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� Muscle mass is not low in patients with MAFLD and
high liver stiffness.

� In contrast, myosteatosis is strongly associated with
liver stiffness.

� Lower myosteatosis after dietary intervention is
associated with improved MAFLD.
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The fat content in skeletal muscles (or myosteatosis) is
strongly associated with liver stiffness in obese pa-
tients with MAFLD. After a dietary intervention, pa-
tients in which the degree of myosteatosis decreased
also reduced their liver stiffness. The potential
contribution of myosteatosis to liver disease progres-
sion should be investigated.
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Background & Aims: Retrospective cross-sectional studies linked sarcopenia and myosteatosis with metabolic dysfunction-
associated fatty liver disease (MAFLD). Here, we wanted to clarify the dynamic relationship between sarcopenia, myosteatosis,
and MAFLD.
Methods: A cohort of 48 obese patients was randomised for a dietary intervention consisting of 16 g/day of inulin (prebiotic)
or maltodextrin (placebo) supplementation. Before and after the intervention, we evaluated liver steatosis and stiffness with
transient elastography (TE); we assessed skeletal muscle index (SMI) and skeletal muscle fat index (SMFI) (a surrogate for
absolute fat content in muscle) using computed tomography (CT) and bioelectrical impedance analysis (BIA).
Results: At baseline, sarcopenia was uncommon in patients with MAFLD (4/48, 8.3%). SMFI was higher in patients with high
liver stiffness than in those with low liver stiffness (640.6 ± 114.3 cm2/ Hounsfield unit [HU] vs. 507.9 ± 103.0 cm2/HU, p =
0.001). In multivariate analysis, SMFI was robustly associated with liver stiffness evenwhen adjusted for multiple confounders
(binary logistic regression, p <0.05). After intervention, patients with inulin supplementation lost weight, but this was not
associated with a decrease in liver stiffness. Remarkably, upon intervention (being inulin or maltodextrin), patients who
lowered their SMFI, but not those who increased SMI, had a 12.7% decrease in liver stiffness (before = 6.36 ± 2.15 vs. after =
5.55 ± 1.97 kPa, p = 0.04).
Conclusions: Myosteatosis, but not sarcopenia, is strongly and independently associated with liver stiffness in obese patients
with MAFLD. After intervention, patients in which the degree of myosteatosis decreased reduced their liver stiffness, irre-
spective of body weight loss or prebiotic treatment. The potential contribution of myosteatosis to liver disease progression
should be investigated.
Clinical Trials registration number: NCT03852069.
Lay summary: The fat content in skeletal muscles (or myosteatosis) is strongly associated with liver stiffness in obese patients
with MAFLD. After a dietary intervention, patients in which the degree of myosteatosis decreased also reduced their liver
stiffness. The potential contribution of myosteatosis to liver disease progression should be investigated.
© 2021 The Authors. Published by Elsevier B.V. on behalf of European Association for the Study of the Liver (EASL). This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction
Metabolic dysfunction-associated fatty liver disease (MAFLD) is
the most common chronic liver disease in the world.1 MAFLD
spectrum ranges from metabolic associated fatty liver (MAFL),
affecting 25% of the world adult population, to MAFLD, which
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may potentially lead to fibrosis, cirrhosis, and hepatocellular
cancer.1 Current evidence designates advanced fibrosis as the
main determinant of long-term prognosis in patients with
MAFLD, as fibrosis associates with hepatic and extrahepatic
complications as well as with mortality.1 Fibrosis is mainly
driven by hepatocellular injury and ongoing (or chronic)
inflammation.1

Sarcopenia, defined by generalised loss of skeletal muscle
mass and strength (the latter data being rarely available,
although recommended by international consensus2,3), has
gained attention during the past decade as a predictor of disease
outcome.4 Indeed, sarcopenia strongly and independently pre-
dicts complications and mortality in several chronic diseases,
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irrespective of the organ involved and of the aetiology.5,6 In the
context of MAFLD, numerous studies report a strong association
between ‘a low skeletal muscle index’ (being the muscle mass
scaled on height squared, weight, or BMI) and liver fibrosis
severity, even in the absence of cirrhosis.7

Muscle fat infiltration (or myosteatosis) is a pathological
feature8 that frequently co-exists with sarcopenia.9,10 Myo-
steatosis is described in obesity, diabetes, and metabolic syn-
drome.8,11 Studies that investigate myosteatosis in MAFLD are
scarce.12–14 Indeed, in contrast with bioelectrical impedance
analysis (BIA) or dual-energy X-ray absorptiometry (DEXA),
which readily evaluates muscle mass, the assessment of myo-
steatosis requires computed tomography (CT) or magnetic
resonance imaging (MRI),15 infrequently performed in cohorts of
individuals with MAFLD.

Inulin-type fructans (ITF) have been shown to be beneficial in
the context of obesity,16 a condition highly associated with
MAFLD.17 Between 2016 and 2018, we conducted a multicentre
intervention trial in obese patients presenting comorbidities in
the context of the Food4Gut.18 This clinical intervention (a
randomised, single-blinded, and placebo-controlled trial) aimed
to evaluate the impact on metabolic comorbidities of 16 g/day
native inulin (prebiotic group) vs. maltodextrin (placebo group),
coupled to dietary advice to consume inulin-rich (for the prebi-
otic group) vs. inulin-poor (for placebo) vegetables during 3
months, in addition to 30% caloric restriction.18 In this trial,
inulin supplementation was associated with a greater weight
loss and substantial improvement of metabolic parameters, but
the effects on skeletal muscle have not been investigated.18

In a sub-cohort of the Food4Gut trial, we aimed at clarifying
the dynamic relationship between sarcopenia, myosteatosis, and
MAFLD severity as reflected by liver stiffness. We first developed
a low-dose CT scan protocol dedicated to the analysis of skeletal
muscle mass and fat content evaluation. We then evaluated
muscle parameters as well as liver stiffness before and after the
dietary intervention consisting of a caloric restriction diet with
prebiotic (inulin) or placebo (maltodextrin) supplementation.
Total CT-scan (n = 48)

CTDIvol (mGy) 3.59 ± 1.65
Dose length product (mGy*cm) 65.55 ± 31.95
Average number of slice 22.62 ± 3.93
CT-scan feasibility rate (%) 100 

Fig. 1. Feasibility of a low-dose CT scan acquisition to measure body
composition. (Top) Illustration of L3 centred abdominal slice to measure
skeletal muscle area. (Bottom) Radiation data induced by low-dose CT protocol.
CT, computed tomography; CTDIvol, volume CT dose index; L3, third lumbar
level.
Methods
Patients cohort and dietary intervention
Patients who participated to a multicentric randomised placebo-
controlled trial and who were recruited in the single centre of
Saint-Luc hospital were selected for this study (Fig. S1).18 The
inclusion criteria were as follows: BMI >30 kg/m2, aged from 18
to 65 years, Caucasian ethnicity, presence of at least 1 obesity-
related metabolic disorder (prediabetes/diabetes, dyslipidae-
mia, hypertension (HT), elevated alanine aminotransferase [ALT]/
aspartate aminotransferase [AST]/c-glutamyl transferase [cGT]
suggestive of MAFLD). The exclusion criteria included the use of
antibiotics and probiotics/prebiotics and ongoing diets (e.g. high-
protein, high-fibre diet) within 6 weeks of enrolment, excessive
alcohol consumption (more than 3 glasses/day), type 1 diabetes,
or other cause of chronic liver disease (e.g. viral hepatitis and
genetic disease). Following the screening, all participants were
randomised to consume either 16 g/day of native inulin
(extracted from chicory root, Cosucra, Belgium) or 16 g/day of
maltodextrin (Cargill, Belgium), provided in an identical pack-
aging, for a total duration of 3 months. The participants met a
dietician before and monthly during the intervention. At base-
line, the dietician calculated energy expenditure of the partici-
pants in order to prescribe a hypocaloric diet corresponding to
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−30% of the calculated energy expenditure. In addition, all par-
ticipants received a cookbook with recipes based on vegetables
either rich or poor in fructans according to the inulin vs. placebo
randomisation and were advised to consume at least 1 meal
proposed in the cookbook per day.

This study was approved by the ‘Comité d’éthique Hospitalo-
facultaire de Saint-Luc’. Written informed consent was obtained
in compliance with the European law 2001/20/CE guidelines
from all participants before inclusion. The authors ensure that
the study has been carried out in accordance with the ethical
guidelines set out in the Declaration of Helsinki. The trial pro-
tocol was published on protocols.io (dx.doi.org/10.17504/proto-
cols.io.baidica6), and the trial was registered at ClinicalTrials.gov
under identification number NCT03852069. At baseline, a total of
48 patients were considered based on the concomitant avail-
ability of liver and muscle evaluation with transient elastography
(TE) and CT scan, respectively (Fig. S1). All patients (n = 48)
underwent dietary intervention for a period of 3 months, but 35
had TE and CT scan available after this nutritional intervention
(inulin n = 16 and maltodextrin n = 19) and thus were included to
evaluate the effects of the intervention (Fig. S1).
Evaluation of metabolic and liver parameters
Metabolic and blood parameters such as weight, height, waist
circumference, glycaemia, haemoglobin A1c (HbA1c), AST, ALT,
cGT, and lipid profile were measured at baseline (M0) and after 3
months of intervention (M3). Liver stiffness and controlled
attenuation parameter (CAP) measurements were performed
using TE (FibroScan®, Echosens, Paris, France) by 1 single expe-
rienced operator (NL).19 Patients were stratified based on the
result of the CAP and liver stiffness measurements, as previously
described19–21 and detailed in our initial analysis.22 A liver
stiffness >−7.8 kPa if measured with the M probe or >−6.4 kPa if
2vol. 3 j 100323
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Table 1. Characteristics of obese patients with MAFLD before intervention.

Total patients (n = 48)

Age (years) 50 ± 11
BMI (kg/m2) 36 ± 6
Female sex (%) 24 (50%)
Alanine aminotransferase (U/L) 40 ± 25
Aspartate aminotransferase (U/L) 26 ± 12
CAP (dB/m)

Mild steatosis 265 ± 26 (n = 13)
Severe steatosis 347 ± 27 (n = 35)

Liver stiffness (kPa)
Low stiffness 5.0 ± 1.3 (n = 36)
High stiffness 10.4 ± 3.0 (n = 12)

BIA–fat-free mass (kg) 67.0 ± 13.1
BIA-SMIbw (%) 63.2 ± 8.4
BIA-SMIht2 (kg/m2) 22.6 ± 3.2
Skeletal muscle index (cm2/m2) 59.5 ± 11.9
Skeletal muscle density (HU) 32.9 ± 6.5
Patients with sarcopenia (%) 4 (8.3%)

BIA, bioelectrical impedance analysis; BIA-SMIbw, BIA–SMI scaled on body weight;
BIA-SMIht2, BIA–SMI scaled on height squared; CAP, controlled attenuation param-
eter; HU, Hounsfield unit; MAFLD, metabolic dysfunction-associated fatty liver dis-
ease; SMI, skeletal muscle index.
measured with the XL probe was defined as ‘high liver stiff-
ness’.21 In the context of MAFLD, the cut-off of 296 dB/m was
used to define severe steatosis.20
Evaluation of skeletal muscles
On the day of TE analysis, muscle mass was assessed by bio-
impedance devices (BIA 101, Akern, Italy; Biocorpus, Medi Cal,
Germany; Tanita BC-418 MA, Tanita, UK), and an abdominal CT
scan at the third lumbar level (L3) was performed to measure
muscle mass and density indexes. Of note, we used a dedicated
low-dose protocol centred at the L3 and evaluated the induced
volume CT dose index (CTDIvol) and the dose–length product
(DLP). We used Hounsfield unit (HU) values at the commonly
accepted threshold of −29 to +150 HU23 to semi-automatically
delineate psoas, dorsal, and abdominal muscles. Muscle area
and density were quantified by the Slice-O-Matic software,
version 4.3 (TomoVision, Montreal, Canada). Total muscle area
was normalised for stature and was referred to as the skeletal
muscle index (SMI) (cm2/m2). Sarcopenia was defined as a SMI
<41 cm2/m2 in female and <53 cm2/m2 in male.24 We measured
the mean skeletal muscle density (SMD), and the absolute
amount of fat in the muscle was computed as the ratio of the
muscle area in cm2 by muscle density in HU. This ratio,
Table 2. MAFLD severity is associated with a higher rather than a lower mus

Muscle mass indexes Mild
steatosis
(n = 35)

Severe
steatosis
(n = 13)

CT–skeletal muscle index (cm2/m2) 53.3 ± 13.1 61.9 ± 10.7 +1
CT–psoas muscle mass index (cm2/m2) 6.8 ± 2.4 8.2 ± 2.0 +
CT–whole body fat-free mass (kg) 52.7 ± 13.6 60.8 ± 11.4 +1
CT–appendicular skeletal
muscle/height2 (kg/m2)

7.0 ± 1.4 8.0 ± 1.2 +1

BIA–fat-free mass (kg) 62.4 ± 12.7 68.4 ± 12.9
BIA-SMIbw (%) 62.3 ± 9.5 63.6 ± 8.1
BIA-SMIht2 (kg/m2) 20.1 ± 2.6 23.1 ± 3.2 +1

CT–skeletal muscle index: whole muscle area at L3 divided by height2; CT–psoas muscle
fat free mass derived from the prediction model (see Methods); CT–height-scaled ap
height2; BIA–fat-free mass: fat-free mass derived from BIA; BIA-SMIbw: BIA–body weigh
SMIht2: BIA–height-scaled skeletal muscle index: BIA–fat-free mass divided by height2.
Values in bold indicate statistical significance. BIA, bioelectrical impedance analysis; CT
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multiplied by 100, is referred to as the skeletal muscle fat index
(SMFI). For simplification, the term “myosteatosis” will be used
to denote a high(er) SMFI or absolute muscle fat content. All CT
images were analysed by a single operator (MN), unaware of
metabolic and TE data.
Statistics
Data are presented as mean ± SD unless specified otherwise.
Statistical analyses were performed using 2-tailed Student’s t test
(equal variance) or Welch’s t test (unequal variance) or 2-way
ANOVA followed by Bonferroni’s post hoc test using GraphPad
Prism 8 software. Multivariate analysis were performed on SPSS
(v24) using binary logistic regression, linear regression, and a
repeated-measures t test after intervention. Correlation was
computed using Pearson’s or Spearman’s coefficients (if ordinal
variables or normality assumption rejected per Shapiro–Wilk’s
test). All parameters were systematically checked for collinearity.
Differences were considered significant at values of p <0.05.
Results
A low-dose CT protocol enables muscle evaluation with a
limited amount of radiation
CT images at L3 is internationally recognised as the imaging gold
standard to evaluate skeletal muscle mass and density.2 We first
evaluated the radiation exposure of a low-dose protocol dedi-
cated to muscle evaluation (Fig. 1). CTDIvol was 3.59 ± 1.65 mGy,
and mean DLP was 65.55 ± 31.95 mGy*cm. CT scanwas feasible in
100% of patients (48/48) (Fig. 1), and CT images were successfully
used to measure muscle area (i.e. combination of psoas, erector
spinae, quadratum lumborum, oblique, and rectus) and densities
(HU) (see below).
Sarcopenia is uncommon in obese patients with MAFLD
Baseline characteristics of the 48 obese patients are shown in
Table 1. Mean BMI was 36 ± 6 kg/m2. Severe steatosis was found
in 35 patients, and 12 had high liver stiffness (2 female and 10
male). Mean BIA–fat-free mass (BIA-FFM) was 67.0 ± 13.1 kg,
BIA–SMI scaled on body weight (BIA-SMIbw) was 63.2% ± 8.4%,
and BIA-SMI scaled on height squared (BIA-SMIht2) was 22.6 ± 3.2
kg/m2. Mean CT-SMI was 59.5 ± 11.9 cm2/m2. Four out of 48
patients (8.3 %) had CT-defined sarcopenia (i.e. CT-SMI <41 cm2/
m2 and <53 cm2/m2 in female and male, respectively).24 Among
them, only 1 had high liver stiffness. Hence, sarcopenia was
cle mass.

D p value Low liver
stiffness
(n = 36)

High liver
stiffness
(n = 12)

D p value

6.0% 0.025 58.0 ± 11.6 64.2 ± 11.4 +12.7% 0.115
19.6% 0.059 7.6 ± 2.3 8.3 ± 1.8 +9.4% 0.367
5.4% 0.043 56.1 ± 12.2 66.0 ± 10.1 +17.8% 0.016
4.2% 0.025 7.5 ± 1.3 8.2 ± 0.3 +9.3% 0.151

+9.7% 0.190 63.5 ± 12.2 76.7 ± 10.8 +19.5% 0.002
+2.1% 0.691 62.8 ± 8.7 64.4 ± 7.6 +2.3% 0.556
0.4% 0.045 21.9 ± 2.5 24.7 ± 4.0 +13.8% 0.006

mass index: psoas muscle area at L3 divided by height2; CT–fat-free mass: whole body
pendicular muscle mass index: CT–estimated appendicular muscle mass divided by
t-scaled skeletal muscle index: BIA–fat-free mass × 100 divided by body weight; BIA-
D: percentage change between means. Student’s t test was used to compare means.
, computed tomography; L3, third lumbar level.
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Variables

Fat content (g)

Muscle volume
(cm3)

Fat concentration
(g/cm3)

CT - Skeletal
muscle density or
SMD (HU)
CT - Skeletal
muscle fat index
or SMFI

Illustrating values for all variables. Fat concentration: fat content/muscle volume. CT-Skeletal muscle
density: 1/fat concentration. CT-Skeletal muscle fat index: muscle volume * 100/CT-Skeletal
muscle density.
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Fig. 2. Rationale for SMFI development. (A) Illustration of rationale behind
SMFI development; (B) whole SMD and SMDpsoas; and (C) SMFI and SMFIpsoas
in patients with low LS vs. those with high LS (2-tailed Student’s t test, n = 48).
All data are mean ± SD. Significant differences are considered at p <0.05. CT,
computed tomography; HU, Hounsfield unit; LS, liver stiffness; SMD, skeletal
muscle density; SMDpsoas, psoas muscle density; SMFI, skeletal muscle fat in-
dex; SMFIpsoas, psoas fat index.
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uncommon in this cohort of obese patients and was not associ-
ated with high liver stiffness.

Increasing MAFLD severity is associated with a higher rather
than a lower muscle mass
Disconcerted by the low prevalence of sarcopenia in this cohort,
we next questioned whether patients with MAFLD and high liver
stiffness had a lower muscle mass than had those with low liver
stiffness. We computed CT-SMI, CT-psoas muscle index (CT-PMI),
CT-based whole-body FFM and appendicular muscle mass
derived from validated formulae,25 BIA-derived appendicular
muscle mass index scaled on body weight (SMIbw) or height
squared (BIA-SMIht2) and stratified the patients according to liver
steatosis and stiffness (Table 2).

CT-SMI and CT-FFM were higher in patients with severe
steatosis (+16%, p = 0.025, and +15.4%, p = 0.043, respectively) or
with high liver stiffness (+12.7%, p = 0.115 and +17.8%, p = 0.016,
respectively). BIA-SMIht2 was higher in patients with severe
steatosis (+10.4%, p = 0.045) or high liver stiffness (+13.8%, p =
0.006) than in those with mild steatosis and low liver stiffness,
respectively. Of note, we found a high correlation between CT-
SMI and BIA-SMIht2 (Table S1). Thus, obese patients with severe
MAFLD (i.e. severe steatosis or high liver stiffness) have a larger –
rather than an expected lower – muscle mass.

Rationale behind SMFI use and application to obese patients
with high liver stiffness
We then evaluated whether other muscle features were associ-
ated with high liver stiffness. CT-based SMD (in HU) is inversely
related to muscle lipid concentration26 and is commonly used as
a marker of myosteatosis. However, in the context of significant
muscle hypertrophy (as shown above), the absolute lipid con-
tent, rather than the lipid concentration, might better describe
lipid infiltration. Thus, we considered SMFI, wherein muscle area
is divided by muscle density, as we have recently described in a
large cohort of obese patients.27 As shown in Fig. 2A, SMFI better
reflects on the total amount of fat in muscle than muscle density
and is particularly relevant to appreciate fat content if muscle
mass differs according to disease status.

We separated the cohort according to liver stiffness measure-
ments. There was a trend for lower whole SMD and lower psoas
muscle density (SMDpsoas) in patients with high liver stiffness than
in those with low liver stiffness (Fig. 2B). The trend remained upon
stratification for sex (Fig. S2B). Remarkably, SMFI whether inwhole
skeletal muscle at L3 (SMFI) as well as in psoas alone (SMFIpsoas)
was 22% higher in patients with high liver stiffness than in those
with low liver stiffness (p <0.001 and p = 0.07 for SMFI and
SMFIpsoas, respectively) (Fig. 2C). The difference in SMFI between
patients with high and low liver stiffness was larger in females
(+34%) than in males (+11%) (Fig. S2B). When SMFI data were
grouped according to sex-specific quartile (Fig. S2C), none (0/12) of
the patients in the lowest SMFI quartile (Q1) had high liver stiff-
ness, whereas 50% (6/12) of patients in the highest SMFI quartile
(Q4) had high liver stiffness. Hence, the prevalence of high liver
stiffness is greater in patients with myosteatosis.

SMFI is a significant predictor of liver stiffness
We found a significant correlation between liver stiffness and
SMFI (Fig. S3) and thus sought to determine whether SMFI was a
4JHEP Reports 2021 vol. 3 j 100323



significant predictor of liver stiffness. We applied a linear
regression model adjusted for age, sex, visceral obesity (waist
circumference), and probe type. SMFI was the only significant
predictor of liver stiffness (p = 0.032) (Table S2).

The association between myosteatosis and liver stiffness is
independent of age, sex, liver steatosis, ALT, HbA1c, and
hypertension
To determine whether the relationship between myosteatosis
(evaluated with SMFI) and liver stiffness is robust, we used
multivariate analysis to account for potential metabolic con-
founders (Table 3). The relationship remained significant when
the models were adjusted for sex, age, liver steatosis, ALT, and
HbA1c level and HT status. When considered alone, SMFI had a
high power to predict high liver stiffness (AUROC = 0.82, 95% CI
0.70–0.94) (Table 3). These data support a strong and indepen-
dent relationship between SMFI and liver stiffness.

Inulin supplementation causes a decrease in body weight and
muscle density but does not affect liver stiffness
Patients (n = 48) received dietary instructions to be followed for
3 months and were randomly assigned to maltodextrin or inulin
supplementation. In 35 out of the 48 patients, a CT scan was
available at M3 (16 in the inulin group and 19 in the maltodex-
trin group). We analysed muscle and liver changes between M0
and M3 (Table S3). Patients with inulin supplementation lost
weight significantly (Fig. S4A), tended to lower their muscle
mass (Fig. S4B), and decreased their muscle density significantly
(Fig. S4C) when compared with those supplemented in malto-
dextrin in whom the changes were not significant. The inter-
vention (diet and supplementation with maltodextrin or with
inulin) had no effect on SMFI (Fig. S4D), liver steatosis (Fig. S4E),
Table 3. The association between SMFI and high LS is independent from age

Binary logistic regression Parameters

Unadjusted —

Age, sex adjusted Age, sex
Multivariate model 1 Age, sex, liver steatos
Multivariate model 2 Age, sex, liver steatos
Multivariate model 3 Age, sex, liver steatos
Multivariate model 4 Age, sex, liver steatos
Multivariate model 5 Age, sex, liver steatos
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Multivariate analysis performed using binary logistic regression. ALT, alanine aminotra
pertension; LS, liver stiffness; SMFI, skeletal muscle fat index.
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or liver stiffness (Fig. S4F). Of note, liver stiffness was positively
correlated with ALT and AST, whether at M0 or M3 (Fig. S5).
Patients in whom the intervention reduced the SMFI also had
a decrease in liver stiffness
We then analysed the data the other way around and stratified
patients according to changes in metabolic or muscle parameters
and evaluated the associated changes in liver stiffness (Fig. 3),
regardless of the dietary supplementation. Liver stiffness was
unchanged in patients who experienced weight loss, reduction in
liver steatosis, increase in muscle mass, or increase in muscle
density from M0 to M3 (Fig. 3A–D). Remarkably, liver stiffness
significantly decreased (−12.7%, p = 0.04) in patients who expe-
rienced a decrease in SMFI (Fig. 3E). This finding was not
explained by intervention allocation (Fig. S6A) or differences in
anthropometrical, body composition or liver parameters at M0
(Table S4). There was a significant correlation between the
change (i.e. delta M0–M3) in SMFI and the change in liver stiff-
ness (r = 0.40, p = 0.012) (Fig. S6B). We therefore evaluated the
factors associated with decreased SMFI (Table 4). The patients
with decreased SMFI decreased their body weight and liver
steatosis, had a stable muscle mass, and significantly increased
their muscle density. Hence, these patients had a decreased
muscle lipid concentration (i.e. reflected by the increase of
muscle density), whereas their muscle mass remained stable,
which is compatible with a decrease of absolute lipid content
and reflected by a decreased SMFI. Taken together, these results
support a highly dynamic association between myosteatosis
(evaluated here by SMFI that captures the absolute lipid content
in muscle) and liver stiffness.
, sex, liver steatosis, ALT, HbA1c, or HT.

p value for SMFI

0.004
0.017

is (CAP) 0.035
is (CAP), ALT 0.032
is (CAP), ALT, HbA1c 0.029
is (CAP), ALT, HbA1c, HT 0.048
is (CAP), ALT, HbA1c, HT, BMI 0.072

60 80 100

dict high LS

ecificity%

C = 0.82

p=0.001
n=48

nsferase; CAP, controlled attenuation parameter; HbA1c, haemoglobin A1c; HT, hy-
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Fig. 3. Patients with improved SMFI had decreased liver stiffness. Liver stiffness changes when patients were stratified according to (A) BW loss degree (0–3%
vs. >3%), (B) liver steatosis changes measured with CAP (unchanged or increased = CAP 0/+, decreased = CAP −), (C) SMI changes (decreased = SMI −, unchanged or
increased = SMI 0/+), (D) SMD changes (unchanged or decreased = SMD 0/−, increased = SMD +), and (E) SMFI changes (unchanged or decreased = SMFI 0/−,
increased = SMFI +) (paired sample t test, n = 35). All data are mean ± SD. Significant differences are considered at p <0.05. BW, body weight; CAP, controlled
attenuation parameter; SMD, skeletal muscle density; SMFI, skeletal muscle fat index; SMI, skeletal muscle index.

Research article
Discussion
The relationship between skeletal muscle and liver status in
chronic liver diseases (and in particular in MAFLD) is a hot topic.
In this pilot prospective interventional study, we used a low-dose
CT scan protocol centred on L3 to evaluate skeletal muscle.25 L3-
centered images for muscle assessment are usually derived from
abdominal CT scan performed in standard care, for example, in
patients with cancer5 or cirrhosis.9 Abdominal CT scan might be
deemed unacceptable if only for the purpose of muscle evalua-
tion, notably because of the high effective radiation dose induced
to the patient (approximatively 10 mSv,28,29 a dose x3 years’
cumulation of natural background radiation). The dedicated low-
dose protocol we used here had a mean DLP of 65.55 mGy*cm
and induced an effective radiation dose that approximates to 1
mSv,30 a dose 10 times lower than that for a standard abdominal
CT scan28,29 and equivalent to that for a standard abdominal
plain film.28 This protocol is thus safely applicable in clinical
trials for metabolic diseases.

We found, in contrast with the current literature,31 that sar-
copenia was uncommon in obese patients with MAFLD. In
addition, patients with severe MAFLD (severe steatosis or high
Table 4. Factors associated with decreased SMFI.

M0

Body weight (kg) 108.05 ± 19.04
Skeletal muscle index (cm2/m2) 59.41 ± 13.86
Skeletal muscle density (HU) 30.74 ± 7.00
CAP (dB/m) 341.00 ± 41.08

A repeated-measures t test was used to compare mean differences. Values in bold indica
M0, baseline; M3, end of the 3-month intervention; SMFI, skeletal muscle fat index.

JHEP Reports 2021
liver stiffness) also had a higher or similar muscle mass – but
certainly not a lower muscle mass – when compared with those
with non-severe MAFLD. In studies exploring the muscle
compartment in cohorts of individuals with MAFLD, muscle mass
is commonly scaled on weight or BMI instead of height.14,32

However, it is now well known that the association between
sarcopenia and MAFLD is highly dependent on the scaling
methodology.33 Bearing in mind that obesity per se is associated
with MAFLD,1 the alleged ‘relative muscle mass and/or strength’
described in patients with MAFLD might therefore merely reflect
the association between MAFLD and obesity. The gold standard
CT-based SMI used here levels out this concern as SMI is scaled
on height as per international consensus2,3 and thus is not dis-
torted or tampered by obesity. Hence, our data support that,
irrespective of the BIA, DEXA, CT, or MRI methodology used, raw
and/or height-scaled SMI should be systematically reported,
especially so in cohorts in which the prevalence of overweight or
obesity is high. This could help avoid hasty and incorrect con-
clusions and put to rest the erroneous but now dogmatic asso-
ciation between sarcopenia and MAFLD. To further re-enforce
this view, Chen et al.34 recently reported in 2,249 patients a
SMFI-(n = 15)

M3 D p value

106.25 ± 19.18 −1.7% 0.016
57.37 ± 12.70 −3.5% 0.161
32.55 ± 6.54 +5.6% 0.026

328.40 ± 45.87 −3.8% 0.059

te statistical significance. CAP, controlled attenuation parameter; HU, Hounsfield unit;
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lower weight-scaled SMI (26.1% vs. 27.4%, p <0.0001) but a higher
total FFM and appendicular lean mass (ALM) (52.0 vs. 46.7 kg and
23.2 vs. 20.8 kg, respectively, p <0.0001), thus a higher muscle
mass in patients with MAFLD when compared with those
without MAFLD. A plausible explanation for the increased mus-
cle mass seen in obese patients with MAFLD is that the me-
chanical overload imposed by excessive body weight increases
anabolic (and eventually decreases catabolic) stimuli within the
skeletal muscle.35 This scenario might hold true until liver dis-
ease becomes critical and systemic catabolic and/or anti-anabolic
stimuli become predominant.

The most sticking finding in our study is that myosteatosis,
that is, total fat content in muscle, is dynamically associated
with liver stiffness. A potential association between fat infil-
tration within the skeletal muscle and MAFLD was reported by
other groups12–14 and in a large retrospective study in obese
patients.27 The initial analysis of our cohort of patients sup-
ports these findings,22 yet the relationship between myo-
steatosis and MAFLD and its evolution over time have been
poorly investigated so far. Myosteatosis translates 2 plausible
biological substratum: (1) the lipid concentration, evaluated
with CT-based density and expressed in HU, and (2) the abso-
lute lipid content in the muscle compartment (as defined by
the SMFI). It is univocally accepted that a high muscle lipid
concentration (hence low muscle density) is associated with
complications and poor prognosis in many end-stage dis-
eases.10,36,37 However, whether absolute increase in lipid con-
tent in the muscle compartment is clinically relevant is
unknown. Here, in the context of obesity-associated muscle
hypertrophy, a significant increase of muscle lipid content may
not necessarily translate into a lower muscle density.27 Indeed,
we observed a higher SMFI (and thus a higher lipid content) in
muscles of patients with high liver stiffness when compared
with those with low liver stiffness. This relationship was robust
and persisted in multivariate analysis when multiple con-
founders were accounted for. Hence, myosteatosis as evaluated
per SMFI is strongly associated with liver stiffness.

The data derived from the intervention experiment remark-
ably strengthen our key points. We first observed that a modest
diet-induced weight loss might be associated with a significant
decrease of muscle mass.38 This illustrates the potential hurdle of
weight loss in obese patients that have a low muscle mass at
baseline. Although rare in our cohort (8.3%), patients with sar-
copenic obesity can represent up to 35% of patients with end-
stage liver disease.39 In addition, we highlight that in patients
who maintained or gained muscle mass although they lost
weight, there was no decrease of liver stiffness. Therefore,
changes in muscle mass does not anticipate liver stiffness
improvement. By contrast, patients that decreased SMFI had a
decreased liver stiffness, irrespective of dietary supplementation.
In other terms, changes in absolute lipid content (i.e. myo-
steatosis) within skeletal muscle are inversely associated with
changes in liver stiffness. Why loss of weight was associated with
decreased myosteatosis in some patients and not in others is,
however, unclear. In our patients, decreased SMFI is associated
JHEP Reports 2021
with decreased/maintained muscle mass but increased muscle
density, hence decreased absolute fat content. These changes
were seen in a relatively short period of time (3 months), sug-
gesting that the relationship between myosteatosis and liver
stiffness is highly dynamic.

It is very tempting to speculate that myosteatosis could play
a role in liver disease pathophysiology. To this end, we recently
found that myosteatosis, but not sarcopenia, was a strongly
associated with non-alcoholic steatohepatitis (NASH) in pre-
clinical models.40 Thus, these models will be of great help to
decipher whether a causal link between myosteatosis and
MAFLD severity exists. Also, whether our observations hold
true in normal/overweight patients needs to be determined.

This study has several strengths. First, to the best of our
knowledge, it is the first prospective interventional study that
evaluated the muscle compartment with gold standard CT scan
in patients with MAFLD. Second, we developed a low-dose CT
scan protocol dedicated to muscle evaluation with a very
limited amount of radiation. Third, liver disease was evaluated
with TE, a widely validated methodology.41 Finally, a limited
number of patients and intervention duration were sufficient to
unravel a significant relationship between SMFI and liver
stiffness at baseline and after intervention. Some limitations
have to be acknowledged. First, we had a relatively low number
of patients with high liver stiffness that were not sex balanced.
Nonetheless, multivariate analyses, sex-specific quartile strat-
ification, and the intervention experiment strongly support our
hypothesis (i.e. that myosteatosis is strongly associated with
liver stiffness). Second, there were no patients without MAFLD.
Hence, we are unable to define what is a non-pathological
SMFI. However, our key point is that absolute muscle fat
quantity evaluated by SMFI is reflective of liver disease pro-
gression and regression within the MAFLD spectrum. Replica-
tion studies in large cohorts will be needed to define
pathological cut-off. Third, the improvement in liver stiffness in
patients that decreased SMFI after intervention was mild, but
we believe that in those patients with non-severe fibrosis, the
decreased in liver stiffness might reflect on decreased ‘MAFLD
severity’ (i.e. inflammation, ballooning, and fibrosis scores)
rather than on reduction of fibrosis alone.42,43 Further studies
with liver biopsies will be needed to determine the relative
proportion of liver stiffness changes attributable to each
parameter and their respective relationship with SMFI modu-
lation. Fourth, muscle strength was not evaluated. Taken
together, our data build on the growing rationale for large
prospective preclinical and clinical studies to investigate the
muscle–liver axis in MAFLD pathogenesis and treatment.

In conclusion, myosteatosis, but not sarcopenia, is strongly
and independently associated with liver stiffness in MAFLD
obese patients. After the nutritional intervention, the patients
presenting a decreased degree of myosteatosis exhibited a
reduced liver stiffness irrespective of body weight loss or pre-
biotic treatment. These data lay the foundation for investigating
the potential role of myosteatosis as a contributor to liver disease
progression and perhaps as a novel therapeutic target in MAFLD.
Abbreviations
cGT, c-glutamyl transferase; ALM, appendicular lean mass; ALT, alanine
aminotransferase; AST, aspartate aminotransferase; BIA, bioelectrical
impedance analysis; BMI, body mass index; CAP, controlled attenuation
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DEXA, dual-energy X-ray absorptiometry; DLP, dose–length product;
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