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Abstract Morphogen signaling contributes to the patterned spatiotemporal expression of genes

during development. One mode of regulation of signaling-responsive genes is at the level of

transcription. Single-cell quantitative studies of transcription have revealed that transcription occurs

intermittently, in bursts. Although the effects of many gene regulatory mechanisms on

transcriptional bursting have been studied, it remains unclear how morphogen gradients affect this

dynamic property of downstream genes. Here we have adapted single molecule fluorescence in

situ hybridization (smFISH) for use in the Drosophila wing imaginal disc in order to measure nascent

and mature mRNA of genes downstream of the Wg and Dpp morphogen gradients. We compared

our experimental results with predictions from stochastic models of transcription, which indicated

that the transcription levels of these genes appear to share a common method of control via burst

frequency modulation. Our data help further elucidate the link between developmental gene

regulatory mechanisms and transcriptional bursting.

Introduction
Paracrine signaling is a highly conserved means for cells within a tissue to communicate with

one another to regulate diverse activities including proliferation, differentiation, apoptosis, and

movement. Many of these activities are mediated by changes in gene transcription that are

brought about by reception of the signals. Paracrine factors acting as morphogens are a particu-

larly important class of gene regulators. Morphogens form spatially-extended gradients from the

source of their synthesis, and elicit different transcription outputs from target genes, depending

on local concentration of the morphogen (Tabata and Takei, 2004). Many paracrine signals reg-

ulate gene transcription via control of the availability or activity of sequence-specific transcription

factors. Some transcription factors regulate assembly of the preinitiation complex composed of

Pol II and general factors at the transcription start site (Esnault et al., 2008). Other factors

recruit coregulators that modify nucleosomes or remodel the chromatin architecture of the gene

(Bannister and Kouzarides, 2011).

However, transcription is a dynamic process, and thus, molecular models of regulation via PIC

assembly or chromatin structure, do not adequately capture what kinetic steps in transcription

initiation are being regulated. Recently developed methods have uncovered greater complexity

in the transcription initiation process than previously imagined. Genes that are constitutively

expressed rarely show uniform and continuous mRNA synthesis. Rather, mRNA synthesis occurs

in bursts that are interrupted by periods of dormant output. This phenomenon is known as tran-

scriptional bursting (Chen et al., 2019; Chubb et al., 2006; Dey et al., 2015; Raj et al., 2006;

Suter et al., 2011).
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Various studies have explored how mechanisms of gene regulation affect the size and frequency

of transcriptional bursts, and thereby affect transcription output. The availability of transcription fac-

tors has been shown to affect burst frequency (Ezer et al., 2016; Larson et al., 2013;

Senecal et al., 2014). For example, the Drosophila transcription factors Bicoid and Dorsal have been

studied in great detail with respect to their effects on transcription burst frequency in the embryo

(Garcia et al., 2013; He et al., 2012; Holloway and Spirov, 2017; Little et al., 2013; Xu et al.,

2015). Enhancer strength and enhancer-promoter contact correlate with burst frequency of genes

(Bartman et al., 2016; Bothma et al., 2014; Chen et al., 2019; Fukaya et al., 2016; Larsson et al.,

2019). These studies altogether suggest that bursting frequency is potentiated by enhancer-pro-

moter contact and is mediated by transcription factors binding to DNA.

In this study, we have explored how the Wnt protein Wingless (Wg) and BMP protein Decapenta-

plegic (Dpp) regulate transcription dynamics of genes in the Drosophila wing imaginal disc. The Wnt

and BMP families of proteins are two highly conserved paracrine factors that can act as morphogens.

In canonical Wnt signaling, the binding of extracellular Wnt protein to its transmembrane receptor

Frizzled causes b-catenin to be stabilized and free to enter the nucleus, where it relieves repression

of Wnt-responsive genes by binding to the sequence-specific transcription factor TCF (Clevers and

Nusse, 2012; Swarup and Verheyen, 2012). In canonical BMP signaling, ligand binding to receptor

triggers phosphorylation of SMAD proteins, which translocate to the nucleus along with co-SMADs,

bind to responsive genes, and activate their transcription (Hamaratoglu et al., 2014; Shi and Mas-

sagué, 2003).

To explore the effects of Dpp and Wg signaling on transcription dynamics, we have adapted sin-

gle molecule fluorescent in situ hybridization (smFISH) for use in imaginal disc tissues. We use

smFISH to quantify nascent and mature mRNAs for several genes expressed in highly diverse spatial

patterns within the wing disc. Taken together, our data suggest that all of the genes investigated

are regulated by modulation of their transcription burst frequency by Dpp and Wg even though their

mean expression patterns are distinct from one another.

Results
In this study, we have explored how the Wg and Dpp morphogens regulate transcription dynamics

in the wing disc. Each morphogen is synthesized in a narrow stripe of cells within the disc. Wg is pro-

duced in cells at the boundary between Dorsal and Ventral (DV) compartments of the wing pouch,

while Dpp is produced in cells at the boundary between Anterior and Posterior (AP) compartments

(Figure 1A). These factors form concentration gradients across the disc, and in the case of Dpp, it

regulates gene expression in a concentration-dependent manner.

smFISH detection of mRNA molecules in the wing disc
In order to assay gene expression in the wing imaginal disc, we quantified mRNA numbers using

smFISH. With smFISH, a tandem array of fluorescently-labeled oligonucleotides complementary to a

given mRNA are hybridized to fixed and permeabilized tissue. When a sufficient number of oligo

probes anneal to one mRNA molecule, the aggregate fluorescence can be detected by standard

confocal microscopy (Raj et al., 2008). This method has been developed and applied to many sys-

tems, including cell culture, C. elegans, and the Drosophila embryo (Ji and van Oudenaarden,

2012; Little and Gregor, 2018; Youk et al., 2010). We developed a robust smFISH method applica-

ble for imaginal discs (see Materials and methods for details).

We first probed for expression of the senseless (sens) gene in the wing disc. Sens is required for

cells to adopt a sensory organ fate, and the gene is expressed in two stripes of cells adjacent to and

on either side of the DV boundary in the wing pouch (Figure 1B,C; Nolo et al., 2000). Sens expres-

sion in the wing pouch is induced by Wg, which is expressed by cells located at the DV boundary

(Jafar-Nejad et al., 2006). We probed for sens mRNAs expressed from a transgenic version of the

sens gene. We did so for a number of reasons. First, the genomic transgene rescues the endogenous

gene based on function and expression (Cassidy et al., 2013). Second, the transgene is tagged such

that the amino-terminal coding sequence corresponds to super-fold GFP (sfGFP). By using oligo

probes directed against sfGFP, we could easily determine the specificity of detection.

Discs from sfGFP-sens animals were probed and imaged by confocal microscopy, revealing the

expected pattern of fluorescence localized to two stripes adjacent to the DV midline in the wing
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Figure 1. smFISH analysis of sfGFP-sens mRNA levels in wing imaginal discs. (A) Schematic of a wing disc outlining different regional domains, and the

positions of boundaries between Dorsal (D) - Ventral (V) and Anterior (A) - Posterior (P) compartments of the disc. Each wing disc is composed of

roughly 50,000 cells organized in a pseudostratified epithelium. (B) Schematized expression pattern for Sens inside the wing pouch centered around the

Figure 1 continued on next page
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pouch (Figure 1D). The fluorescence signal was specific for sfGFP-sens since wing discs from larvae

not carrying the transgene gave a low background fluorescence pattern (Figure 1—figure supple-

ment 1A,B). The fluorescence signal from sfGFP-sens discs was sufficiently bright that spots were

readily detected in optical sections when imaged under higher magnification (Figure 1E). The size of

each 2D spot was approximately the expected diffraction limit of ~600 nm for smFISH probes emit-

ting at 633 nm wavelength (Lipson et al., 1995). A custom image-analysis pipeline was developed

to segment and analyze all of the 3D fluorescent spots in an entire stack of optical sections (Fig-

ure 1—figure supplement 1C). Details of the segmentation and analysis are provided in the Materi-

als and methods.

We tested the ability of the pipeline to correctly identify RNA spots by several means. First we

expected sfGFP-sens mRNA molecules to generate fluorescence spots with a homogeneous compo-

sition since the mRNAs could equivalently anneal to the probes. The distribution of fluorescence

intensity for the identified 3D spots was unimodal, suggesting that the spots had a homogeneous

composition (Figure 1—figure supplement 1D). Second, we incubated wing discs in medium con-

taining actinomycin-D, an inhibitor of mRNA synthesis. The number of fluorescence spots was greatly

diminished, as would be expected if they were localized to mRNA molecules (Figure 1—figure sup-

plement 1E). Third, if the method is accurate, almost all spots would correspond to sfGFP-sens

mRNAs. We compared the number of identified spots in discs expressing the sfGFP-sens transgene

versus discs lacking the transgene. From this, we estimated that 0.5% of identified spots are false-

positive (Figure 1—figure supplement 2A). Finally, we estimated the number of sfGFP-sens mRNAs

that fail to be identified as fluorescent spots. We simultaneously hybridized sfGFP-sens wing discs

with two sets of non-overlapping probes - one set recognized sfGFP and the other set recognized

sens sequences. Each probe-set was labeled with a different fluor. If a spot identified using the

sfGFP probe set was not identified by the sens probe-set, we classified that spot as a false-negative.

The analysis indicated that a maximum of 6% of mRNAs (232 out of 3842 spots scored) were not

identified by both probe-sets (Figure 1—figure supplement 2B). This rate of false-negative identifi-

cation is comparable to smFISH methods in other systems (Raj et al., 2008).

We next looked to partition identified mRNAs into the cells from which they were expressed.

Since the smFISH method denatured the epitopes of all tested antibodies and it also denatured

sfGFP, we were unable to segment cells using standard approaches. In the absence of a direct

approach, we adopted a computational approach to resolving the smFISH signal at single-cell reso-

lution. Using the fluorescent dye DAPI to visualize cell nuclei in the imaged samples, we segmented

nuclei into 3D objects (Figure 1—figure supplement 2C–E), which are located throughout the api-

cal-basal axis of the pseudostratified epithelium of the wing disc (Aldaz and Escudero, 2010). Based

on segmented nuclei, we were able to construct effective cell boundaries by performing a 3D Voro-

noi tessellation (Figure 1—figure supplement 2F). RNAs were then partitioned into the distinct Vor-

onoi cells (Figure 1—figure supplement 2G). Despite the local inaccuracies in our protocol for

assigning transcripts to single cells, the Voronoi based tessellation of the three-dimensional tissue is

a democratic prescription, lacking any hyperparameters, that is able to reveal the global quantitative

trends in the data. The same democratic approach has been used by others in assigning mRNA tran-

scripts to early embryonic nuclei when cell boundaries are unseen (Little et al., 2013). Details of tes-

sellation are provided in the Materials and methods.

Figure 1 continued

DV boundary. Sens is also expressed in clusters of cells in the notum, which are not shown. (C-E) Confocal sections of wing discs expressing sfGFP-

Sens. (C) sfGFP-Sens protein fluorescence. (D) sfGFP-Sens mRNAs as visualized by smFISH using sfGFP probes. Scale bar = 10 mm. (E) Higher

magnification of sfGFP-Sens mRNAs as visualized by smFISH using sfGFP probes. Scale bar = 10 mm. (F) Distribution of wing disc cells as a function of

the number of Sens mRNA molecules per cell. (G) Sens mRNA number as a function of cell distance from the DV boundary displays a bimodal

expression pattern for Sens. Cells were binned according to the shortest path length from its centroid to the DV boundary, and whether they were

dorsal or ventral compartment cells. Median mRNA number/cell for each bin is plotted with 95% bootstrapped confidence intervals.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Development of smFISH imaging and analysis.

Figure supplement 2. Determination of false-positive and false-negative rates for smFISH.

Figure supplement 3. smFISH imaging of the eye imaginal disc.
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Figure 2. smFISH analysis of mRNA levels from Dpp-responsive genes. (A) Schematic of wing discs highlighting the graded distribution of Dpp protein

in the wing pouch, centered around the AP boundary, and the expression domain for salm, one of the targets of Dpp regulation. Not shown is Dpp

localization in the notum domain of the disc. (B) Expression domains of four target genes of Dpp signaling. (C-F) Confocal sections of wing pouches

probed for mRNAs synthesized from the salm (C), omb (D), dad (E), and brk (F) genes. Orange arrows mark the position of the AP boundary in each

image. (G, H) mRNA number as a function of cell distance from the anterior-most border of the wing pouch. (G) A border-to-boundary axis, orthogonal

to the AP boundary, is used to map cell position, along which distances are displayed in mm from the wing pouch border. (H) Cells were binned

Figure 2 continued on next page
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The abundance of sens mRNAs within the DV stripes varied from one to fifty molecules per cell

(Figure 1F), reflecting the graded expression pattern of Sens protein induced by the Wg morpho-

gen across the width of each stripe (Jafar-Nejad et al., 2006). Binning cells according to their dis-

tance from the DV boundary, we were able to observe peaks in mRNA number per cell as a function

of distance from the boundary (Figure 1G).

We also used the sfGFP-sens gene to determine whether the smFISH method could detect

mRNAs in other imaginal discs. In the eye disc, sens is expressed in a stripe of cells located

within the morphogenetic furrow, and indeed we were able to detect smFISH signals in furrow

cells of the eye disc (Figure 1—figure supplement 3). Thus, our method is broadly applicable

to imaginal discs.

smFISH detection of gene expression regulated by Dpp
We extended the analysis to genes downstream of the BMP family protein Dpp. Dpp is expressed in

a stripe of cells located at the AP boundary of the wing disc, orthogonal to the Wg stripe

(Figure 2A). Dpp protein is transported bidirectionally to form gradients across the disc, and several

genes are regulated by Dpp in a concentration-dependent manner. Spalt-major (salm), optomoter-

blind (omb), daughters-against-dpp (dad), and brinker (brk) are expressed in symmetric domains

within the anterior and posterior compartments of the wing pouch (Figure 2A,B). Salm is symmetri-

cally expressed in a domain somewhat broader than the Dpp stripe, whereas omb and dad are

expressed more broadly, and brk is expressed only near the wing pouch border (de Celis et al.,

1996; Grimm and Pflugfelder, 1996; Tabata and Takei, 2004). When smFISH was used to detect

mRNAs of these genes, it qualitatively recapitulated their known expression patterns (Figure 2C–F).

We quantified the number of mRNAs per cell and attempted to map the distribution to cell position

within the wing pouch. Since the only landmark we could reliably use was the border between the

wing pouch and the rest of the disc, we measured cell position as a function of distance from the

border (Figure 2G). When we did so, the distributions in mRNA number per cell displayed profiles

that were consistent with previous qualitative descriptions of their expression patterns (Figure 2H).

To ensure that these distributions were not an artifact of landmarking the border, we probed for

mRNAs produced from the scalloped (sd) gene. The sd gene is expressed uniformly throughout the

wing pouch (Campbell et al., 1992; Williams et al., 1993), and thus we anticipated a uniform distri-

bution of mRNAs/cell if our method was accurate. Indeed, there was a fairly constant level of

mRNAs/cell across the wing pouch as determined by our smFISH pipeline (Figure 2—figure supple-

ment 1A).

smFISH detects sites of nascent transcription
A further benefit to smFISH is that it can detect and quantify RNA as it is being transcribed

from a gene. We sought to identify and characterize these sites of nascent transcription in the

wing disc. Quantification of pixel intensity of all fluorescent spots revealed two discrete popula-

tions: a large population of dim spots of uniform intensity, and a smaller population of brighter

spots with more variable intensity (Figure 3A,B). The former population corresponded to those

described earlier, and they were primarily located in the cytoplasm - these are the mature

mRNAs. The latter population was primarily located inside nuclei, and thus we hypothesized that

these were sites of nascent transcription. To confirm that these bright spots corresponded to

transcription sites, we used probes complementary to an intron in the omb gene. These probes

only detected the brighter population of spots localized to nuclei (Figure 3C). Since introns are

not spliced out until after transcription, this result supports the conclusion that the brighter

nuclear spots are sites of nascent transcription.

Figure 2 continued

according to position along the border-to-boundary axis. Median mRNA number/cell for each bin is plotted with 95% bootstrapped confidence

intervals.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Detection of RNAs corresponding to the sd gene.
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Figure 3. Sites of nascent transcription are detected by smFISH. (A) Sites of nascent transcription can fluoresce more brightly than single mRNA

molecules due to multiple nascent transcripts localized to one gene locus. (B) Probes recognizing an omb exon generate many small dim spots and a

few large bright spots. Right image shows the merge of probe and DAPI fluorescence. The bright spots are associated with nuclei whereas most dim

spots are not. (C) Probes recognizing an omb intron only generate large bright spots that are associated with nuclei. Scale bars = 5 mm. (D) Frequency

distribution of intensity for all spots identified in a wing disc probed for sens RNAs. Using a threshold of twice the median spot intensity, all single

mRNA spots were filtered out, leaving only spots that are associated with transcription sites. The frequency distribution for this class of spots is shown.

(E) Transcription sites are assigned to cells. For each cell that contains one or more mRNA molecules, it is scored for whether it also has one or more

transcription sites. The average fraction of all such cells with a transcription site is shown for each gene. Error bars represent 95% confidence intervals.

(F) The ratio of the variance of mRNAs/cell to its mean, as a function of the mean, for all genes. This ratio is larger than one, irrespective of the mRNA

number for binned sub-populations of cells and the gene. Error bars represent 95% confidence intervals.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Detection of transcription sites and their quantification.

Figure 3 continued on next page
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Although wing disc cells are diploid, fewer than 15% of nuclei contained more than one transcrip-

tion site for a given gene. One explanation is that transcription is infrequent enough that 85% of the

time only one allele is actively transcribing. Another explanation is that two alleles are physically co-

localized, and their nascent transcripts cannot be resolved by confocal microscopy. Drosophila and

other animals have extensive physical pairing of homologous chromosomes in somatic cells

(McKee, 2004). Consequently, alleles on paired chromosomes are often spatially juxtaposed

(Szabo et al., 2018). For genes such as omb that we probed far upstream of the transcription termi-

nation site, it is likely that we were observing transcription from both alleles at once, given that a

detectable nascent RNA would stay at the transcription site for a long time (~50 min). Even for these

very bright transcription spots, only one transcription site per nucleus was observed (Figure 3B,C).

This observation is consistent with a single transcription spot in a nucleus representing transcription

from both alleles.

Transcription occurs in bursts
Transcription sites were counted by applying a cutoff that only included spots with at least twice the

intensity of a mature mRNA spot (Figure 3D, Figure 3—figure supplement 1). There was a broad

distribution of transcription site intensities, suggesting a large range of nascent RNA numbers that

were present on a gene at a given time.

Strikingly, many cells did not have a detectable transcription site even though the cells contained

mature mRNAs (Figure 3E). Between 50–80% of all cells had this feature, and it was observed for all

genes. This observation is not an artifact of segmentation erroneously assigning mature mRNAs to

cells that do not express the genes. For all genes, the number of transcription sites strongly corre-

lated with mRNA number when discs were binned but not segmented (Figure 3—figure supple-

ment 2). Hence, although assignment errors occur at the local scale, they cannot account for the

quantitative global trends where 2–5 fold more cells lack a transcription site than lack any mature

mRNAs.

Why do cells with mature mRNAs lack detectable transcription sites? One explanation is that

each gene’s promoter is always open, but since transcription is stochastic, there would be times

when zero or just a few Pol II molecules are presently transcribing the gene. In this scenario, the

birth and death of mRNAs can be described as a Poisson process, where the ratio of the vari-

ance of the distribution of number of mRNAs to its mean is expected to be one (Munsky et al.,

2012; Raj and van Oudenaarden, 2008). Since mRNA number per cell varied systematically

across the wing disc because of Wg and Dpp signaling, we binned cells according to their posi-

tion in the disc, as had been described earlier (Figures 1G and 2H), and empirically estimated

the ratio of a bin’s variance to its mean. The ratio of variance to mean mature mRNA number

per cell was between 5 and 10 for all genes, and was fairly independent of mRNA output

(Figure 3F). This indicated that a Poisson process could not explain why we failed to detect

transcription sites in every cell expressing mRNA.

To determine if our observations were possibly caused by transcription bursting, we invoked a

two-state model of transcription (Figure 4A). A promoter exists in one of two possible states - ON

and OFF. The promoter switches between states at particular rates kon and koff. When the promoter

is in the ON state, Pol II is permitted to initiate transcription that is subject to a rate constant kini.

When the promoter is in the OFF state, Pol II is unable to initiate transcription. The model also

includes a transcription elongation step, which is assumed to be 100% processive, and whose time-

scale depends on the gene length and the rate of elongation. The latter is assumed to be 1100

nucleotides/min, which is a value that has been experimentally determined in Drosophila

(Ardehali et al., 2009).

In the model, transcriptional bursts have a characteristic size (number of transcripts per burst) and

frequency (rate at which bursts occur). The average burst size is defined as kini/koff, whereas the aver-

age burst frequency is defined as (kon
-1 + koff

-1 )–1 (Dar et al., 2012). We systematically and indepen-

dently varied the parameters kon, koff and kini to tune the frequency and size of virtual bursts. For

Figure 3 continued

Figure supplement 2. Transcription sites and mRNA patterns in unsegmented images.
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Figure 4. Modeling transcription sites using bursting dynamics. (A) Model framework showing the three rate

parameters affecting transcription initiation. Two parameters affect the promoter state, while the third parameter

only affects how many initiation events occur when the promoter is ON. (B) Pol II molecules in elongation mode

are distributed along the transcription unit. If Pol II is upstream of the probe binding sites, the nascent transcript

will not be detected. If Pol II is downstream, the nascent transcript will be detected as 100% signal. If Pol II is

transcribing within the binding sites, the nascent transcript will be detected as a partial signal. These three

different scenarios are explicitly accounted for in our mathematical model. For example in the simulation result

shown here, four Pol II’s are situated such that a total of 12 virtual probe-binding sites are present. Since each

mRNA has six binding sites, it means that this simulated transcription site has 12/6 or 2 units of normalized signal.

Figure 4 continued on next page
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each parameter set, we ran 1000 simulations of the model. To capture the stochastic nature of gene

expression, reactions in the model were treated as probabilistic events, with the exception of the

transcript elongation time.

To directly relate the results of model simulations to experimental data, we performed the follow-

ing treatment of simulation data. First, we transformed output of each simulation to mimic the

experimentally detected fluorescence at a single gene allele. Fluorescence intensity depends on how

many probe-binding sites are present in nascent RNAs on a gene allele at a given time (Figure 4B).

This varies with the number of elongating Pol II molecules on the allele, and the position of the

probe-binding sites relative to the transcription start and stop sites. We normalized the output of

simulated nascent RNAs by calculating the number of Pol II molecules upstream, within, and down-

stream of the binding region at the completion of a simulation. This normalization provided an

approximation of fluorescence intensity from one gene allele. Second, we randomly paired two inde-

pendent simulations to mimic the transcription site fluorescence of paired alleles within a nucleus. If

simulated transcription site fluorescence fell below a cutoff of twice the fluorescence of a single

RNA, we counted that simulation as having no ‘detectable’ transcription site. This mimicked the cut-

off that was applied to experimental data for identifying a transcription site.

We then asked what combination of burst size and frequency could theoretically account for

the observed frequency of finding cells with a transcription site (this ranged from 20% to 50% of

cells). A phase diagram revealed that a broad range of burst size and frequency could explain

our experimental observations (Figure 4C). Therefore, according to our model results, tuning

burst frequency and/or size can produce the variable likelihood of detecting a transcription site

by smFISH.

Burst frequency is regulated by Dpp and Wg
We quantified the frequency of detecting a transcription site as a function of cell position within

the wing pouch (Figure 5A,B). This frequency varied across the disc in a manner that was gene-

specific. Strikingly, the spatial distributions of transcription site frequency strongly paralleled the

mRNA number per cell for all genes (compare Figure 5A,B and Figures 1G and 2H). To ensure

that this was not an artifact of variable smFISH detection, we also quantified the frequency of

detecting a transcription site for sd, which is uniformly expressed in the wing pouch. This fre-

quency was constant across the disc and paralleled the sd mRNA number per cell (Figure 2—

figure supplement 1A,B).

We further examined the relationship between mRNA number per cell and transcription site fre-

quency (Figure 5C,D). Average mRNA number per cell and the likelihood of detecting a transcrip-

tion site were linearly correlated with one another for all genes. The positive correlation confirms

that Dpp and Wg regulate gene expression primarily through control of transcription initiation.

Remarkably, the slopes of linear fits for three Dpp-responsive genes, brk, omb, and salm, were not

significantly different from one another, and the slope for dad was similar to brk and omb but

smaller than for salm (Figure 5E). This conserved linear relationship between gene transcription and

mRNA number has several implications. It suggests that mRNA decay rates are not very different

between these Dpp target genes since the slopes would be different from one another if decay rates

varied. Moreover, since the slopes are constant over a broad range of mRNA output, it suggests

that mRNA decay is not being actively regulated by Dpp.

Figure 4 continued

Applying our filter cutoff for identifying a transcription site as two or more units, this simulated site would be

scored as a positive. (C) The phase diagram of transcription site detection as a function of burst size and

frequency in the model. Both burst size and frequency impact the likelihood of detecting a transcription site.

When burst size increases at low burst frequency, the likelihood of detecting a transcription site remains fairly

constant. When burst size increases at high burst frequency (horizontal red arrow), the likelihood of detecting a

transcription site is ultrasensitive to burst size. Likewise, when burst frequency increases at low burst size, the

likelihood of detecting a transcription site remains fairly constant. When burst frequency increases at high burst

size (vertical red arrow), the likelihood of detecting a transcription site is ultrasensitive to burst size. The phase

diagram makes manifest that a range of combinations of burst frequency and size could explain observed

transcription site frequency data.
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Figure 5. Transcription site detection correlates with mRNA number. (A,B) The probability of detecting a cell with a transcription site varies with the

cell’s location relative to the source of morphogen. Error bars are 95% bootstrapped confidence intervals. (A) Cells are binned according to their

distance from the pouch border, and the fraction of cells in each bin with a transcription site are shown for each Dpp-responsive gene. (B) Cells are

binned according to their distance from the DV boundary, and the fraction of cells in each bin with a transcription site is shown for the sens gene. (C,D)

Figure 5 continued on next page
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The likelihood of detecting a transcription site increases because either the promoter is spending

more total time in the ON state or more RNAs are being transcribed while in the ON state. These

properties are affected by burst size and burst frequency in different ways. We sought to determine

whether burst size or frequency was being regulated. We did so by estimating the number of

nascent RNAs at each transcription site, which was quantified as a multiple of the median pixel inten-

sity of mature RNA spots (Figure 3—figure supplement 1). The average number of nascent RNAs

per transcription site did not significantly vary between cells that were receiving different levels of

Dpp and Wg signal (Figure 6A,B). This was observed for all genes, including the uniformly

expressed sd gene (Figure 2—figure supplement 1C). Moreover, the average number of nascent

RNAs per transcription site was also independent of the likelihood that transcription was occurring

in a cell (Figure 6C). Therefore, the propensity for a cell to generate nascent transcripts does not

correlate with the number of nascent transcripts.

To understand the causes of the relationship between these observed features, we turned to our

mathematical model. We first considered whether modulation of transcription burst size by Wg and

Dpp could explain our observations. We modulated burst size by systematically varying the kini
parameter, and from simulations, then calculated the number of nascent RNAs per transcription site

and the transcription site detection frequency. There was a positive correlation between nascent

RNA number in a transcription site and the probability of detecting a transcription site (Figure 6D

and Figure 6—figure supplement 1A). This was observed across a wide range of fixed burst fre-

quencies. When nascent RNA number was three or higher, the correlation with transcription site fre-

quency was strongest. Moreover, when the probability of a transcription site was very low, nascent

RNA number converged to a common value irrespective of burst frequency. None of these model

predictions were observed in the experimental results with the target genes (Figure 6C). It suggests

that transcription burst size is not strongly regulated by Dpp and Wg.

We then modulated burst frequency in the model by systematically varying kon, and calculated

the number of nascent RNAs per transcription site and the transcription site frequency. There was lit-

tle change in nascent RNA number as transcription site frequency changed, even across a wide

range of fixed burst sizes (Figure 6E and Figure 6—figure supplement 1B). The burst size appeared

to determine what nascent RNA number value was held at a constant. Moreover, there was no con-

vergence of nascent RNA number when the probability of a transcription site was very low, irrespec-

tive of burst size. All of these model predictions agree well with the experimental results

(Figure 6C). This suggests that Dpp and Wg regulation of genes in the wing disc primarily occurs by

modulation of transcriptional burst frequency.

Discussion
Morphogens elicit different transcriptional outputs from target genes, depending on local concen-

tration of the morphogen. The targets of Dpp signaling in the wing offer a well-studied example of

this concept. Transcription of the gene brk is directly regulated by the Dpp effector protein Moth-

ers-against-dpp (Mad) (Minami et al., 1999; Moser and Campbell, 2005). Mad, in complex with

Medea and Schnurri, represses brk transcription (Cai and Laughon, 2009). This generates a gradient

of Brk protein expression that is inverted to the Dpp gradient. In turn, the level of Brk protein is

instrumental in repressing the expression of omb and salm, which are induced by Dpp

(Campbell and Tomlinson, 1999). Thus, opposing gradients of activation and repression determine

the expression domains of omb and salm. Since omb is less sensitive to Brk repression than salm, its

expression domain is broader. salm transcription is directly activated by Dpp without participation of

Schnurri (Moser and Campbell, 2005). Curiously, omb transcription does not directly depend on

Figure 5 continued

The probability of detecting a cell with a transcription site varies linearly with the number of mRNA molecules in the cell. Fitted lines are from linear

regression. Error bars are 95% confidence intervals. (C) Cells are binned according to the number of mRNAs they contain, and the fraction of cells in

each bin with a transcription site are shown for each Dpp-responsive gene. (D) Cells are binned according to the number of mRNAs they contain, and

the fraction of cells in each bin with a transcription site is shown for the sens gene. (E) Linear regression analysis was performed on samples from C and

D, shown is the slope with a parametric 95% confidence interval.
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Figure 6. Burst frequency is regulated by Dpp and Wg. (A,B) The average number of nascent RNAs in a transcription site does not vary with the cell’s

location relative to the source of morphogen. Error bars are bootstrapped 95% confidence intervals. (A) Cells are binned according to their distance

from the pouch border, and the average number of nascent RNAs per site in each bin are shown for each Dpp-responsive gene. (B) Cells are binned

according to their distance from the DV boundary, and the average number of nascent RNAs per site in each bin is shown for the sens gene. (C) The

average number of nascent RNAs in a transcription site does not vary with the probability of detecting a cell with a transcription site. Error bars are 95%

confidence intervals. (D,E) Model predictions of the relationship between average number of nascent RNAs in a transcription site and the probability of

detecting a site for the dad gene. (D) Simulations are performed where the rate parameter kini has been systematically varied so as to modulate burst

size alone. Resulting values for nascent RNA number and fraction of cells with a site are shown. Each datapoint is the average of 1000 simulations.

Simulations are repeated for three different values of kon to specifically set the burst frequency to 0.04, 0.2 and 0.4 min�1. (E) Simulations are performed

where the rate parameter kon has been systematically varied so that burst frequency alone is variable. Resulting values for nascent RNA number and

Figure 6 continued on next page
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Dpp signaling, and its transcriptional activation is brought about by unknown factors

(Sivasankaran et al., 2000).

Given the diverse molecular mechanisms by which genes such as omb, brk, and salm are regu-

lated, it is illuminating that regulation of transcription burst frequency occurs for all of them. In the

two-state view of promoter kinetics, the on-rate, kon, then is the most likely rate constant being reg-

ulated since it specifically affects burst frequency alone (Dar et al., 2012). It determines the average

rate at which a promoter will switch from its OFF to its ON state. When a promoter is in the OFF

state, the next burst will only occur when it switches ON, which is controlled by kon and not koff.

When a promoter is in the ON state, the size of its burst depends on when it switches OFF, which is

controlled by koff and not kon (Dar et al., 2012). However, koff also affects burst frequency because

the longer a promoter is ON, the longer the time it takes before a new burst can occur. If Dpp regu-

lates koff, then we would have seen modulation of both size and frequency of bursts. However, burst

size appears to be independent of Dpp signaling.

If kon is the kinetic rate constant under regulation for all of these genes, how does this occur given

such diverse enhancer architectures and transcription factor inputs? It has been found that burst fre-

quency correlates with enhancer strength and enhancer-promoter contact, suggesting that kon is

potentiated by enhancer-promoter contact and is mediated by transcription factor binding to DNA

(Bartman et al., 2016; Bothma et al., 2014; Chen et al., 2019; Fukaya et al., 2016; Larsson et al.,

2019). This suggests that occupancy of Dpp effectors on target enhancers varies the kon rate for

their linked promoters, and this modulation is negative for repressors such as Brk and positive for

activators such as Mad.

Burst frequency regulation is also observed for developmental genes in the embryo

(Bothma et al., 2014; Chen et al., 2019; Fukaya et al., 2016; Garcia et al., 2013; Holloway and

Spirov, 2017; Little et al., 2013; Xu et al., 2015). Thus, a common mechanism to regulate pat-

terned gene expression is by control of burst frequency. However, burst size can also be regulated

by cell-cell signaling, as is the case for Notch target genes in the Drosophila embryo (Falo-

Sanjuan et al., 2019). Moreover, eve gene expression in the embryo is regulated by transcription

factors that modulate burst frequency, plus there is an orthogonal mechanism that controls the win-

dow of time over which a nucleus can transcribe the eve gene (Lammers et al., 2020). This distinct

mechanism appears to be regulated by repressors, perhaps acting on nucleosome organization.

Modeling of various embryonic genes suggests that they transition through several intermediate

transcriptionally-silent states before their transcription can begin (Desponds et al., 2016;

Dufourt et al., 2018; Eck et al., 2020). Chromatin remodeling factors appear to modulate these

transitions (Eck et al., 2020). Although a two-state model explains much of our experimental results,

likely there are other factors that also help determine the expression domains of Dpp-responsive

genes.

Our results challenge the view that salm and omb expression domains have sharp boundaries due

to transcription thresholds set by Brk and Dpp. We find that omb and salm mRNA numbers per cell

drop gradually with distance from the source of Dpp (Figure 2H). As well, their gradients in mRNA

number are inversely correlated with the gradient in brk mRNA number. Salm has relatively constant

mRNA number in cells near the AP boundary, and those numbers gradually diminish in cells located

more laterally. A similar pattern is seen with omb, except the domain with constant omb mRNA

number is smaller than for salm. However, the salm and omb enhancer trap reporters as well as anti-

Salm immunohistochemistry have reported expression domains with sharp boundaries (Mayer et al.,

2013). Possibly, the discrepancy hints at some threshold of mRNA expression below which protein

output drops sharply. It is also possible that the previously characterized expression domains for

Figure 6 continued

fraction of cells with a site are shown. Each datapoint is the average of 1000 simulations. Simulations are repeated for three different values of kini to

specifically set the burst size to 1, 4 and 20.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Modeling the relationship between average number of nascent RNAs in a transcription site and the probability of detecting a

site for the brk, omb, salm, and sens genes.
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salm and omb were distorted by non-linear detection of antibodies that recognize Salm and the pro-

tein product of lacZ, b-galactosidase.

Materials and methods

Key resources table

Reagent type
(species) or resource Designation Source or reference Identifiers Additional information

Gene
(Drosophila
melanogaster)

white1118 Bloomington
DrosophilaStock Center

BDSC: 3605
Flybase: FBst0003605
RRID:BDSC_3605

Gene
(Drosophila
melanogaster)

sensE1 Nolo et al., 2000 Flybase: FBal0098024 From Hugo Bellen

Genetic reagent
(Drosophila
melanogaster)

sfGFP-sens [VK37] Venken et al., 2006.
From Hugo Bellen

Pacman construct containing
sens gene with N-terminal
3xFlag-TEV-StrepII-sfGFP-FlAsH
fusion tag inserted at
22A3 (VK37)

Genetic reagent
(Drosophila
melanogaster)

dad-GFP [VK37] Bloomington
DrosophilaStock Center

BDSC: 81273
Flybase: FBti0150281
RRID:BDSC_81273

y w; PBac{y[+mDint2]
w[+mC]=Dad GFP.FLAG}
inserted at 22A3 (VK37)

Genetic reagent
(Drosophila
melanogaster)

brk-GFP [VK33] Bloomington
DrosophilaStock Center

BDSC: 38629
Flybase: FBti0147730
RRID:BDSC_38629

w1118; PBac{y[+mDint2]
w[+mC]=brk GFP.FPTB}
inserted at 65B2 (VK33)

Sequence-
based reagent

GFP hybridization
oligo probes

Biosearch Technologies Custom probe set Set of oligos with 3’
modification mdC
(TEG-Amino).
Sequence of all oligos
is in Supplementary file 1

Sequence-
based reagent

sens hybridization
oligo probes

Biosearch Technologies Custom probe set Set of oligos with 3’
modification mdC(TEG-Amino).
Sequence of all oligos
is in Supplementary file 1

Sequence-
based reagent

salm hybridization
oligo probes

IDT Custom probe set Set of oligos. Sequence of all
oligos is in Supplementary file 1

Sequence-
based reagent

omb hybridization
oligo probes

IDT Custom probe set Set of oligos. Sequence of all
oligos is in Supplementary file 1

Sequence-
based reagent

sd hybridization
oligo probes

IDT Custom probe set Set of oligos. Sequence of all
oligos is in Supplementary file 1

Sequence-
based reagent

omb intron
hybridization
oligo probes

IDT Custom probe set Set of oligos. Sequence of all
oligos is in Supplementary file 1

Sequence-
based reagent

omb 5’ exon
hybridization
oligo probes

IDT Custom probe set Set of oligos. Sequence of all
oligos is in Supplementary file 1

Chemical
compound, drug

NHS-ester
ATTO 633 dye

Sigma #01464

Chemical
compound, drug

NHS-ester
ATTO 565 dye

Sigma #72464

Chemical
compound, drug

amino-11-ddUTP Lumiprobe A5040

Chemical
compound, drug

Paraformaldehyde
(powder)

Polysciences 00380–1

Chemical
compound, drug

Triton X-100 Sigma Aldrich T9284-500ML

Chemical
compound, drug

VectaShield Vector Labs H-1000

Continued on next page
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Continued

Reagent type
(species) or resource Designation Source or reference Identifiers Additional information

Chemical
compound, drug

40,6-diamidino-
2-phenylindole
(DAPI)

Life Technologies D1306

Chemical
compound, drug

salmon sperm single
stranded DNA

Invitrogen #15632

Chemical
compound, drug

vanadyl
ribonucleoside

New England Biolabs #S14025

Software, algorithm MATLAB pipeline to
process raw smFISH
images with no
prior preprocessing

This paper https://github.com/elifesciences-publications/smfish_pipeline

Other Graces’
Insect Medium

Sigma #69771 Growth medium
for organ culture

Experimental model and subject details
For all experiments, Drosophila melanogaster was raised using standard lab conditions and food.

Stocks were either obtained from the Bloomington Stock Center, from listed labs, or were derived in

our laboratory (RWC). A list of all stocks and transgenics used in this study is in the Key Resources

Table. The sample sizes were not computed when the study was designed. Sample sizes were deter-

mined such that >6,000 cells were measured for each genotype. All Drosophila were raised at room

temperature and grown on standard molasses- cornmeal food. The sfGFP-sens transgenic line was

used as described in Cassidy et al., 2013. Experiments were performed on dad-GFP and brk-GFP

transgenes obtained from Bloomington Drosophila Stock Center (stocks 81273 and 38629, respec-

tively). For all transgenic experiments, smFISH was performed on homozygous individuals. Experi-

ments were performed on endogenous omb and salm in w1118 individuals. There was no exclusion of

any data or subjects.

Method details
smFISH Probe Design and Preparation smFISH oligonucleotide probes were designed using Stellaris

Probe Designer (Biosearch Technologies). Probes sets contain between 45 and 48 non-overlapping

20-nucleotide oligos. A full list of all probe sets is provided in Supplementary file 1. Anti-GFP

probes were prepared by conjugating NHS-ester ATTO 633 dye (Sigma 01464) to the 3’ end of each

oligonucleotide. Anti-Sens probes were prepared by conjugating NHS-ester ATTO 565 dye (Sigma

72464) to the 3’ end of each oligonucleotide. These oligos bear a mdC(TEG-Amino) 3’ modification

to allow conjugation, and were obtained from Biosearch Technologies. Conjugation and purification

was performed as described (Little and Gregor, 2018). All other probe sets were prepared using

the enzymatic conjugation protocol as described (Gaspar et al., 2017). Briefly, amino-11-ddUTP

(Lumiprobe) was conjugated to NHS-ester ATTO 633. Terminal deoxynucleotidyl transferase (New

England Biolabs) was then used to conjugate ATTO 633-ddUTP to the 3’ ends of oligonucleotides

that had been purchased from IDT. After enzymatic conjugation, oligos were purified from free

ATTO 633-ddUTP using G-25 spin columns (GE Illustra) according to manufacturer’s instructions.

Final concentration of oligonucleotide was 33 mM in water. Probes were stored at �20˚C, protected

from light, until use.

smFISH
Wing discs were dissected from wandering 3rd instar larva in cold phosphate buffered saline (PBS)

and immediately fixed in 0.1% (w/v) paraformaldehyde/PBS for 15 min at room temperature. Discs

were then fixed for 30 min in methanol at room temperature. Discs were transferred to hybridization

buffer (10% w/v dextran sulfate, 4X SSC, 0.01% w/v salmon sperm ssDNA (Invitrogen 15632), 1% v/v

vanadyl ribonucleoside (NEB S14025), 0.2 mg/mL BSA, 0.1% v/v Tween-20). Oligo probes were

added to a 1.5 mM final concentration in the hybridization buffer, and hybridization was performed

for 1 hr at 62o C. After hybridization, discs were washed once for 5 min at 62o C in wash buffer (4X

SSC, 0.1% v/v Tween-20). Discs were then incubated with 2.5 mg/mL 4’,6-diamidino-2-phenylindole
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(DAPI) (Invitrogen) in PBS + 0.1% Tween-20 for 5 min at room temperature. Discs were washed with

PBS + 0.1% Tween-20 and transferred to Vectashield (Vector Labs) for mounting. Discs were

mounted in 15 ml of Vectashield on glass microscope slides using an 18 � 18 mm No. one coverslip

(Zeiss). For eye imaginal discs, discs were dissected from late 3rd instar larva in cold PBS with brain

and mouth hooks attached, then smFISH was performed as described. Immediately prior to mount-

ing, brain and mouth hooks were removed from eye discs and discarded.

Actinomycin D treatment
Wing discs were dissected in room temperature Graces’ Insect Medium (Sigma 69771) supple-

mented with 1X Pen-Strep (Gibco 15140–122) and 5 mM Bis-Tris (Sigma B4429). Half of the total dis-

sected discs were transferred to 24-well tissue culture dishes containing this prepared medium + 5

mg/mL Actinomycin D, and half were transferred to untreated controls containing culture medium +

1:1000 (v/v) DMSO. Discs were incubated with gentle shaking for 30 min at room temperature, pro-

tected from light, before being washed with fresh culture media, and 1X PBS. SmFISH was then per-

formed as described.

Image acquisition
3D image stacks were collected on a Leica SP8 scanning confocal microscope, using a pinhole size

of 1 Airy unit and a 63X oil immersion (NA 1.4) objective. Approximately, 35 optical sections were

collected per sample, with each section 700 nm thick. Sections were spaced 345 nm apart. DAPI,

ATTO 565, and ATTO 633 were excited by 405, 555, and 630 nm lasers, respectively. ATTO dye

fluorescence was collected using a HyD detector on photon counting mode and a scanning speed of

200 Hz, with 16X line accumulation. DAPI fluorescence was collected using a PMT detector using 8X

line averaging. Pixel intensity values are 12-bit, and x-y pixel sizes are 76 nm. We modeled each

z-section like a plane of width 345 nm for analysis, but in reality the edges of the z point spread func-

tion (PSF) overlap between sections. Since the PSF resembles a Gaussian distribution, most of the

light is coming from the center of that distribution. Therefore, overlap is needed between sections

to ensure equivalent sampling of the entire specimen.

Image processing
Raw smFISH images were processed using a custom Matlab pipeline with no prior preprocessing.

Our pipeline is available at https://github.com/bakkerra/smfish_pipeline (Bakker et al., 2020; copy

archived at https://github.com/elifesciences-publications/smfish_pipeline). The pipeline consists of

several modules.

Selection of mRNA Segmentation Threshold
RNA segmentation is performed by applying a cutoff intensity value to a stack of optical sections,

and transforming all pixels above the cutoff to white and pixels below the cutoff to black. Diffrac-

tion-limited fluorescent spots captured with a 63X objective at 633 nm wavelength are estimated to

be approximately 600 nm in diameter (Lipson et al., 1995). This corresponds to a diameter of 8 x-y

pixels in our images. Therefore, we classify a 2D object in each transformed section when � 8 white

pixels are connected with one another.

It is important to select a cutoff where true RNA fluorescent spots are identified as 2D objects in

a section, and background is not. Therefore, a broad range of cutoff values is systematically applied

to an image stack, and 2D object number is summed for each cutoff value. The distribution of 2D

object number exhibits a plateau across a range of cutoff values (Figure 1—figure supplement 1C),

and thresholds applied at this plateau accurately identify true RNA spots. To demonstrate this, we

manually curated 347 RNA spots from sub-regions of four independent image stacks, and found that

when a cutoff is selected within the plateau, the number of 2D objects identified by threshold seg-

mentation is no more than +/- 5% different than the ground truth. Furthermore, the centroids of

identified objects have an average displacement of only two pixels from the manually identified cent-

roids. Therefore, this plateau, a regime of relative insensitivity to user-specified hyperparameters, is

an appropriate threshold for accurate segmentation of RNA spots.

The position of the plateau varies from image stack to image stack. Therefore, for each image

stack, a range of cutoffs is tested, and a cutoff is selected within the plateau to perform

Bakker et al. eLife 2020;9:e56076. DOI: https://doi.org/10.7554/eLife.56076 17 of 26

Research article Developmental Biology

https://github.com/bakkerra/smfish_pipeline
https://github.com/elifesciences-publications/smfish_pipeline
https://doi.org/10.7554/eLife.56076


segmentation. As a result, each image stack has a unique threshold, allowing robust segmentation

of spots despite variation in raw fluorescence between image stacks. In practice, replicate samples

from the same experiment captured in the same imaging session did not require thresholds for seg-

mentation more than 15 pixel intensity units apart. If image stacks did not show an identifiable pla-

teau, the signal-to-background of that sample was determined to be insufficient and it was not used

for analysis. The smFISH protocol and imaging is robust enough that in our hands, this occurs in less

than 10% of image stacks collected. Once a threshold is selected, the following properties of each

2D object are recorded: x-y centroid position, z-section, and a list of the connected pixels.

Connecting 2D Objects into 3D mRNA Spots
As each z-section is 340 nm in depth, it is assumed that genuine diffraction-limited RNA spots will

appear in 2 or three consecutive z-sections, depending on the spot’s position along the z-axis.

Therefore, a 2D object must satisfy two criteria in order to be counted as an RNA spot: 1) A 2D

object must be linked to one or more 2D objects in at least one neighboring z-section. Linkage is

defined when the centroids of all objects are within a diffraction-limited radius of 4 pixels from one

another in the x-y plane; 2) A 2D object must be larger (contain more pixels) than linked objects in

neighboring z-sections. This criterion prevents RNA fluorescence spots from being counted in multi-

ple z-sections. A candidate that satisfies these criteria is recorded as an mRNA spot, and only the

largest 2D object is recorded.

The pipeline allows the images to be overlaid with markers indicating recorded spots so that

each image stack can be manually inspected for any significant errors or inconsistencies. The most

common problem detected at this stage results from images taken of discs that were ‘drifting’ or

moving significantly, which can cause a large number of identified spots to be filtered out during

processing for not meeting criterion 1. Excessive bleaching across the stack can also cause clear

inconsistencies. In this study, such problems were rare enough that any sample experiencing these

problems was considered to have failed quality control and was simply not included for further

analysis.

Intensity measurements are recorded from a circle of pixels of radius four about the centroid of

each recorded RNA spot. By keeping the area of each intensity measurement fixed, we uncouple

user-generated variation in selection of segmentation thresholds from spot intensity measurements.

A 2D circle was used instead of a 3D sphere to extract intensity measurements because the spots

only appear in 2 or 3 z-sections. This makes their 3D geometry variable from spot to spot, and they

cannot be consistently described using a sphere or ellipse.

Segmentation of Transcription Sites
In our images, transcription sites tend to contain pixels that are many times brighter than mature

RNA spots. As a result, the brightest transcription sites are frequently misidentified during segmen-

tation of mature RNA spots because the second criterion for spot identification only records the

largest object within the diffraction limit in z. For transcription sites, this is not always the brightest

plane. Therefore, we segment transcription sites independent of mature RNAs using a higher cutoff.

The objective in cutoff selection for transcription sites is to select one that includes objects with a

total fluorescence intensity of twice the average mature RNA, and excludes mature RNA spots. We

define the ‘average’ intensity for a spot containing a single mRNA to be the median of the distribu-

tion of all identified mature RNA spot objects. We empirically determined that merely doubling the

cutoff for segmentation does not achieve this, because mature mRNAs may contain a few pixels

above the cutoff, enough to still be identified as objects and included in analysis. Therefore, we use

a threshold cutoff by multiplying the median mature RNA intensity by a factor of 2.5 (Figure 3—fig-

ure supplement 1A).

To test the accuracy of this segmentation procedure, we manually inspected three particularly

RNA-dense regions in independent images where automated segmentation found a total of 103

transcription sites and 4066 mature RNAs. We determined that only 7 of 4066 mature RNAs were

misidentified as transcription sites, and found no examples of transcription sites that had been

missed by automated segmentation. After identification, object intensity measurements are

recorded from a circle of pixels of radius 4 (the diffraction limit) about the centroid of each identified

transcription site (Figure 3—figure supplement 1B). The average transcription site threshold
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selected for replicates in a dataset show no correlation with the average intensity of transcription

sites in that dataset (Figure 3—figure supplement 1D). Therefore, the differences in transcription

site intensity between genes cannot be explained merely by differences in threshold selection or var-

iability in image fluorescence between datasets.

Estimation of Nascent RNA Number per Transcription Site
The intensity measurement of each identified transcription site in an image stack is divided by the

median intensity of identified mature RNAs in that sample (Figure 3—figure supplement 1C). This

serves two purposes. First, it serves to normalize these measurements within each sample so tran-

scription site intensity measurements can be pooled across replicates without the effects of image-

to- image variability in fluorescence. Secondly, each transcription site object is presumed to be the

sum of intensities of multiple nascent RNA molecules elongating at the transcription site. By dividing

each transcription site intensity by the average intensity of a single RNA, we obtain an estimate of

the number of nascent RNAs present at the transcription site. Because some transcripts are partially

elongated, this number cannot be completely accurate, and we attempt to compensate for this in

our computational model when interpreting results.

Nuclei Segmentation
DAPI fluorescence images are output as labeled 16-bit images, where each nuclear object corre-

sponds to a ‘level’ in the 16-bit image. These images are input to a nuclei segmentation pipeline,

which flattens the images to white nuclei objects and black background. Nuclei images are seg-

mented in 2D using the NucleAIzer platform maskRCNN Network, trained as described in

Hollandi et al., 2020. We trained the neural network with an expected nuclear radius of 32 pixels

(Figure 1—figure supplement 2D). To ascertain the accuracy of segmentation, we compared results

to manually labeled nuclei in four randomly selected disc images. The automated method identified

at least 85% of nuclei objects identified manually for each image.

The segmented black and white images are then processed using a custom Matlab script in order

to join overlapping 2D objects into 3D. Each nucleus object in each z-slice is assigned an identity

index. For each object in the first z-slice, the object with the highest number of overlapping pixels in

the next z-slice is identified, and this object’s identity index is altered to be identical to its overlap

partner. This proceeds through the entire z-stack of images, creating objects that resemble ‘pancake

stacks’ of linked 2D objects in 3D (Figure 1—figure supplement 2E). The 3D-centroid and list of

included pixels of these new objects is then recorded. Objects not incorporated into a 3-D object

are disregarded.

Generation of Voronoi Diagrams
A Voronoi tessellation is built from a grid of points in either 2D or 3D. In our case, each point is the

centroid of a segmented 3D nucleus. The Voronoi cells delineate regions consisting of all voxels that

are closer to that centroid than to any other centroid (Voronoi, 1908). The boundaries between Vor-

onoi cells represent points that are equidistant between two centroids. These are taken to represent

virtual cell boundaries. It is important to be clear that the Voronoi cells do not accurately describe

the pseudostratified epithelial nature of wing disc cells. However, note that 3D segmentation of

pseudostratified epithelial cells is still something no one working in any system has achieved.

The 3D Voronoi tessellation used a polytope-bounded Voronoi diagram available for Matlab,

which uses the DeLaunay triangulation to calculate the Voronoi diagram (Park, 2020). The result of

this tessellation is a list of 3D vertices of each Voronoi ‘cell’ in space, which is recorded along with

the associated nuclear centroid (Figure 1—figure supplement 2F).

Assignment of RNA to cells
3D Voronoi tessellation is a way to democratically assign mature transcripts to cells based on vicinity

to the nucleus. Clearly we get the transcript assignment incorrect at a local level. However, being

the most democratic approach, the trends of mRNAs/cell assigned to 100’s of cell across the wing

disc are trustworthy. The same logic has been used by others assigning mRNA transcripts to early

embryonic nuclei when cell boundaries are unseen (Little et al., 2013).
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To assign spot objects to cells, a 3D convex hull of the each Voronoi cell is constructed from the

vertices data for that cell. An entire set of image points, either the mRNA or transcription spot cent-

roids, are tested to determine whether they fall inside or outside of each hull (Figure 1—figure sup-

plement 2E). This is performed using a Matlab function called inhull, which uses dot products to

shorten calculation times (D’Errico, 2020). Spots that fall inside a given cell’s Voronoi hull are

assigned to that cell’s nuclear centroid, and the number of assigned spots, as well as their centroid

and z- plane information are recorded. This is then repeated for every Voronoi cell in the image

stack. The final result is a list of cells, their nuclear centroids, the total number of RNA spots

assigned, and a list of each assigned spot’s centroids.

Data Analysis Binning of data
Each disc is imaged with the DV boundary located at the y-coordinate midline of the image. There-

fore the x-coordinate of the image corresponds to position along the disc’s AP axis, and the y-coor-

dinate corresponds to position along the DV axis. In order to analyze data across developmental

axes, each image is divided into spatial bins of 64 pixels each, approximately equal to the diameter

of one cell nucleus. RNA spots are assigned to a bin according to the position of their associated

nuclear centroid.

Sample size and replicates
We analyzed image stacks from three independent discs for each experiment. Each image stack con-

tains approximately 1,700 identified nuclei. Therefore, the total sample size is approximately 5,000

cells per experiment. Similar trends in RNA and transcription spots feature are observed in each disc

individually, and hence, the analysis is not distorted by artifacts in pooling and cell segmentation

(Figure 3—figure supplement 2).

Alignment of replicates along developmental axes
While each disc is imaged roughly in the same region, there is not an unambiguous landmark that

precisely registers different disc images with one another. To pool data across space as accurately

as possible, we register discs to each other based on their mRNA spot distributions over space. For

each image data set, the number of RNAs per spatial bin is summed, and the distributions across

bins are compared. Bins are then manually registered such that the distribution profiles of the three

datasets line up with one another (Figure 3—figure supplement 2A–E). The overlapping bins from

the three datasets are then assigned to a pooled bin. Pooling includes the nuclei centroids as well as

the transcription and RNA spots. This is repeated for all bins.

Calculations
Median mature mRNAs per cell is calculated from total number of mature mRNA spots for each cell

within a spatial bin of pooled data. As the distribution of mRNAs per cell is not normally distributed

and has a long tail, we ascertained that the median was a more robust descriptor of the ‘center’ of

the distribution than mean. Median nascent RNAs per cell is calculated from normalized intensity

measurements for each transcription spot within a spatial bin of pooled data. All nascent RNA spots

are included. As the distribution of RNA per cell is not normally distributed and has a long tail, we

ascertained that the median was a more robust descriptor of the ‘center’ of the distribution than

mean. Because the number of transcription sites varies over space, sample sizes vary for calculating

median nascent RNAs per cell. For bins where fewer than 5% of cells contain a transcription site,

median nascent RNAs per cell was not calculated, as the sample size was determined to be too small

(<15). Fraction of cells with a transcription site is calculated by dividing the number of cells in a

pooled spatial bin with at least one transcription site assigned to them by the total number of cells

in that spatial bin. Fano factor is calculated for each spatial bin by dividing the variance in the mRNA

per cell distribution by the mean mRNA per cell for all cells assigned to that pooled spatial bin.

Statistics
Linear models are produced by unweighted least squares linear regression. LOESS fits are per-

formed using the loess fitter in R, with an optimized span to minimize residuals. Confidence intervals

are calculated by bootstrap resampling analysis using the bias-corrected and accelerated method.
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We resample data within each bin of pooled data and calculate the statistic of interest 10,000 times.

The mean value of the statistic and a 95% confidence interval are calculated from these resampled

values.

Stochastic simulation model
We model the various steps of gene expression, based on central dogma, as linear first order reac-

tions. To simulate the stochastic nature of reactions, we implement the model as a Markov process

using Gillespie’s Stochastic Simulation Algorithm (Gillespie, 1977). Simple Markov processes can be

analyzed using a chemical master equation to provide a full probability distribution of states as they

evolve through time. The master equation defining our gene expression Markov process is as

follows:

qP Nm ;Ng ;tð Þ
qt

¼ Kini Nm� 1ð ÞP Nm� 1;Ng; t
� �

�P Nm;Ng; t
� �� �

þ Kdeg Nmþ 1ð ÞP Nmþ 1;Ng; t
� �

�NmP Nm;Ng; t
� �� �

þKon Ng �Ngtot

� �� �

P Nm;Ng � 1; t
� �

� Ng�Ngtot

� �

P Nm;Ng; t
� �� �

þKoff Ng þ 1
� �

P Nm;Ng þ 1; t
� �

�NgP Nm;Ng; t
� �� �

where Nm, Ng, and t are defined as the number of RNA molecules present, as the number of tran-

scriptionally active gene copies, and simulation time, respectively. Ngtot is defined as the total num-

ber of gene copies present, and thus is the maximum number of active gene copies that can exist in

the simulation. Kini, kdeg, kon, and koff are rate constants defining the rates of transcription initiation,

RNA degradation, promoter state switching from off to on, and promoter state switching from on to

off, respectively.

As the Markov process gets more complex, the master equation can become too complicated to

solve. Gillespie’s Algorithm is a statistically exact method that generates a probability distribution

identical to the solution of the corresponding master equation given that a large number of simula-

tions are realized. A brief description of how the Gillespie simulation produces each probability dis-

tribution is as follows:

1. We initialize all simulations to start with no mRNA molecules and promoter state is set to OFF.
2. For each event i in the simulation, a total rate rtot is calculated by summing all ri reaction rate

constants in the model, given the current promoter state and the total number of mRNA mole-
cules present.

3. A time-step t is generated from an exponential probability distribution with mean 1/rtot. This t
is the time interval between the current event and the next event.

4. Each event i is selected from the list of reaction steps in the model available at that time (pro-
moter switching, transcription initiation, mRNA decay). The probability a reaction step is
selected is equal to ri/rtot. An event is selected at random given these probabilities. For each
event, the following actions are taken:
. Promoter switches to ON: Promoter is now in ON state, transcription initiation is now

included in rtot,
. Promoter switches to OFF: Promoter is now in OFF state, transcription initiation is no lon-

ger included in rtot.
. Transcription Initiation: Number of mature mRNA molecules is increased by 1.
. RNA degradation: Number of mature mRNA molecules is decreased by 1.

5. Simulation time is updated as t + t where t is the total time elapsed in the simulation.

Each simulation is run for 10,000 iterative events to approximate steady-state conditions, at the

end of which the number of mRNA molecules present in the simulation is recorded. Independent

simulations are then randomly paired to mimic the two alleles within a cell, and the sum of mRNA

numbers is recorded as the mRNA output per cell. A minimum of 1000 simulation pairs are gener-

ated for each set of rate parameter values.

The RNA decay parameter kdeg is fixed at 0.04/min for all simulations, as this rate had been

experimentally determined for sens mRNA (Giri et al., 2020). The transcriptional rate parameters

are varied in accordance with the specific hypothesis being tested. We constrain them loosely to be

within an order of magnitude of reported values for these rates from the literature (Milo et al.,

2010). We also constrain these rates so as to produce steady state mRNA numbers similar to experi-

mental data.
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. kini is varied from 0.2 to 60/min

. kon is varied from 0.008 to 38/min

. koff is varied from 0.016 to 20/min

To perform a parameter sweep, we vary the relevant parameter across the defined range. Each

rate parameter value in the sweep is used to make 1000 paired simulations as described above.

Nascent Transcripts
Thus far we have described how model simulations generate in silico data for mature mRNA num-

bers. We also use the same simulations to approximate the number of nascent RNAs per gene. After

10,000 iterative events are completed in a simulation, the number of nascent RNAs is counted. A sin-

gle nascent RNA is counted if a single transcription initiation event has occurred within an interval of

time (telong) equal to the time it is estimated that RNA polymerase takes to elongate from the bind-

ing site for the 5’-most oligo probe to the 3’ end of the RNA. To calculate telong for each gene, we

divide the number of nucleotides from 5’ probe-binding site to 3’ end by the transcription elonga-

tion rate. This rate is assumed to be 1100 nucleotides/min, as experimentally determined

(Ardehali et al., 2009).

Gene telong (min)

brk 1.35

dad 2.05

sens 5.15

salm 5.30

omb 3.05

We weight the count of nascent RNAs in a simulation to mimic the fluorescence output from

these nascent RNAs if they are hybridized to probes. We define tprobe to be the time interval for

RNA polymerase to elongate from the 5’-most probe-binding site to the 3’-most probe-binding site.

If a nascent RNA had been initiated in a time less than tprobe, then we weight the counting of that

nascent RNA as 0.5 rather than 1. We do this because the probe-binding region of the nascent RNA

is partially transcribed at this point. For simplicity, the exact locations of probes and RNA polymer-

ase are not taken into account to calculate the weighting, and instead we assign the overall probabil-

ity of fluorescence for an ensemble of such partially transcribed RNAs. If a nascent RNA had been

initiated in a time greater than or equal to tprobe and less than telong, then we weight the counting of

that nascent RNA as 1. These RNAs are assumed to produce 100% of the fluorescence of a mature

RNA spot, since all probe-binding sites are transcribed at this point.

We randomly pair two simulations and sum the number of weighted nascent transcripts. This

mimics the experimental conditions where the two gene alleles are physically paired and thus their

nascent RNAs are co-localized in space. We collate 1000 paired simulations for each parameter set

and calculate the following statistics:

Fraction of virtual cells with a transcription site is calculated by counting how many paired simula-

tions have a total number of weighted nascent RNAs of 2.0 or more. This is done in order to be con-

sistent with the limitations of the experimental data; only nuclear spots with fluorescence greater or

equal to two mature mRNA spots were called as transcription sites. When this number of paired sim-

ulations is divided by the total of 1000 paired simulations, it is the fraction of virtual cells with a tran-

scription site.

Median number of nascent RNAs per virtual cell is calculated from those paired simulations with a

total number of weighted nascent RNAs of 2.0 or more.

Data and code availability
Experimental analysis code is freely available at https://github.com/bakkerra/smfish_pipeline.

All raw smFISH data after spot and nuclei segmentation is freely available at https://doi.org/10.

21985/n2-rfax-bk36. Source data is deposited in the Northwestern University library’s data
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repository. Each. csv file is for one wing disc analyzed for either nuclei or RNA from a given gene as

indicated in each file’s name. XYZ centroid positions and fluorescence intensity values are listed.
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