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Background: Genetic alterations have important roles in cancer development and progression. SKA2 
(spindle and kinetochore associated complex subunit 2) is a mitotic component that plays a critical role in 
maintaining the silence of the metaphase plate and spindle checkpoint. However, the exact role of SKA2 in 
hepatocellular carcinoma (HCC) remains unclear. The current study aimed to comprehensively identify the 
function of SKA2 in HCC. 
Methods: We utilized various databases and bioinformatics tools, such as The Cancer Genome Atlas 
(TCGA), survminer package, Tumor Immune Estimation Resource (TIMER), cBioPortal website, 
clusterProfiler package, gene set enrichment analysis (GSEA), miRWalk, TargetScanHuman8.0, miRDB, 
DIANA and Cytoscape to identify the role of SKA2 in HCC.
Results: Our results showed that patients with HCC exhibited a high SKA2 expression. Further, the SKA2 
high expression group had a worse overall survival (OS). And SKA2 was associated with tumor stage and 
the immune system. In addition, 188 co-expression genes of SKA2 participated in some processes including 
cell cycle, DNA replication and so on. The tumor had a lower hsa-miR-19b-1-5p and hsa-miR-378a-5p 
expression, and these two microRNAs (miRNAs) were also correlated with OS. SNHG14, SNHG15, and 
SPCA6P-AS were significantly negatively correlated with hsa-378a-5p, and these three long non-coding 
RNAs (lncRNAs) showed a positive correlation with SKA2 (P<0.05). SKA2 is a member of competing 
endogenous RNA (ceRNA). Moreover, it is related to SPACA6P-AS/hsa-miR-378a-5p/SKA2, SNHG14/
hsa-miR-378a-5p/SKA2, and SNHG15/hsa-miR-378a-5p/SKA2, which play significant roles in tumor 
progression. 
Conclusions: SKA2 is associated with OS, tumor stage, and immune infiltrating cells in HCC. Thus, we 
propose that SKA2 functions as a ceRNA and influences tumorigenesis. These findings lay the foundation for 
future research in the field of HCC. 
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Introduction

According to the Global Cancer Statistics 2020 report, liver 
cancer is the sixth most common primary cancer worldwide 
and has the third highest mortality rate. In most countries, 
men have a higher incidence of liver cancer than women (1).  
In 2030, liver cancer is projected to cause over 1 million 
deaths globally (2). In China, hepatitis B virus (HBV) 
infection and aflatoxin exposure are the primary causes 
of liver cancer (3), HBV infection is a chronic condition 
that affects over 250 million people worldwide, and nearly  
1 million deaths annually are caused by liver cirrhosis and 
liver cancer (4). Despite existing research on hepatocellular 
carcinoma (HCC), its therapeutic effect is not ideal. A 
previous study showed that the disease-free survival rates of 
patients who underwent resection was <70%, with a median 
over survival of 60.19 months. Moreover, the median time 
to recurrence was 20.2 months (5). Hence, its pathogenesis 
should be further explored. Another research has revealed 
that alterations or loss of function in certain genes can result 
in cancer development (6). Alpha-fetoprotein (AFP) is a 
biomarker currently used for the early diagnosis of HCC. 
However, the sensitivity of AFP in screening HCC ranges 
from 39% to 64%. Notably, in up to 20% of patients with 
HCC, AFP is not produced (7). Therefore, it is necessary to 
screen novel biomarkers for early diagnosis and to identify 
novel therapeutic targets for HCC by assessing changes in 

the gene function network related to the HCC development 
and progression.

The spindle and kinetochore-associated (SKA) complex 
is a mitotic component required for precise division 
of human cells and a key complex at the kinetochore 
microtubule interface, SKA complex and NdC80 complex 
participate in kinetochore-microtubule attachment during 
mitosis (8,9). The SKA complex is associated with the 
development and prognosis of many cancers, and its 
score may serve as a predictor of patients receiving anti-
programmed cell death protein-1 (PD-1)/programmed 
death ligand-1 (PD-L1) therapy (10). The core structure of 
the SKA complex is the W-shaped coiled coil dimer, which 
is formed by the interaction between SKA1 (spindle and 
kinetochore associated complex subunit 1), SKA2 (spindle 
and kinetochore associated complex subunit 2), and SKA3 
(spindle and kinetochore associated complex subunit 3). 
SKA2 and SKA3 form the skeleton of the dimerization 
interface and play a key role in maintaining the silence 
of the intermediate plate and spindle checkpoints, SKA3 
affects the migration, proliferation, reproduction of HCC 
cells through the notch signaling pathway, SKA2 is located 
in chromosome 17 (9,11-13), moreover, it plays essential roles 
in cell cycle progression, cell proliferation and tumorigenesis. 
Furthermore, the SKA2 gene expression is regulated 
by micro-RNAs (14). It has been shown that there is a 
significant association between circ_0008039, miR-140-3p 
and SKA2 in breast cancer (15). The competing endogenous 
RNA (ceRNA) axis is composed of mRNA, microRNA, and 
lncRNA, and it can significantly affect the development of 
some diseases. However, it may also provide novel avenues 
for disease therapies (16). Several studies have revealed that 
SKA2 influences liver cancer proliferation and migration via 
the β-catenin signaling pathway (17,18). SKA2 is related to 
tumor stage and tumor grade in HCC. The expression of 
SKA2 in liver cancer is related to race. The expression level 
is higher in Asian HCC patients, and the expression level 
of SKA2 is higher in HCC patients with TP53 mutations 
(19,20). However, knowledge regarding the regulatory 
network of SKA2 in HCC is limited. Therefore, this study 
aimed to analyze SKA2 using HCC data from The Cancer 
Genome Atlas (TCGA). Moreover, the ceRNA network was 
evaluated via bioinformatics analysis. 

Methods

Collection of data on the SKA2 expression

This study was conducted in accordance with the 
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Declaration of Helsinki (as revised in 2013). The Genomic 
Data Commons (GDC)-client tool was used to download 
HCC data on RNA-seq and miRNA-seq raw counts and 
clinical information from the TCGA database (http://
cancergenome.nih.gov/). After removing repeated samples, 
50 normal tissue samples and 373 tumor tissues samples 
were analyzed. Raw counts were converted to transcripts 
per kilobase of exon model per million mapped reads (TPM) 
and the expression of SKA2 was compared between normal 
and tumor samples.

Associations between the SKA2 expression and prognostic, 
tumor stage, and immune infiltrating cells

To integrate RNA-seq data with clinical information (survive 
days >0), the surv_cutpoint function of the survminer 
package in R was utilized to determine the optimal cutoff of 
continuous independent variables based on survival data. In 
addition, the association between the SKA2 expression and 
overall survival (OS) and tumor stage was analyzed using R 
software (version 4.2.0). In particular, TIMER is a database 
for comprehensive analysis of tumor-infiltrating immune 
cells, it was used to detect the association between the SKA2 
expression and six types of immune cells (21).

Functional enrichment analysis

The co-expression genes of SKA2 were determined using 
cBioPortal v3.7.1 (https://www.cbioportal.org/), cBioPortal 
is an open-source software project that allows us to explore 
multidimensional cancer genomics data. The screening 
criteria with a |correlation coefficient| >0.4 and P value 
<0.05 were applied. The identified genes were used to 
perform Gene Ontology (GO) analysis to determine BP 
(biological process), CC (cellular component), and MF 
(molecular function) term enrichment and perform Kyoto 
Encyclopedia of Genes and Genomes (KEGG) enrichment 
analysis using the R package clusterProfiler (22). In 
addition, the TCGA data of HCC were sorted based on the 
SKA2 expression and divided into the SKA2 high and low 
expression group according to the median. The data set was 
analyzed using gene set enrichment analysis (GSEA) 4.3.2 
software, GSEA is used to evaluate the distribution trends 
of genes from a predefined gene set in the gene table sorted 
with phenotype correlation, and thereby determine their 
contribution to the phenotype (23).

Identification of miRNAs

MiRWalk3.0 (http://mirwalk.umm.uniheidelberg.de/), 
TargetScanHuman8.0 (https://www.targetscan.org/
vert_80/), and miRDB (http://mirdb.org/) were utilized 
to predict the miRNAs of SKA2 (24-26). The miRNAs 
predicted by these tools were then intersected, and the 
miRNAs negatively associated with the SKA2 expression 
were further calculated. In addition, the expression of 
these miRNAs was determined using HCC miRNA-seq 
data from TCGA. To investigate the association between 
these miRNAs and OS, the surv_cutpoint function of the 
survminer package was used to determine the high and low 
expression groups.

Identification of lncRNAs

Based on the miRNAs predicted above, miRWalk2.0 
(miRWalk, miRanda, RNAhybrid, Targetscan) and DIANA 
(LncBase v2) were further utilized to predict their lncRNAs 
(24,27). Meanwhile, the predicted results were intersected, 
and the expression of these lncRNAs in both tumor and 
normal tissues was calculated using HCC data from TCGA.

Associations between lncRNAs and prognostic, miRNA 
expression, and immunity

The RNA-seq and clinical data were downloaded and 
integrated, and the surv_cutpoint function was used to 
determine the optimal cutoff value. Then, the association 
between the identified lncRNAs and OS was examined. 
Furthermore, the association between the identified 
lncRNAs, miRNA and SKA2 expression was evaluated.

Establishment of the ceRNA network 

As mentioned above, The Cytoscape software (version 
3.10.2) was used to draw the ceRNA network of the above-
mentioned genes, Cytoscape is an open-source software 
project for the integration of biomolecular interaction 
networks with high-throughput expression data and other 
molecular states into a unified conceptual framework (28).

Statistical analysis

Data were analyzed using the R software (version 4.2.0) 
and the unpaired t-test was used to calculate the difference 

http://cancergenome.nih.gov/
http://cancergenome.nih.gov/
https://www.cbioportal.org/
http://mirwalk.umm.uniheidelberg.de/
https://www.targetscan.org/vert_80/
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between two groups of continuously distributed variables. P 
value <0.05 was considered statistically significant.

Results

High SKA2 expression in HCC

According to the HCC data from TCGA, the tumor tissues 
had a significantly higher SKA2 expression than the normal 
tissues (P<0.05) (Figure 1A). As shown in Figure 1B, this 
was further confirmed by examining 50 paired normal and 
tumor tissues, which showed that SKA2 was overexpressed 
in tumor tissues (P<0.05).

Association between SKA2 and OS, tumor stage and 
immunity 

Data were divided into the two groups, SKA2 high group 
and the SKA2 low group based on the cutoff value of 
26.01625 according to the surv_cutpoint function. As 
shown in Figure 2A, the SKA2 high expression group had 
a worse OS than the SKA2 low expression group (P<0.05). 
In addition, the SKA2 expression was upregulated with 
increased tumor stage. However, it decreased in patients 
with stage IV disease (P<0.05), as shown in Figure 2B. 
Moreover, a significant association was observed between 
SKA2 expression and tumor stage (P<0.05). According 
to the TIMER, there was an association between the 
SKA2 expression and various immune cells. In particular, 
SKA2 was found to be associated with B cell (correlation 
coefficient =0.255, P<0.05), CD8+ cell (correlation 
coefficient =0.203, P<0.05), CD4+ cell (correlation 

coefficient =0.329, P<0.05), macrophage (correlation 
coefficient =0.409, P<0.05), neutrophil (correlation 
coefficient =0.265, P<0.05), and dendritic cell (correlation 
coefficient =0.283, P<0.05). This information sheds light 
on the correlation between the SKA2 expression and the 
immune system (Figure 2C).

Enrichment analysis of GO, KEGG, and GSEA

According to the screening criteria (Spearman’s correlation 
>0.4, P<0.05), the study identified 188 co-expression 
genes of the SKA2 in the cBioPortal website (https://www.
cbioportal.org/). The enrichment pathways of these co-
expression genes were analyzed. According to the analysis 
results using BP GO terms, these co-expression molecules 
were mainly enriched in mechanisms such as nuclear 
division, DNA replication, and regulation of cell cycle phase 
transition. The CC showed that these genes were related to 
chromosomal region, spindle, and condensed chromosome. 
Based on the MF, they were enriched in ATPase activity, 
DNA-dependent ATPase activity, and microtubule binding 
(Figure 3A). The KEGG results show that the co-expression 
molecules were mainly enriched in cell cycle, DNA 
replication, p53 signaling pathway, and so on (Figure 3B). 
As shown in Figure 3C, the GSEA results based on SKA2 
revealed that the group with high SKA2 expression were 
mainly enriched in cell cycle, oocyte meiosis and DNA 
replication.

Determination of miRNAs of SKA2

In total, 749 miRNAs of SKA2 were obtained from 

Figure 1 The expression of SKA2 in HCC. (A) Expression between normal and tumor tissues; (B) expression in paired normal and tumor 
tissues. *, P<0.05. SKA2, spindle and kinetochore associated complex subunit 2; HCC, hepatocellular carcinoma.
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Figure 2 The association between the SKA2 and OS (A), tumor stage (B), immunity (C). H, high expression group; L, low expression group. 
SKA2, spindle and kinetochore associated complex subunit 2; TPM, transcripts per kilobase of exon model per million mapped reads; LIHC, 
liver cancer; OS, overall survival.

Figure 3 Results of GO, KEGG enrichment analysis and GSEA. (A) GO terms for SKA2 co-expression genes; (B) KEGG terms for SKA2 
co-expression genes; (C) GSEA terms for SKA2 co-expression genes. BP, biological process; CC, cellular component; MF, molecular 
function; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; GSEA, gene set enrichment analysis; SKA2, spindle 
and kinetochore associated complex subunit 2.
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miRWalk 3.0 using a screening standard score >0.95. 
Meanwhile, 695 miRNAs were screened using TargetScan, 
and 78 miRNAs were obtained using miRDB. Then, 23 
miRNAs were obtained from the intersection of three 
databases [namely, miRWalk 3.0 (http://mirwalk.umm.
uni-heidelberg.de/), TargetScan (https://www.targetscan.
org/vert_80/), and miRDB (https://mirdb.org/)]. The 23 
miRNAs identified were hsa-miR-135a-3p, hsa-miR-19b-
1-5p, hsa-miR-3160-5p, hsa-miR-3176, hsa-miR-3177-
5p, hsa-miR-378a-5p, hsa-miR-3916, hsa-miR-3925-5p, 
hsa-miR-4330, hsa-miR-4433a-3p, hsa-miR-4524b-3p, 
hsa-miR-4690-5p, hsa-miR-5584-5p, hsa-miR-5588-5p, 
hsa-miR-595, hsa-miR-642a-3p, hsa-miR-6785-5p, Hsa-
miR-6799-5p, hsa-miR-6859-5p, hsa-miR-6867-3p, hsa-
miR-6867-5p, hsa-miR-6886-3p, and hsa-miR-877-5p. 
Furthermore, based on the downloaded data on miRNA 
in HCC, as shown in Figure 4A,4B, the cancer tissues 
had a lower hsa-miR-19b-1-5p and hsa-miR-378a-5p  
expression than the normal tissues. hsa-miR-19b-1-5p and 
hsa-miR-378a-5p were significantly associated with OS 
(Figure 4C,4D). Furthermore, the association between SKA2 
and these two miRNAs was evaluated. As shown in Figure 4, 
the expression of SKA2 was negatively correlated with hsa-

miR-378a-5p (P<0.05) (Figure 4F), but not with hsa-miR-
19b-1-5p (Figure 4E).

Determination of lncRNAs of miRNAs

DIANA (LncBase v2) was used to obtain 2317 lncRNAs 
related to hsa-miR-378a-5p, with a threshold >0.9. 
At least three algorithms from miRWalk, miRanda, 
RNAhybrid, and Targetscan were taken as the standard, 
and data from miRWalk2.0 were used to predicted 57 
lncRNAs. Meanwhile, 26 lncRNAs were obtained from 
the intersection of the two databases. As shown in Figure 5,  
12 lncRNAs were significantly highly expressed in the 
tumor tissues (P<0.05). These lncRNAs were AC005154.6, 
EXTL3-AS1, GABPB1-AS1, KCNQ1OT1, MALAT1, 
MUC19, NEAT1, RAMP2-AS1, SNHG14, SNHG15, 
SPACA6P-AS, TPTEP1.

Survival assessment of lncRNAs

The association between prognosis and 12 lncRNAs 
was analyzed. Figure 6 shows that 9 of the 12 genes  
were associated with OS (P<0.05). These genes were 

Figure 4 Relationship between miRNAs and SKA2 in HCC. (A,B) The hsa-miR-19b-1-5p and hsa-miR-378a-5p expression; (C,D) the 
association between survival and hsa-miR-19b-1-5p and hsa-miR-378a-5p expression; (E,F) the Pearson correlation coefficient of SKA2 and 
hsa-miR-19b-1-5p and hsa-miR-378a-5p. H, high expression group; L, low expression group. SKA2, spindle and kinetochore associated 
complex subunit 2; HCC, hepatocellular carcinoma.
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EXTL3-AS1, GABPB1-AS1, NEAT1, RAMP2-AS1, 
SNHG14, SNHG15, SPACA6P-AS, TPTEP1, and 
AC005154.6.

Analysis of the association between SKA2, miRNAs and 
lncRNAs

The association between SKA2 and miRNA as well as 
lncRNAs was analyzed. As shown in Figure 7A, SNHG14, 
SNHG15, and SPCA6P-AS were significantly negatively 
associated with hsa-378a-5p (P<0.05). In addition, these 
three lncRNAs were positively associated with SKA2 
(P<0.05), as depicted in Figure 7B.

Establishment of ceRNA network 

As shown in Figure 8, the SPACA6P-AS/hsa-miR-378a-5p/
SKA2, SNHG14/hsa-miR-378a-5p/SKA2, and SNHG15/
hsa-miR-378a-5p/SKA2 regulatory axes were identified.

Discussion

SKA2 is a protein-coding gene that plays a crucial role in 

the normal metabolism of the human body. Moreover, 
it is associated with various cellular processes such as 
cell cycle, tumorigenesis, and mental illnesses (14). For 
example, overexpression of SKA2 promotes the invasion 
and metastasis of breast cancer cells (15,29,30). SKA2 is 
highly expressed in gastric cancer and influences the tumor  
growth (31). In addition, it is associated with psychiatric 
disorders (32-35). However, its role in HCC is not 
completely elucidated. The current study aims to 
comprehensively investigate the role of SKA2 in HCC.

In this study, using the TCGA datasets, SKA2 was found 
to be overexpressed in the HCC tissues. This result is 
consistent with that of previous studies (17,18). Based on 
our findings, a high SKA2 expression could be a predictor 
of worse prognosis. This finding is supported by the study 
of Wang et al., which showed that a high SKA2 expression 
is associated with negative prognostic outcomes in breast 
cancer (29). In addition, Yu et al. found that the SKA family 
is associated with immune infiltrating cells (19). Our study 
revealed that the SKA2 expression was related to tumor 
stage and immune infiltrating cells. 

Next, GO and KEGG enrichment analysis of the co-
expression genes were performed. Results showed that 

Figure 5 The lncRNAs expression. *, P<0.05; **, P<0.01; ***, P<0.001; ****, P<0.0001.
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several genes were mainly enriched in several processes 
including DNA replication, chromosomal region, ATPase 
activity, and cell cycle. The GSEA analysis revealed that a 
high SKA2 expression was involved in cell cycle and DNA 
replication, which is consistent with the results of GO and 
KEGG enrichment analysis. Ding et al. have reported that 
the SKA family is associated with prognostic value and 
immune infiltration in breast cancer (36). Yu found that 
SKA complex is related to prognosis in gliomas (37).

MicroRNA is a single-stranded non-coding small RNAs, 

which mainly acts in post-transcriptional regulation and 
plays different roles in various pathological processes. It 
can be oncogenes or tumor suppressor factors (38). Recent 
literature has shown that miR-29a-3p affects the metastasis 
of HCC by targeting LOX, LOXL2, and VEGFA (39), 
Moreover, miR-125b expression is downregulated in HCC, 
and miR-125b has anti-metastatic properties (40), Zou et al.’s  
emphasized that LIX1L drives hepatocarcinogenesis 
and tumor progression via miR-21-3p (41). Our study 
performed a comprehensive screening and analysis, results 

Figure 6 Association between overall survival and lncRNAs. H, high expression group; L, low expression group.
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showed that hsa-miR-378a-5p was related to SKA2. 
Furthermore, the hsa-miR-378a-5p expression is low in 
tumors and is associated with prognosis. Previous studies 
have revealed that hsa-miR-378a-5p is significantly 
associated with the prognostic outcome of digestive system 
cancer (42) and sarcoma (43).

LncRNA is a type of RNA molecule that is >200 
nucleotides long. They play an essential role in various 
biological  processes,  including tumor metastasis , 
cancer development, DNA damage, tumor immune 
microenvironment, and metabolic reprogramming (44-49).  
It has been shown that lncRNA HERH-1 and HERH-4  

are involved in regulating cell cycle progression in 
advanced HCC (50). We predicted lncRNAs (SNHG14, 
SNHG15 and SPACA6P-AS) about hsa-miR-378a-5p, 
and they are overexpressed in HCC and associated with 
OS. According to RNALocate (51), SNHG14 is located in 
the insoluble cytoplasm, nuclear, cytosol, and membrane 
in HCC cell lines. A high SNHG14 expression promotes 
cell proliferation and colony formation and inhibits cell 
apoptosis in the HCC cells (52). In addition, SNHG14 is 
negatively associated with hsa-miR-378a-5p. SNHG14 is 
overexpressed in colorectal cancer, leading to enhanced cell 
proliferation and invasion (53). Furthermore, SNHG14 
promotes cell proliferation and angiogenesis via PTEN 
signaling in HCC (54). According to Du et al. research, 
SNHG15 is associated with breast cancer (55), and lncRNA 
SNHG15 contributes to oncogenesis by targeting miR-
506-5p (56). Finally, SPACA6P-AS act as a ceRNA, which 
promotes HCC oncogenicity (57).

Previous studies have revealed that ceRNA plays a 
significant role in various types of tumors. For instance, 
GAS6-AS1/miR-24-3p/GIMAP6 regulatory axes affect 
the progression of lung adenocarcinoma (58). Cao et al. 
has revealed that TMEM220-AS1 affects the proliferation 
and metastasis of liver cancer via the miR-484/MAG1 
axis (59). In addition, lncRNA SNHG14 enhances HCC 

Figure 7 Correlation analysis. (A) The association between hsa-miR-378a-5p and lncRNAs; (B) the association between SKA2 and 
lncRNAs. SKA2, spindle and kinetochore associated complex subunit 2.

Figure 8 ceRNA network. SKA2, spindle and kinetochore associated 
complex subunit 2; ceRNA, competing endogenous RNA.

SKA2

SPACA6P-AS

hsa-miR-378a-5p

SNHG15

SNHG14

A

B
hsa-miR-378a-5p hsa-miR-378a-5p hsa-miR-378a-5p

SKA2 SKA2 SKA2

S
N

H
G

14

S
PA

C
A

6P
-A

S
S

PA
C

A
6P

-A
S

S
N

H
G

15

S
N

H
G

14

S
N

H
G

15

15

10

5

0

−5

0.6

0.4 

0.2

0.0

0.6

0.4 

0.2

0.0

20

10 

0

15

10

5

0

20

10 

0

0	 500	 1000	 1500 0	 500	 1000	 1500 0	 500	 1000	 1500

0	 20	 40	 60 0	 20	 40	 60 0	 20	 40	 60

R =−0.194
P value =2e−04

R =−0.182
P value =5e−04

R =−0.11
P value =0.036

R =0.194
P value =2e−04

R =0.27
P value =2e−04

R =0.376
P value =9e−14



Translational Cancer Research, Vol 13, No 10 October 2024 5199

© AME Publishing Company.   Transl Cancer Res 2024;13(10):5190-5201 | https://dx.doi.org/10.21037/tcr-24-833

growth by acting as a molecular sponge of miR-876-5p to 
regulate SSR2 expression (60). Our study investigated the 
SPACA6P-AS/hsa-miR-378a-5p/SKA2, SNHG14/hsa-
miR-378a-5p/SKA2, and SNHG15/hsa-miR-378a-5p/
SKA2 regulatory axes HCC. Results showed that they may 
influence tumor growth, metastasis, and OS. 

Conclusions

SKA2 is significantly overexpressed in HCC and is 
associated with OS, tumor stage, and immune infiltrating 
cells. Furthermore, SKA2 is a member of ceRNA that 
affects tumorigenesis. These findings might provide a 
theoretical foundation for further research in the field of 
HCC.
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