains (Figure 2G), while the somatic follicle

cells were practically free of label with a few specific exceptions

(Fig. 2H, I). The pattern observed in D. virilis is strikingly different

from subcellular localization of gypsy transcripts in ovaries of D.

melanogaster permissive strains [26].

Overall, the analysis of the transcription of various TEs,

including Penelope, Ulysses and gypsyDv performed by different

complementary techniques in the strains compared, revealed

characteristic differences in the TE’s RNA levels and transcript

localization in the cells of the ovaries. In order to further

investigate the fate of TEs transcripts, we decided to perform

Figure 1. Transcription levels of selected D. virilis TEs. (A) semiquantitative RT-PCR data for ovaries and carcasses; (B) Quantitative RT-PCR
analysis of TE transcription levels in ovaries. Since RT-PCR failed to reveal any transcription of Penelope and Helena in strain 9, we do not include the
results of comparative analysis of these TEs by qRT-PCR in the panel; (C) Northern blot detection of Ulysses and gypsyDv sense transcripts in strains 9
and 160. Poly-A RNAs isolated from strain 9, strain 160 and D. melanogaster yw67c23 strain ovaries were used. The size of marker RNA is given in nt at
the right. The filter was rehybridized with a fragment of constitutively expressed D. melanogaster rp49 to monitor the level of loaded RNA.
doi:10.1371/journal.pone.0021883.g001

Intrastrain Mobility of D. virilis Retroelements
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detailed analysis of small RNAs homologous to the retroelements

studied.

Penelope and Ulysses produce strikingly different sets of
of transposon-homologous small RNAs in gonads of
strains 9 and 160

Since in contrast to Penelope we failed to reveal a clear-cut

correlation between the expression levels of Ulysses and gypsyDv and

their transposition behavior in both strains we investigated the

biogenesis of small RNAs homologous to these TEs.

In order to evaluate the possible role of small RNAs, such as pi-

and siRNAs, in controlling the detected transpositions of Penelope

and Ulysses, we explored small RNA libraries obtained from the

ovaries and testes of strains 9 and 160 [22]. The analysis of small

RNA populations homologous to Penelope and Ulysses in these

strains revealed drastic differences in the processing of their

transcripts. While Ulysses-derived small RNAs in both strains are

represented by predominantly piRNAs 23–29 nt in length (92% of

total reads), Penelope-homologous small RNAs are virtually absent

in strain 9, and in strain 160 they mostly belong to the siRNA

species 21 nt in length (61% of total reads) [22]. It is well known

that the phenomenon of RNA interference is based on homology-

dependent gene silencing, and since we detected full-length sense

transcripts of Ulysses (Figure 1C), it was logical to expect that

Ulysses-derived small RNAs will have an antisense orientation.

However, contrary to the expectation, up to 99% of the ovarian

piRNAs homologous to Ulysses have sense orientation and

apparently arise from processing transcripts originating from

active euchromatic copies of the element [22]. Surprisingly, a high

level of Ulysses-derived antisense piRNAs was found in the small

RNAs libraries obtained from the testes of both strains. Moreover,

the piRNAs are predominantly homologous to the sequences of

the TE’s huge LTRs (Figure 3A, C). gypsyDv-piRNAs are

represented predominantly by antisense population in both the

Figure 2. Whole-mount in situ RNA detection of sense transcripts of Penelope, Ulysses and gypsyDv in the ovaries of D. virilis strains 9
and 160. (A) and (B) hybridization with Penelope-specific probe. No hybridization is seen in strain 9 (A), while in strain 160 (B) strong hybridization in
the nurse cells cytoplasm is evident at stage 10. Ulysses-specific probe strongly hybridized with nurse cells nuclei in both strains at stages 2–10 (C, D,
E). Arrows in E indicate putative RNA processing sites (foci), arrow-heads indicate putative nascent transcripts. Heavier label accumulation is usually
observed in the cytoplasm of nurse cells of strain 9 (C). Reproducible hybridization of Ulysses probe with the centripetal (see arrow in F) and stretched
follicle cells is a characteristic feature of strain 9 and 160 ovaries at stage 10. RNA in situ hybridization with gypsyDv-specific probe reveals hardly
detectable labeling in the nurse cells cytoplasm in the ovaries of both strains studied (G–I). Significant hybridization of gypsyDv probe with follicle
cells, which form appendages (H) and with follicle cells at the posterior end of ovarian chamber (I) represent the landmarks of strain 160.
doi:10.1371/journal.pone.0021883.g002
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ovaries and the testes. In this case the LTRs of this TE are not

enriched in piRNAs, while general pattern of piRNA localization

along the body of this TE is very similar in ovaries and testes but is

different depending on a strain (Figure 3B, D).

There is evidence suggesting an important role of maternally

inherited small RNAs in repression of I- and P-elements or Penelope

in HD syndrome [27,28]. However, in the latter case it was not

shown which class of small RNAs is responsible for the effect.

Here, we monitored separately the maternal deposition of siRNA

and piRNA of Penelope in the strains compared. The experiments

showed that although Penelope siRNAs are present at high level in

the ovaries of both strains, this class of small RNA is practically

absent in 0–2 hour embryos (Figure 4A, B). On the contrary,

Penelope-derived piRNAs as expected are effectively transmitted to

the progeny (Figure 4C, D). It is necessary to mention that Penelope

transcripts are detected in ovaries of strain 160 and maternally

inherited by the early embryos (0–2 hours) [29].

It was of significant interest to compare the data accumulated in

the course of in situ hybridization studies on polytene chromosomes

with the results of mapping sequenced small RNAs homologous to

Penelope and Ulysses. The comparative analysis has shown that large

part of Ulysses-derived piRNAs map to the D. virilis genome 17–21

times [22]. Similarly, a significant proportion of Penelope-derived

piRNA sequences map 2, 22 and 39 times while we did not detect

Figure 3. The pattern of piRNAs distribution along transposons in testes. Distribution of Ulysses-piRNAs in testes of strain 9 (A) and strain
160 (C). The distribution of piRNAs homologous to gypsyDv in testes of strain 9 (B) and strain 160 (D). Sense small RNAs are indicated in red, antisense
– in blue.
doi:10.1371/journal.pone.0021883.g003

Figure 4. Maternal deposition and distribution levels of Penelope-derived small RNAs. siRNAs at (A, B) and piRNAs at (C, D) in strain 160
and its 0–2 h embryos. Sense small RNAs are indicated in red, antisense–in blue.
doi:10.1371/journal.pone.0021883.g004

Intrastrain Mobility of D. virilis Retroelements
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sequences found in the genome 3-18 times (Figure 5). Probably,

rearranged or full-length transcribed Penelope elements as well as

ancient diverged copies (Omega) located in heterochromatic

clusters may serve as the source of the multiple piRNAs

homologous to the element in strain 160.

Discussion

In our experiments, we showed that Penelope and Ulysses are able

to asymmetrically transpose in D. virilis parental strains even

without performing dysgenic crosses that drastically increase the

frequency of unrelated TE transpositions in this species. It is

necessary to mention that transpositions of various TEs were

detected in laboratory strains of D. melanogaster and sometimes the

intrastrain mobility of certain TEs correlates with their expression

level [24,30].

In our study, we observed similar levels of Ulysses transcription

in both D. virilis strains while this TE is transpositionally active

only in strain 9. Furthermore, although gypsyDv full-size transcripts

are present in both strains, this element is amazingly stable in

terms of transposition.

Whole-mount in situ hybridization experiments demonstrated

different subcellular localization of TEs transcripts, which in

general correlates with their transposition behavior in the strains

studied. Contrary to D. melanogaster permissive strains, gypsyDv is

weakly expressed only in the nurse cell cytoplasm and specific

groups of follicular cells in both strains what correlates with its

stability in the genome of D. virilis. Abundant Penelope transcripts

were observed in the cytoplasm of nurse cells of strain 160, where

this TE is probably transpositionally active. Furthermore, while

Ulysses expression in the form of strong nascent transcripts has

been detected in the nurse cells of both strains, only in strain 160

well developed foci (presumptive sites of Ulysses RNA processing)

were seen correlating with high stability of Ulysses localization in

this strain.

The transposition behavior of the three studied TEs apparently

depends upon many factors, and is controlled at the post-

transciptional level. The retrotransposon gypsyDv does not

transpose, apparently due to accumulation of mutations disturbing

env or other domains of this TE [31]. However, other authors

exploring the PCR technique and PTT analysis concluded that the

genome of D. virilis may contain at least one copy of gypsyDv

putatively encoding a complete envelope protein [32] and, hence,

we can not exclude that gypsyDv may be active in some strains of D.

virilis. On the other hand, Ulysses is transpositionally active in strain

9, probably because in this strain only sense Ulysses-piRNAs are

present, and the ping-pong cycle is blocked. Along these lines, the

ratio of Ulysses-derived primary to secondary piRNAs also differs

strongly in the strains studied and the low level of Ulysses secondary

piRNAs in strain 9 may reflect the absence of ping-pong

amplification loop necessary for Ulysses silencing [22]. Interesting-

ly, in testes a high level of Ulysses-derived antisense piRNAs was

found, and, surprisingly, this fraction is predominantly homolo-

gous to LTRs of this TE (Figure 3A, C). This phenomenon might

resemble the different functional activities of Argonaute group

proteins in the testes and ovaries [33]. Alternatively, LTR-

homologous antisense piRNAs may be coming from a solo Ulysses

LTRs located in a piRNA-producing cluster functioning only in

testes.

Despite the fact, that Penelope is one of the most abundant

transposon in the genome of D. virilis with more than 50 copies in

strain 160, we did not detect transpositions of the element to

chromosome 6 (microchromosome). This may result from either

Penelope transposition preferences or from the recently described

peculiar chromatin structure of chromosome 6 in D.virilis [34,35].

It is also tempting to speculate that such transposition preferences

in avoiding of heterochromatic regions and perhaps piRNA loci

might be a reason for a continuing transposition activity of this

element in strain 160 of D. virilis as well as in transgenic D.

melanogaster strains transformed with full-size Penelope [36].

Comparing the general localization of hybridization sites

specific for the studied TEs in the D. virilis genome enables us to

conclude that the observed distribution is not random, and there

are sites where two or three TEs are found. Probably these sites

(e.g., 19D and 49F) represent ‘‘hot spots’’ or ‘‘nests’’ of transposons

previously described both in the D. virilis and D. melanogaster

genomes [18,37]. In particular, we do not rule out that at least one

of such hot spots, i.e. 49F that coincides with the coordinates of

cluster #3 [22], might serve as a putative flamenco piRNA locus in

D. virilis genome that produces the most abundant fraction of sense

oriented transposon-homologous piRNAs in D. virilis genome.

In the present investigation we did not monitor intrastrain

transposition of other TEs mobilized by dysgenic crosses which

may represent another interesting avenue of future research,

because there are at least two other elements, Paris and Helena,

which are abundant in strain 160, but absent or found in small

numbers in strain 9 [12,17].

Recently, based upon the analysis of maternal inheritance of

small RNAs in various systems of D. melanogaster HD, it was

suggested that piRNAs have an important role in the regulation of

Figure 5. Frequency distribution of genomic mappings of Penelope–homologous si- and piRNAs. Arrows indicate a proportion of
Penelope-derived piRNA sequences mapping 2, 22 and 39 times in D. virilis genome.
doi:10.1371/journal.pone.0021883.g005
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the syndrome by homology-dependent TE silencing [25,27]. In D.

virilis Penelope-derived small RNAs were also implicated in HD

syndrome regulation [22,28]. Moreover, we speculate that Penelope

is transpositionally active in strain 160, because, for some reason in

this particular quite exceptional strain, small RNAs are represent-

ed predominantly by siRNAs. The detected siRNAs probably

originated from double stranded stem regions of Penelope

transcripts containing the same regions in sense and antisense

orientation (long inverted repeats). Although siRNAs represent the

major class of small RNAs homologous to Penelope, it is evident that

this class of small RNA is not efficiently transported from mother

to embryo and probably does not play any role in Penelope silencing

in the germ line [22]. Intriguingly, in whole mount experiments we

were not able to detect Penelope transcription to somatic follicular

cells of the ovaries of strain 160, and thereby a subcellular origin of

the Penelope-siRNAs remains to be investigated.

Collectively, our studies show that two TEs mobilized in

dysgenic crosses, namely Penelope and Ulysses, are drastically

different, both in transposition behavior in the parental strains,

subcellelar compartmentalization of the transposon transcripts and

their processing into small RNAs. It is necessary to mention that

we do not rule out the possibility that the causes of occasional

transpositions of TEs taking place in the parental strains might be

completely different from the causes of much greater mobilization

observed in the progeny of dysgenic crosses between these strains.

Although, the investigation of transcription levels and cellular

distribution of the transcripts do not provide in all cases a

straightforward explanation for the observed interstrain specific

transpositions of several transposons, the obtained results should

be taken into account in further attempts to explain the molecular

mechanisms underlying the behavior of various retroviruses (latent

infection) and transposons in laboratory and geographical strains,

as well as to shed light on D. virilis HD syndrome and the role of

co-mobilization of unrelated TEs in this process.

Materials and Methods

D. virilis strains
D. virilis strain 160 and strain 9 were obtained from the Stock

Center of the Institute of Developmental Biology, Moscow. Strain

160 represents an old laboratory strain carrying recessive mutations

in all autosomes (b, gp, cd, pe, gl) while wild-type strain 9 was

collected about thirty years ago in Batumi (Georgia, Caucasus).

All flies were reared at 25uC on standard resin-sugar-yeast-agar

medium containing propionic acid and methylparaben as mold

inhibitors.

Cytological analysis
Larvae were grown at 18uC on medium supplemented with live

yeast solution for 2 days before dissection. Salivary glands from

third instar larvae were dissected in 45% acetic acid and squashed.

Procedures and labeling of DNA probes for in situ hybridization

were as described [18].

Whole-mount RNA in situ hybridization assay
Ovaries were dissected in PBS and fixed with 4%-paraformal-

dehyde/PBS solution for 20 min at RT. Treating of ovaries with

20 ug/ml ProteinaseK/PBS solution for 30 min was followed by

fixation in 4%-paraformaldehyde/PBS solution for 20 min at RT.

During these steps PBS with 0.1% Tween-20 (PBT) was used as a

rinsing solution. Pre- and hybridization steps were done at 60uC in

HB (50% formamide, 5xSSC, 0.1% Tween 20, 1 mg/ml torula

RNA and 50 ug/ml heparin). Antibodies used were anti-DIG-AP

(Roche) with 1:2000 dilution. DIG-labeling of RNA probes was

done by MAXIscript T7 kit (Ambion). To detect sense transcripts

of studied transposons we used same probes as for Northern

blotting (see below), except for Penelope:

pen623-f: 59-AGGTCGCCAGAGCCATCAAT-39;

T7pen1264-r: 59-GCTGATTGGGAGAGCGAACT-39.

Northern blotting
Total RNA was isolated from ovaries of 7–10 days old flies using

TRIzol reagent (Sigma). PolyA-RNA was purified using OLIGO-

TEX mRNA mini kit (QIAGENE) and fractionated as described

[38]. High Range RNA Ladder (Promega) was used as marker.

32P-labeled single stranded RNA probes revealing sense tran-

scripts were synthesized using MAXIscript T7 kit (Ambion).

Probes for T7 in vitro transcription were synthesized by PCR

using:

gypsyDv-f: 59-AGTGGAATTGGCGCGGTTCTTT-39;

T7gypsyDv3983-r: 59-TAATACGACTCACTATAGGGGCC-

CATCTTCGAGAGCATTAA-39;

uly5147-f: 59-CTTCCGCAGACGCAGGATTA-39;

T7uly5698-r: 59-TAATACGACTCACTATAGGGAGAAA-

TCTGCGCTTCACGCT-39

Semiquantitative reverse transcription analysis (RT-PCR)
and quantitative real-time PCR (qRT-PCR)

The analyses were performed using 1 ug of DNase I (Fermentas)

treated total RNA from ovaries or carcasses. cDNA was prepared

using First Strand cDNA Synthesis Kit and random hexamer

primers (Fermentas). 2 ul of 5-fold diluted cDNA were used in 30 ul

Taq-polymerase PCR mix (SibEnzyme) with 35 amplification cycles.

qRT-PCR was done with 3 biological replicates and carried out

using 5x SYBR Green PCR Master Mix (Evrogen) in accordance

with the manufacturer’s protocol. Quantification was normalized

to the endogenous rp49 and calculation of relative expression levels

was done using the 2-ddCt method.

Primers used in the study:

q-uly6798-f: 59-AAGGAATGCCTAGCCGCCAAA-39

q-uly6958-r: 59-AACGCTTGCAGTTCGAGGGA-39

q-gypsy6113-f: 59-ACACGTTGGCGGAATGCGAAA-39

q-gypsy6254-r: 59-TGAGTGTGGCAGTTGGCGATG-39

q-paris-f: 59-ACGGACCCAGCAAAGTTTGGAGAA-39

q-paris-r: 59-AGCTCACCAACACCTTTCGACGAT-39

q-penelope-f: 59-ACGGTGAGGAGCTAGTGCAAACAA-39

q-penelope-r: 59-TTCGTGTCTGTTCCACTGTGTCCA-39

q-helena-f: 59-TGGCTCTATGGAGTGCAGATTTGG-39

q-helena-r: 59-TCGACTGTGTGCACTTTGAGGTCT-39

dvir_rp49-f: 59-TTACGGTTCCAACAAGCGCACC-39

dvir_rp49-r: 59-GCGCTCAACAATCTCCTTGCGT-39

Small RNA libraries
GEO accession number: GSE22067
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