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Abstract: The environment-dependent feature of physical unclonable functions (PUFs) is capable
of sensing environment changes. This paper presents an analysis and categorization of a variety of
PUF sensors. Prior works have demonstrated that PUFs can be used as sensors while providing a
security authentication assurance. However, most of the PUF sensors need a dedicated circuit. It can
be difficult to implemented in commercial off-the-shelf devices. This paper focuses on the intrinsic
Dynamic Random Access Memory (DRAM) PUF-based sensors, which requires no modifications for
hardware. The preliminary experimental results on Raspberry Pi have demonstrated the feasibility of
our design. Furthermore, we configured the DRAM PUF-based sensor in a DRAM PUF-based key
generation scheme which improves the practicability of the design.
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1. Introduction

In the internet of things (IoT) era, billions of smart devices are connected and interact with each
other. A large number of sensor nodes are distributed in the network for sensing the world. The data
collected from the sensors are used to trigger the whole system to interact. However, the sensing,
collecting and communication of sensor data are vulnerable to attacks [1].

The sensors are working in a challenging world. This variable and hash environment results in
the sensors being prone to failure. Furthermore, the sensors that are distributed all over the world
can be physically accessed by the attacker. Therefore, they are also vulnerable to physical attacks.
For example, some physical attacks focus on the long-term private key stored in non-volatile memory
(NVM) that is assumed to be secure. The secret data stored in NVM like Read-Only memory (ROM),
Electrically Erasable Programmable Read-Only Memory (EEPROM) and flash can be recovered even
after erasures [2]. Non-invasive, semi-invasive and invasive attacks [3] can extract the private key,
making NVM the weak link in many security implementations.

Furthermore, the sensor nodes are limited in computation, memory and power because of the
resource constraints. Therefore, certain traditional security solutions cannot be embedded in it. Also,
there are billions of connected devices with different manufacturers and service providers. Thus the
nodes may not have global identifications. Therefore, it is hard to authenticate the identity of each
node to countermeasure the false ones [1].

Another emerging threat for sensor nodes is sensor spoofing attacks [4]. The attackers can
spoof a false analog signal to the sensor which may cause malfunctions. It is hard to address this
attack because sensors cannot inherently distinguish between malicious and non-malicious signals.
One promising solution is the so-called sensor fusion [4]. By comparing the sensed data from various
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sensors, the malicious signal can be detected. However, for some low-cost sensor nodes, the overhead of
multi-sensors is unacceptable. Therefore, the low-cost intrinsic sensors that do not use an analog-mixed
circuits are worth studying.

Physical unclonable functions (PUFs) [5] exploit the random variability of nano-scaled
manufacturing variations to achieve tamper resistance, and physical and mathematical unclonablility.
It has become an indispensable primitive to countermeasure the aforementioned security issues, since:

• PUF provides the possibility for low-cost key storage and authentication which is not vulnerable
to physical attacks [6,7]. No secret data needs to be stored in NVM. Instead, the secret key or
identification is derived from the physical properties of the PUF when needed.

• Some PUFs are very sensitive to environmental parameter changes. Therefore, one can use the
PUF response to sense environmental changes. For example, a ring oscillator (RO) PUF can
measure the temperature in the Field-Programmable Gate Array (FPGA) boards [8]. The digital
PUF is easily embedded in the Application Specific Integrated Circuit (ASIC) or FPGA without
analog circuits. Therefore, a PUF-based sensor is a good candidate to countermeasure a spoofing
attack where the outputs from multiple traditional and PUF sensors can be compared to catch an
anomaly [9].

• Some digital PUFs can be used as a fusion of low-cost key storage, authentication and sensor. It is
easy to be implemented in digital devices because it does not require any analog-mixed process.

However, most of the existing PUF sensors rely on dedicated circuits that are very difficult, if not
impossible, to find in off-the-shelf commodity devices [8–10]. The addition sensors may not meet
the requirements of some low-cost systems. Therefore, some intrinsic PUF instances within standard
hardware that do not need any dedicated circuits or hardware modifications can be evaluated as
PUF sensors to overcome the requirements of the off-the-shelf devices. In this paper, we propose a
temperature sensor leveraging Dynamic Random Access Memory (DRAM) PUF in commodity devices.
Our method is based on the existing DRAM circuits and does not require adding any hardware circuits
in the device.

Our key contributions are as follows:

• Implementation of an intrinsic DRAM PUF-based temperature sensor in off-the-shelf
commodity devices.

• Test the feasibility of the DRAM PUF-based sensor and configure it in a DRAM PUF-based key
generation scheme.

The rest of the paper is organized as follows. Background and some related security issues are
introduced in Section 2. In Section 3, we summarize the existing PUF sensors. A novel temperature
sensor based on DRAM PUF is proposed in Section 4. Evaluation of the novel temperature PUF is
presented in Section 5 and we discuss this work in Section 6. The conclusion is presented in Section 7.

2. Background

2.1. Physical Unclonable Functions

Since the introduction of an optical PUF in 2002 [11], researchers have proposed various PUF
designs. The digital PUFs are the most popular components. The essence of a digital PUF is a
hardware circuit with unique binary or analog behavior which depends on the integrated circuit
(IC) manufacturing variations, e.g., delays, frequencies or capacitances. The process variations are
randomness, even the manufacturer can not predict or clone it. Hence, PUFs have been proposed as an
important building block for security systems. For example, PUFs can be used in a lightweight key
storage scheme [6,12] or authentication and identification scheme [13,14] which does not need any
NVM to store the secret data. The private key is derived from the PUFs during run time instead of
being stored in the NVM. Thus, it can be used to protect against certain NVM attcks.
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Most of the digital PUF designs (e.g., Arbiter PUF [15] and Ring Osillator (RO)-PUF [16]) require
the design of dedicated circuits which tend to be rather complex in design and manufacturing. Also,
it is difficult, if not impossible, to find these dedicated circuits in existing commodity devices. Therefore,
people are becoming more and more interested in intrinsic PUFs, e.g., Static Random-Access Memory
(SRAM) PUF [17] and DRAM PUF [18]. DRAM PUF is the focus of this work.

2.2. Secure Key Management Scheme for Sensor Networks

Key management is considered the most critical component of security systems [19], as the leakage
of keys makes even the toughest cryptographic system pliable. It is the same in the trust management
scheme in the wireless sensor network (WSN) [20,21]. To maintain the tolerant level of trust among
the sensor nodes, trust management is established to authenticate the genuine and fake sensor nodes.
In the trust management system, a robust and lightweight key management scheme is critical.

In paper [22], the author divided the key management schemes into symmetric, asymmetric and
hybrid, based on the encryption techniques. For the scenario of dynamic WSN, paper [23] proposed a
dynamic key management scheme by refreshing the pairwise keys periodically or on demand. There is
also an existing survey on key management in WSN that classifies the key management schemes as key
pre-distribution schemes, hybrid cryptography schemes, one-way hash schemes, key infection schemes,
and key management in hierarchy networks. In the key pre-distribution schemes, one lightweight
solution is that all the nodes only need to store a master secret key. When used in the field, the key
management scheme is initiated by the global master key. However, due to the NVM-based key storage
scheme, the previous works showed that any micro-controller, FPGA, secure memory, smart-card and
even ASIC can be attacked successfully by several attack methods [1,24,25]. The whole WSN will be
compromised if one sensor node key is promised.

One complement to the aforementioned leakage attacks is proposed in paper [26]. The authors
proposed a public-key encryption scheme that is resistant to key leakage attack. However,
the public-key based crypto desigh is too expensive to implement in the low-cost systems.

A natural defense would be to store the secret key in tamper-resistant hardware. For example,
paper [27] proposed a countermeasure using the coating layer and paper [28] presents a construction
by the error detection codes that is resilient to key leakage. However, the traditional tamper-resistant
hardware might also vulnerable to some attacks, e.g., [25,29]. Furthermore, it is difficult to implement
in the resource-constrained sensor nodes and the off-the-shelf devices.

PUF provides the possibility for a tamper-resistant, low-cost key storage and authentication
scheme [7,30]. The advantages of this combination would be:

• Tamper-resistant. The key is extracted from the nano-scale manufacturing variations, not “burned”
in the NVM like EEPROM. Therefore, even an invasive attack cannot compromise the secret key.

• Low-cost. For some intrinsic PUFs, the security system does not need to add any dedicated
circuit in hardware. For example, the implementation of DRAM PUF [31] just requires the
firmware modifications.

• Combing node identity. Integrating node identity in the process of key production will make
a system more secure [32]. It is also helpful for the resistance of node replication attacks [33].
PUFs can be seen as the “fingerprints” of hardware, it can be used in identification and key
generation. In the PUF-based key generation scheme, the key is extracted from the hardware
feature. Obviously, this feature can be seen as the identity of nodes.

3. PUF Sensor

Based on the roles of PUF in PUF sensors, we classify the current PUF sensors as PUF-protected
sensors and PUF-based sensors.
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3.1. PUF-Protected Sensor

The so-called PUF-protected sensor is a variety of sensor that leverages the functionality of a
conventional PUF to authenticate the sensor nodes or protect the sensed value.

The PUF-protected sensor was first proposed in paper [34]. As shown in Figure 1, the conventional
PUF is co-mingled with the sensor so that the sensor value is determined by both the physical quantity
and PUF response. In paper [34], the signals of the offset generator are selected randomly by the PUF
response to generate the final sensed value. Like the PUF-based authentication process, the proposal
also has an enrollment phase to store some challenge-measurement-response pairs. When used in the
field, the micro-controller just accepts the sensed data that passed the verification process. Therefore,
the PUF-protected sensor becomes a promising mechanism for securing remote sensors.

Controlled Sensor 

Conventional PUFs

Physical Quantity

Digital Challenge

Digital Response 

with High reliability

Sensed Value

Figure 1. Physical unclonable function (PUF)-protected sensor.

Cao et al. extracted some PUF features from the CMOS image sensor [35] to improve the image
sensor as a trusted entity. Each pixel can generate a 1-bit PUF response based on the fixed pattern
noise resulting from manufacturing variations. Therefore, each image sensor can generate a unique
and reliable signature for the pictures using the hash function. This design can be implemented on the
existing CMOS image sensors without a dedicated circuit. It can be used in a PUF-based perceptual
image hash scheme to carry out the image content birth certification.

3.2. PUF-Based Sensor

As shown in Figure 2, the PUF-based sensors evaluate the environmental parameters based
on the environment-dependent-behavior of the PUF. Usually, the PUF-based authentication and
key generation scheme has two steps: The enrollment phase in the security environment, and the
authentication or key generation phase when used in the field. Most PUFs exhibit unreliability
problems due to inherent sensitivity to the environmental conditions, e.g., temperature and supply
voltage [36]. This unwanted fact gives us a new idea to sense environmental changes.

PUFs

Physical Quantity

Digital Challenge

Unreliability

Digital Response
Quantification

Sensed Value

Figure 2. PUF-based sensor.

Paper [37] presented a micro-electro-mechanical (MEM) relay based RO-PUF to sense pressure
and provide authenticity. Compared to the conventional RO-PUF, the “sensorPUF” leveraged the
MEM relay inverter to replace the CMOS inverter. The MEM relay inverter can sense the pressure
changes and influence the behavior of RO-PUF to a unique but deterministic function. Therefore,
the sensed value has both the pressure feature and the hardware “fingerprints” feature to realize an
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authenticated pressure measurement. However, it is hard to implement this design in some low-cost
IoT devices.

Compared to the aforementioned work, paper [10] proposed a universal RO-PUF to sense voltage.
By leveraging the sensitivity challenges, the authors also investigated a challenge selecting a method
to improve the sensing capability. Similarly, paper [9] presented another type of voltage sensor based
on the error rate or universal Glitch PUF.

Furthermore, the oscillation frequency is sensitive to temperature changes [8,38]. It can be used
as the thermal sensor in FPGA to monitor the die temperature. This temperature sensor also can be
used as a possible malicious application of the thermal covert channel. The transmitter can encode the
transmitted data into heat patterns and the RO-PUF based temperature sensor can detect temperature
changes in the receiver [39,40].

4. Proposed Intrinsic PUF Sensor Based on DRAM PUF

Although the aforementioned design allows the sensor to inherently provide assurance of
authenticity by co-mingling sensing and unique hardware features, it is difficult, if not impossible,
to be found in the existing off-the-shelf commodity devices. Therefore, the design and implementation
of intrinsic PUF sensors that do not need to add any dedicated hardware are necessary. This paper
briefly presents a novel intrinsic temperature sensor based on the decay feature of DRAM PUF.

4.1. DRAM PUF

DRAM is pervasively used in existing embedded systems. As shown in Figure 3, the DRAM cell
consists of a transistor and a capacitor. Each cell stores 1-bit data in the capacitor and can be accessed
through the transistor. The cells are grounded in a 2-dimensional array, where each row is connected
to a word line and column linked in a bit line. In each cell the capacitor leaks the charge over time
which causes data to flip from the previous contents. Therefore, DRAM chips usually have a periodical
self-refresh module to recharge the capacitor on time which is controlled by the memory controller.

BL0 BL1BL0* BL1*
WL0

…

B i t  0 B i t  1

…

WLk
…

…

…

Figure 3. The architecture of DRAM.

Due to the manufacturing variations among DRAM cells, some cells leak faster than others.
After a certain delay time, enough charge has leaked crossing the threshold from some cells such
that the stored logical bit flips. For the other cells, the contents stay stable. This behavior heavily
depends on the random manufacturing variations and environment (e.g., temperature). The random
data flips allow DRAM to be a good candidate for PUF [31]. It can be used as a run-time accessible
DRAM PUF in the key generation or authentication scheme in commodity devices [18]. Beyond that,
Tehranipoor et al. [41] attempted to use the random start-up value of DRAM as a PUF. However,
this method needs to control the power supply of the DRAM chip like the SRAM PUF. It is difficult to
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be implement in commodity off-the-shelf devices. In [42], the authors introduced error patterns bound
to manufacturing variations of DRAM by reducing DRAM read access latency below the minimum
value in data-sheet specifications to implement DRAM PUF. In this scenario, the computer system
needs at least two DRAM ranks because normal read latency should be maintained at least in one rank
to keep systems operational. Therefore, this method is difficult to implement in low-cost embedded
systems. For example, we tried to implement this proposal in Raspberry Pi (Rpi) B+. However, Rpi B+
just have one rank. The system crashed when we set the value of reading latency as less than 2. In our
study, we use the decay-based DRAM PUF as the covert channel to sense temperature changes in the
commodity off-the-shelf devices.

4.2. Implementation of DRAM PUF on Raspberry Pi B+

We implemented and tested our sensor on three Rpi B+ development boards which are the
most popular commodity embedded platform. Each board have a Broadcom BCM 2835 systems on
chip (SOC) module which includes a 700 MHZ ARM11 76JZF-S processor and a VideoCore IV that
implements a 512 MB Double Data Rate SDRAM (DDR2) memory.

We modified an open source firmware of Rpi [43] in order to get the privilege of DRAM decay
control. The refresh of the whole DRAM has to be disabled as we can not control part of the DRAM
address on Rpi. Similar to the previous work in the paper [31], we set the selective refresh by loops
over all memory address that need to be refreshed by issuing a read to the first word in every DRAM
row. Therefore, during query process of DRAM PUF, the other applications can operate normally.

Figure 4 shows the structure of DRAM PUF on Rpi B+. There are three important parameters
for DRAM PUF: PUF address, initial value and decay time. PUF address is the DRAM address that
supposed to be used as PUF. The initial value is a set of digital data that used to initiate the PUF
address before the PUF query. In the PUF query, decay time indicates how long the DRAM PUF is
disable refreshed. In our implementation, we set a 16 MB DRAM PUF with initial value = 1 and decay
time = 60 s. These parameters can be compiled in the kernal of Rpi B+ or acquired from the upper
computer via Universal Asynchronous Receiver/Transmitter (UART). And then, the PUF query code
running on Graphics Processing Unit (GPU) can gain these parameters from Central Processing Unit
(CPU) by the mailbox. The programs running on the CPU and GPU are only able to communicate via
the mailboxes. All the aforementioned work has been published on the paper [44]. In paper [44], the
decay feature of DRAM was used as covert channel leveraging the PoP architecture.

Kernal(CPU code)

START

Initialize  UART

Get Param

from UART

(address, initial 

value, decay time)

Firmware(GPU code)

Initialize DRAM

Disable DRAM 

refresh

Read DRAM 

storage value

XOR

Initial

value

Measured

Value

Number 

of Bit 

Flips

Enable DRAM 

refresh

Decay

Figure 4. Structure of DRAM PUF implementation on Raspberry Pi (Rpi) B+.
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4.3. Embedded in the PUFs-Based Key Generation Scheme

The DRAM PUF-based key generation scheme has two phases: enrollment and key generation.
In the enrollment phase, the security system generates helper data h = GEN(r), where GEN() is the
generation process of helper data algorithm [45] and r is the output of DRAM PUF. h can be generated
and stored in the devices or the data center. In the key generation process, when used in the field,
the device queries the DRAM PUF and receives a measurement r′. By the helper data algorithm,
the system can regenerate the original DRAM output r = REGEN(R′, h) if the Hamming Distance of r
and r′ is smaller than the error-correction capability of helper data algorithm, where REGEN() is the
error correction process of the helper data algorithm. In the DRAM PUF-based sensor, the Hamming
Distance of r′ and r is the number of bit flips caused by the temperature changes. Therefore, as shown
in Figure 5, the cross-correlation between the errors in DRAM PUF-based key generation process
and the temperature variations is established. The novel temperature sensor is integrated into the
conventional PUF-based key generation scheme.

Figure 5. Module of DRAM PUF-based sensor fused with the key generation scheme.

For DRAM PUF, one promising key generation scheme was proposed in paper [31]. The authors
discretize the decay feature by divided the DRAM cells into fast cell, slow cell and no cell. The decay
time of fast cells is shorter than slow cells. Some randomly selected fast cells and slow cells, which are
either extremely fast or extremely slow, are used to generate a key. In our tests, we simplified
the implementation of this scheme by ordering these selected cells in their physical address.
The contribution of this scheme is that the output of this proposal can be capable of higher randomness
with higher reliability. The reliability of this scheme has been tested in paper [31].

5. Experimental Set Up and Evaluation

5.1. Experimental Set Up

Figure 6 presents the schematic of the experimental set up used to verify the feasibility of our
design. It includes a thermal chamber with a thermal chamber controller; three Rpi B+ boards running
the modified open source firmware that can communicate with the workstation via UART; and a
workstation running the control scripts. The automatic test process is the following:

1. The workstation sets the temperature of thermal chamber by the thermal chamber controller and
starts the loop to monitor the temperature.

2. When the temperature requirements are reached, the workstation writes the parameters of the
DRAM PUF to the CPU.

3. Execute the DRAM PUF query process on GPU and count the number of bit flips.
4. Restart from step 1 for next set of parameters.
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Figure 6. Experimental set up.

5.2. Test Results

We measured the temperature sensor instances on three Rpi B+ boards (Rpi1, Rpi2 and Rpi3)
with temperature t = 15 ◦C, 20 ◦C, 25 ◦C, 30 ◦C, 35 ◦C, 40 ◦C and decay time 60 s. In each device,
we measured one 16 MB DRAM in stride in the free address area of DRAM.

Decay time and temperature are two parameters that affect the number of bit flip for DRAM
PUF. In our proposal, we evaluate the temperature, leveraging the number of bit flips of DRAM PUF.
In Figure 7, we show the dependency between temperature and number of bit flips under certain
decay times. The temperature changing was achieved using a thermal chamber. Although decay time
affects the number of bit flips significantly, it does not influence the dependency between temperature
and decay time. The temperature characteristics of DRAM PUF are very similar for different decay
times. In the following tests, we evaluate our DRAM PUF under 30 s.
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Figure 7. Relation between the temperature, decay time and number of bit flips measured on three
Raspberry Pi B+ boards. (a) Test results of RPi1. (b) Test results of Rpi2. (c) Test results of Rpi3.

Figure 8 shows the number of bit flips of each Rpi, environment temperature and SoC temperature.
Every point in the plot represents a test result under one temperature conditions. We see that the
number of bit flips significantly increases with the temperature rising. However, there are obvious
differences in the change of slope rate of the environmental temperature and number of bit flips among
all the devices. The curve slope of temperature is very stable compared with the number of bit flips.

Prior work has presented that the decay time (retention time) of DRAM cells decreases
exponentially as the temperature increases [46]. In paper [31], the authors computed it by the formula
t′T′ = t · e−α(T′−T). At temperature T′ > T, DRAM PUF can generate a similar response under decay
time t′ < t. Furthermore, the number of bit flips is determined by the decay time under a certain
temperature. Therefore, we analyse the relationship between temperature and number of bit flips by
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a simple fitting formula exponentially. The behaviour of bit flips NT′ under temperature T′ can be
computed by known parameters NT and T by:

NT′ = NT · eα(T′−T) (1)
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Figure 8. Test results of Rpi1, Rpi2 and Rpi3. The temperature of thermal chamber, temperature sensor
on the systems on chip (SOC) and the number of bit flips (right y-ray) are shown in each plot. The x-ray
is the number of iteration of tests under different tests conditions. Due to the heat production of
function operation, the curve of temperature sensor on the SoC are always higher than the thermal
chamber. (a) Test results of RPi1. (b) Test results of Rpi2. (c) Test results of Rpi3.

Based on our measurements, we estimated α to be 0.2465 for Rpi1, 0.2432 for Rpi2 and 0.2659 for
Rpi3. As shown in Figure 9, the smooth fitting curve coincides very well with the original line with
“X” label.
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Figure 9. Fitting line of Rpi1, Rpi2 and Rpi3. The smooth curve is the fitting line and the line with the
“’X” lable is the original line. (a) Fitting line of Rpi1. (b) Fitting line of Rpi2. (c) Fitting line of Rpi3.

As shown in Table 1, the accuracy of our DRAM PUFs based temperature sensor can be within
4 ◦C. Due to the reason that the accuracy of our thermal chamber can only be stabilized at 4 ◦C to
5 ◦C, we implemented our tests under that range. However, we can still find the big gap between our
test results, e.g., from 20 ◦C to 25 ◦C, the number of bit flips increased threefold. Therefore, the real
accuracy of our proposal should be much better than our test results. Theoretically, if the number of
bit flips caused by noise is 200 (this will be shown in the following contents), the temperature accuracy
should be less than 3 ◦C ( T′ − T = (ln((188 + 200)÷ 188)÷ 0.2465).
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Table 1. The number of bit flips under temperature 20 ◦C, 25 ◦C, 30 ◦C, 35 ◦C, 40 ◦C, where TR is the
test results in thermal chamber and ER is the value evaluated by Equation (1).

Rpi 20 ◦C 25 ◦C 30 ◦C 34 ◦C 40 ◦C

TR ER TR ER TR ER TR ER TR ER

Rpi1 198 188 781 647 2621 2219 6571 5948 26074 26103

Rpi2 193 196 751 660 2448 2227 6256 5891 25359 25348

Rpi3 117 106 476 400 1835 1511 5103 4378 21569 21584

In our proposal, the uniqueness of DRAM PUFs is an important parameter to make sure that the
DRAM PUF can generate a unique ID and key for the sensor. However, the uniqueness evaluation
method based on inter-Hamming distance is not suited for DRAM PUF, because the majority cells
of DRAM PUF does not flip in short decay time. Therefore, paper [31] proposed to use the Jaccard
index to evaluate the uniqueness of multiple DRAM PUF instances. For two sets A and B, the Jaccard
index is defined as Equation (2). As shown in Figure 10, the inter-chip Jaccard index is 1.4981× 10−4.
This small value indicates the high uniqueness of our DRAM PUF on Rpi.

J(A, B) =
A ∩ B
A ∪ B

(2)

-4 -2 0 2 4 6 8

10
-3

0

500

1000

1500

2000

Figure 10. Inter-chip Jaccard index. We evaluate 16MB DRAM as DRAM PUF on each Raspberry Pi
board. Given that we do not have enough boards to evaluate the inter-chip Jaccard index, we divided
each 16 MB DRAM PUF into 20 parts with the same size. We consider each 0.8MB DRAM PUF as a
unique model. Therefore we have 60 DRAM PUF models to operate the Jaccard index evaluation.

For the DRAM PUF-based key generation scheme in Section 4.3, we tested the randomness of
the output. As shown in Table 2, the scheme can generate random bits under 40 ◦C, 30 s or under low
temperature with longer decay time calculated by the aforementioned equation t′T′ = t · e−α(T′−T).

Furthermore, to evaluate the robustness of our proposal, we tested the aging and workload effects
of DRAM PUF and analyzed the voltage effects by the related study.

All the accelerated aging experiments are performed using a thermal chamber. Theoretically,
one day’s test under 80 ◦C is equal to 18 months of operation under room temperature [47]. Therefore,
as shown in Figure 11, after 15 days accelerated aging tests, we can evaluate nearly 270 months of
aging effects of DRAM PUFs. Although there are some fluctuations, the test results do not present
serious aging effects. Similar conclusions are also shown in paper [47].
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Table 2. The randomness test results for the DRAM PUF leveraging NIST test suit for temperature
25 ◦C, 30 ◦C, 35 ◦C, 40 ◦C under decay time 30 s. It should be noticed that as a weak PUF, the length of
the output from the DRAM PUF cannot meet some of the tests in the National Institute of Standards
and Technology (NIST) test suit, e.g., the length of the bit strings should be longer than 106 for the Rank
test. Therefore, we just listed the test results that meet the requirement. (N.O.T. is the Non Overlapping
Template. FFT is the Fast Fourier Transform test.)

NIST Tests Pi1 Pi2 Pd i3

25 ◦C 30 ◦C 34 ◦C 40 ◦C 25 ◦C 30 ◦C 34 ◦C 40 ◦C 25 ◦C 30 ◦C 34 ◦C 40 ◦C

Frequency - - 100% 100% - - 97% 97% - - 99% 99%

Blcok Frequency - - 100% 99% - - 100% 97% - - 100% 99%

Cumulative Sums - - 100% 100% - - 99% 96% - - 98% 99%

Runs - - 100% 99% - - 99% 97% - - 98% 99%

longest Run - - 99% 99% - - 0% 98% - - 0% 99%

FFT - - 95% 98% - - 96% 99% - - 99% 100%

N.O.T. - - 47% 100% - - 59% 91% - - 98% 98%

As shown in paper [48], voltage is one of the parameters that effect the junction leakage current
Ileak ∝ eVappliedvoltage . The relationship between the retention time of DRAM and Ileak can be expressed as
Tret ∝ Cs/Ileak, where Cs is a parameter. Thus, as the increase of voltage, the retention time of DRAM
decreased. For a certain decay time, there would be more bit flips. This may effect the robustness of
DRAM based key generation scheme and the accuracy of the temperature sensor. Therefore, a stable
supply voltage for DRAM chip is necessary for our proposal.
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Figure 11. The aging test resuts of Rpi, Rpi2 and Rpi3. The x-ray is the days of the accelerated aging
tests under 80 ◦C. The y-ray is the Hamming distance between the output of DRAM PUF before and
after accelerated aging under different temperature. (a) Aging test results of Rpi1. (b) Aging test results
of Rpi2. (c) Aging test results of Rpi3.

Furthermore, the working conditions of SoC may also influence the feature of our design.
However, until now, the open source firmware for Raspberry Pi B+ cannot boot up a real operation
system. Therefore, in this paper, we only tested the effects of two specific functions that operated
on GPU. The difference between the two functions is reliable at 5%. These orders of magnitude are
much smaller than the influence of temperature (as shown in Table 1). On the other hand, the SoC can
mitigate the influence of workload by control the code operation when used in the field.

6. Discussion

6.1. Security Discussion

Since our intrinsic DRAM PUF relies on the intrinsic DRAM memory, memory protection is the
premise for the security of our DRAM PUF-based key storage and sensor scheme. The memory used
as PUF must be protected from tampering from all software outside the trust boundary. Furthermore,
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the privilege to control the register about DRAM decay control is another important security issue.
The security system must make sure that only the legal component that is granted the highest privilege
can access arbitrary memory without any limitations.

Isolation techniques for multi-core platforms that are based on resource partitioning offer a
promising method for this security issue. For example, memory isolation techniques can control
memory access rights on an embedded system. It relies on temporal partitioning of memory
between trusted and untrusted code to create isolated memory for the execution of sensitive code.
It can be used to protect a specified memory space by forbidding any illegal access to the memory
address. The isolation techniques have been widely used in the existing computer security scheme,
e.g., Intel Trusted Execution Technology (TXT) [49], Intel Software Guard Extensions (SGX) [50] and
ARM TrustZone [51].

Although the memory resources that are used for DRAM PUF can be protected by the
isolation technology aforementioned, another possible threat for our DRAM PUF-based sensor is
the Rowhammer attack [52]. As shown in Figure 12, the attacker could try to introduce some random
errors (bit flips) into DRAM PUF by repeatedly accessing adjacent rows which are legal for the attacker.
If the DRAM PUFs address is discrete physically, this attack should be very powerful because there
will be a lot of adjacent rows that can be used to operate the attack. On the contrary, if the DRAM
PUF is physically successive as shown in Figure 12, the attack would be not very useful in our design
because the rowhammer attack can only injure the borders of the DRAM PUF area. The number of bit
flips introduced by this attack is very limited. Furthermore, two “empty-rows” can be used to isolate
the DRAM PUF from the attacker.

Figure 12. The rowhammer attacks for DRAM PUF.

6.2. Future Works

This novel DRAM PUF-based sensor still leaves a number of open research issues and questions
that need to be addressed. The possible future work includes:

• We only verified the feasibility of the DRAM PUF-based sensor. Therefore, more comprehensive
tests are necessary.

• The open source firmware [43] used in our implementation cannot boot up a whole operating
system now. Therefore, we still are not clear about the influence of the operating code on the
feature of the sensor.

• The query process of DRAM PUF needs several seconds of decay time. Therefore, it can not be
used in certain real-time scenarios. Our future work will utilize more intrinsic PUF designs to
address this issue.

7. Conclusions

In this work, we presented an analysis and categorization of the security key management
schemes for sensor networks and PUF sensor designs. Previous works depicted that PUF can provide
low-cost key storage and intrinsic sensors to countermeasure the security issues of physical attacks for
NVM-based key storage and spoofing attacks. However, the existing PUF sensors can not be used in
commodity off-the-shelf devices because of the dedicated circuits of PUF implementation. Our work
demonstrates that intrinsic PUFs can be a good candidate to configure the PUF-based key storage and
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PUF sensor in the commodity off-the-shelf devices without any hardware changes. An evaluation
of the DRAM PUF found on the off-the-shelf commodity device–Rpi B+, showed the feasibility of
a DRAM PUF-based temperature sensor. Moreover, we proposed a DRAM PUF-based key storage
scheme that can configure the PUF sensor in it. The sensor process can be operated during the key
generation process.
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