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Abstract

In many species a fundamental feature of genetic diversity is that genetic similarity decays

with geographic distance; however, this relationship is often complex, and may vary across

space and time. Methods to uncover and visualize such relationships have widespread use

for analyses in molecular ecology, conservation genetics, evolutionary genetics, and human

genetics. While several frameworks exist, a promising approach is to infer maps of how

migration rates vary across geographic space. Such maps could, in principle, be estimated

across time to reveal the full complexity of population histories. Here, we take a step in

this direction: we present a method to infer maps of population sizes and migration rates

associated with different time periods from a matrix of genetic similarity between every pair

of individuals. Specifically, genetic similarity is measured by counting the number of long

segments of haplotype sharing (also known as identity-by-descent tracts). By varying the

length of these segments we obtain parameter estimates associated with different time peri-

ods. Using simulations, we show that the method can reveal time-varying migration rates

and population sizes, including changes that are not detectable when using a similar method

that ignores haplotypic structure. We apply the method to a dataset of contemporary Euro-

pean individuals (POPRES), and provide an integrated analysis of recent population struc-

ture and growth over the last*3,000 years in Europe.

Author summary

We introduce a novel statistical method to infer migration rates and population sizes

across space in recent time periods. Our approach builds upon the previously developed

EEMS method, which infers effective migration rates under a dense lattice. Similarly, we

infer demographic parameters under a lattice and use a (Voronoi) prior to regularize

parameters of the model. However, our method differs from EEMS in a few key respects.

First, we use the coalescent model parameterized by migration rates and population sizes

while EEMS uses a resistance model. As another key difference, our method uses haplo-

type data while EEMS uses the average genetic distance. A consequence of using haplotype

data is that our method can separately estimate migration rates and population sizes,
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which in essence is done by using a recombination rate map to calibrate the decay of hap-

lotypes over time. An additional useful feature of haplotype data is that, by varying the

lengths analyzed, we can infer demography associated with different recent time periods.

We call our method MAPS for estimating Migration And Population-size Surfaces. To

illustrate MAPS on real data, we analyze a genome-wide SNP dataset on 2224 individuals

of European ancestry.

Introduction

Populations exist on a physical landscape and often have limited dispersal. As a result, most

genetic data exhibit a pattern of isolation by distance [1], which is simply to say that popula-

tions closer to each other geographically are more similar genetically. Furthermore, the degree

of isolation by distance can vary across space and time [2]. For instance, in a mountainous

area of a terrestrial species’ range, a pair of individuals may be more divergent from each other

than a pair of individuals separated by the same distance in a flat and open area of the habitat.

Additionally, the degree of isolation by distance can change over time—for example, if dis-

persal patterns are changing over time. Such spatial and temporal heterogeneity is an impor-

tant aspect of population biology, and understanding it is crucial to solving problems in

ecology [3], conservation genetics [4], evolution [5], and human genetics [6].

Several methods have been developed to reveal spatial heterogeneity in patterns of isolation

by distance [7–14]. Some methods are based on explicitly modeling the spatial structure in the

data [9, 10, 12–14]; others take non-parametric approaches [7, 8]; while other methods ignore

the spatial configuration of the samples and rely on researchers to make a post hoc geographic

interpretation of the results [15, 16]. However, none of these methods can be flexibly applied

to address temporal heterogeneity in isolation by distance patterns, and new methods are

needed.

One source of information for inferring changes in demography across time is the density

of mutations observed in pairwise sequence comparisons [17, 18]. For example, when individ-

uals are similar along a long segment of their chromosomes, it suggests that these segments

share a recent common ancestor [19]. These segments are often called “identity-by-descent”

tracts, although here we prefer the term “long pairwise shared coalescence” (lPSC) segments

(as identity by descent traditionally required a definition of a founder generation, which is not

clear in most data applications). A key feature of these segments is that filtering them by length

provides a means to interrogate different periods of population history. The longest segments

reflect the most recent population history, whereas shorter segments reflect longer periods of

time. Recent analyses using lPSC segments suggest that they can reveal fine-scale spatial and

temporal patterns of population structure that are not evident with genotype-based methods

such as principal components analysis [20–22].

Here we develop a new method to infer spatial and temporal heterogeneity in population

sizes and migration rates. The method takes as input geographic coordinates for a set of indi-

viduals sampled across a spatial landscape, and a matrix of their genetic similarities as mea-

sured by sharing of lPSC segments. It then infers two maps, one representing dispersal rates

across the landscape, and another representing population density. Importantly, building

these maps using different lengths of lPSC segments can help reveal changes in dispersal rates

and population sizes loosely associated with different recent time periods.

Our method is based on a stepping-stone model where randomly-mating subpopulations

are connected to neighboring subpopulations in a grid. Such models are parameterized by a
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vector of population sizes (~N ) and a sparse migration rate matrix (M). Stepping-stone models

with a large number of demes can approximate spatially continuous population models [23,

24], and this can be exploited to produce maps of approximate dispersal rates and population

density across continuous space.

Our method builds upon a method developed for estimating effective migration surfaces

(EEMS) [12]. While EEMS infers local rates of effective migration relative to a global average,

here we can explicitly infer absolute parameter values by leveraging lPSC segments and model-

ing the recombination process [~N and M values in the stepping-stone model, and effective spa-

tial density function Deð~xÞ and dispersal rate function sð~xÞ in the continuous limit]. We call

this method MAPS, for inferring Migration And Population-size Surfaces.

We test MAPS on coalescent simulations and apply it to a European subset of 2,224 individ-

uals from the POPRES data [25]. In simulations, we show that MAPS can infer both time-

resolved migration barriers and population sizes across the habitat. In empirical data, we infer

dispersal rates sð~xÞ and population densities Deð~xÞ loosely associated with different time peri-

ods in Europe.

Overview of MAPS

MAPS estimates demography using the number of Pairwise Shared Coalescence (PSC) seg-

ments of different lengths shared between individuals. We define a PSC segment between

(haploid) individuals to be a genomic segment with a single coalescent time across its length

(Fig 1A). Long PSC (lPSC) segments tend to have a recent coalescent time, and so manifest

themselves in genotype data as unusually long regions of high pairwise similarity, which can

be detected by various software packages [26–29]. Because lPSC segments typically reflect

recent coalescent events, counts of lPSC segments are especially informative for recent popula-

tion structure [19, 24, 30]. And partitioning lPSC segments into different lengths bins (e.g. 2-

8cM,�8cM) can help focus inference on different (recent) temporal scales. However, we cau-

tion that the historical signal that gives rise to the number of segments of in a certain length

bin (e.g. 2-8cM) to strongly overlap with that has given rise to a numbers of segments subse-

quent length bin (e.g.�8).

The MAPS model involves two components: i) a likelihood function (Eq (7)), which relates

the observed data (genetic similarities, as measured by sharing of lPSC segments) to the under-

lying demographic parameters (migration rates and population sizes); and ii) a prior distribu-

tion on the demographic parameters, which captures the idea that nearby locations will often

have similar demographic parameters. The likelihood function comes from a coalescent-based

“stepping-stone” model in which discrete populations (demes) arranged on a spatial grid

exchange migrants with their neighbors (Fig 1b). The parameters of this model are the migra-

tion rates between neighboring demes (Mα,β) and the population sizes within each deme (Nα).

The prior distribution is similar to that from [12], and is based on partitioning the habitat into

cells using Voronoi tesselations (one for migration and one for population size), and assuming

that migration rates (or population sizes) are constant in each cell. We use an MCMC scheme

to sample from the posterior distribution on the model parameters (migration rates, popula-

tion sizes, and Voronoi cell configurations). We can summarize these results by surfaces show-

ing the posterior means of demographic parameters across the habitat.

The inferred migration rates and population sizes will depend on the density of the grid

used. However, using ideas from [23] and [24] we convert them to corresponding parameters

in continuous space, whose interpretation is independent of the grid for suitably dense grids.

Specifically, we convert the migration rates to an effective spatial diffusion parameter sð~xÞ,
often referred to as the “root mean square dispersal distance”, which can be interpreted
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Fig 1. Schematic overview of MAPS. (a) Coalescent times between a pair of hapolotypes (A and B) will vary across the genome in discrete segments

bordered by recombination breakpoints. On average, longer segments represent shorter pairwise coalescent times (TAB) (b) Flow diagram of MAPS.

i) We start with a matrix of called genotypes; ii) lPSC segments between all pairs of chromosomes across the genome are identified from the data

using external methods (such as BEAGLE, [27]); iii) lPSC segments between pairs of individuals are aggregated at the levels of pairs of populations;

iv) A grid is constructed and individuals are assigned to the most nearby node; v) The probability of the PSC sharing matrix can be computed under

a stepping-stone model where each node represents a population and each edge represents symmetric migration; vi) We use an MCMC scheme to

sample from the posterior distribution of migration rates and population sizes. The final MAPS output is the mean over these posterior samples, and

the averaged rates can be transformed to units of dispersal rate and population density. The diagram does not show a bootstrapping step used to

estimate likelihood weights to account for correlations between lPSC segments, see Eq (6) in Methods.

https://doi.org/10.1371/journal.pgen.1007908.g001
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roughly as the expected distance an individual disperses in one generation (Eq (18)); and we

convert the population sizes (~N ) to an “effective population density” Deð~xÞ, which can roughly

be interpreted as the number of individuals per square kilometer (Eq (17)). These are deemed

“effective” parameters because the spatial re-scaling assumes a simple approximation to the

two dimensional coalescent process, see [23]. Similar to the original grid-based demographic

parameters, we can summarize MAPS results by surfaces showing the posterior means of sð~xÞ
and Deð~xÞ across the habitat.

Differences from EEMS

Our MAPS approach is closely related to the EEMS method [12], but there are some important

differences. First, the MAPS likelihood is based on lPSC sharing, rather than a simple average

genetic distance across markers. This was primarily motivated by the fact that, by considering

lPSC segments in different length bins, MAPS can interrogate demographic parameters in

recent time periods. However, this change also allows MAPS, in principle, to estimate absolute

values for the parameters M and ~N , whereas EEMS can estimate only “effective” parameters

which represent the combined effects of M and ~N . This ability of MAPS to estimate absolute

values stems from its use of a known recombination map, which acts as an independent clock

to calibrate the decay of PSC segments. Finally, MAPS uses a coalescent model, whereas EEMS

uses a resistance distance approximation [12, 31].

Results

Evaluation of performance under a stepping-stone coalescent model

We assess the performance of MAPS with several simulations, and compare and contrast the

results with EEMS. We used the program MACS [32] to simulate data under a coalescent step-

ping stone model and refinedIBD [27, 28] to identify lPSC segments. Alternatively, we could

of inferred lPSC segments exactly using [32] or [33], however we found the error from refine-

dIBD to be negligible in our simulations. All simulations involved twenty demes, each contain-

ing 10,000 diploid individuals, and each exchanging migrants with their neighbor with a per

lineage migration rate equal to 0.01 per generation. We analyzed each simulated data set using

PSC segments of length 2-6cM and�6cM, which correspond to time-scales of approximately

50 generations and 12.5 generations respectively (see Lemma 5.3 in S1 Appendix), however

these are only the mean coalescent times and considerable variation exists in distribution of

coalescent times. Results for other length bins also reflect the change in migration due to bar-

rier (S1 & S2 Figs).

Migration rate inference. First, we simulated under a uniform (constant) migration sur-

face with migration rate 0.01 (under a discrete model, Fig 2a), assumed to have stayed constant

over time. In this case both EEMS and MAPS correctly infer uniform migration (Fig 2a), and

MAPS provides accurate estimates of the migration rate (posterior mean 0.010 when using

segments 2-6cM and 0.0086 using segments�6cM). As noted earlier, EEMS does not estimate

the absolute migration rate; it estimates only the relative (effective) migration rates.

Next, we considered a scenario where the migration surface changed across time. Specifi-

cally the migration surface matches the constant migration scenario (above) until 10 genera-

tions ago, when a complete barrier to gene flow instantaneously arose (a “vicariance event”,

Fig 2b). In this setting EEMS again infers a uniform migration surface. This is because EEMS

is based on pairwise genetic distances, which are negligibly influenced by the recent barrier.

In contrast, by applying MAPS with different PSC segment lengths, we can see both the
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historically uniform migration surface (for segments 2-6cM) and the recent barrier (segments

�6cM).

Next we consider a complementary time-varying scenario: an ancestral barrier disappeared

20 generations ago to allow uniform migration (Fig 2c). Here the EEMS results again reflect

the longer-term processes, and a barrier is evident. And again, by applying MAPS with differ-

ent PSC segment lengths, we can see different migration surfaces corresponding to different

time scales, which are here reversed compared with the previous scenario: the historical barrier

(for segments 2-6cM) and the recent uniform migration (segments�6cM).

Population size inference. As noted above, and as discussed in previous work, EEMS esti-

mates an “effective” migration surface that reflects the combined effects of population sizes ~N
and migration rates M [12]; consequently it cannot distinguish between variation in M and

Fig 2. Simulations comparing migration rates inferred with MAPS against effective migration rates inferred with

EEMS. (a) We simulated data under uniform migration rates equal to 0.01 and applied EEMS and MAPS using

PSC segments in the range 2-6cM and�6cM. Like EEMS, MAPS correctly infers a uniform migration surface.

Additionally, MAPS provides accurate estimates of the migration rates for both PSC segments 2-6cM (mean 0.01) and

PSC segments�6cM (mean 0.0086). (b) We simulated a recent sudden migration barrier formed 10 generations ago.

Here, EEMS is unable to infer a barrier, while MAPS correctly infers the historical uniform surface (2-6cM) and a

barrier in the more recent time scale (�6cM). (c) We simulated a long-standing migration barrier that recently

dissipated 20 generations ago. EEMS infers a barrier, while MAPS correctly infers both the historical migration barrier

(2-6cM) and the uniform migration surface in the more recent time scale (�6cM). In all cases shown here, we

simulated a 20 deme stepping stone model such that the population sizes all equal to 10,000, and 10 diploid individuals

were sampled at each deme.

https://doi.org/10.1371/journal.pgen.1007908.g002
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variation in ~N . In contrast, MAPS has the potential to distinguish these two types of variation

because MAPS utilizes the recombination rate map as an independent clock to calibrate demo-

graphic parameters.

To illustrate this difference we simulate data with a constant migration surface, and a popu-

lation size surface that has a 10-fold “dip” in the middle of the habitat (deme size 1,000 vs

10,000; Fig 3). In a similar simulation, EEMS was shown to estimate an effective migration sur-

face with an “effective barrier” in the middle, caused by the dip in population size [12]. As

expected, we obtain a similar result for EEMS here. Furthermore, we examined the diversity

surface inferred by EEMS [12], which reflects within-deme heterezygosity across space, please

see S1 Appendix 1.4 for more on the diversity rates. We found the diversity surface to be

approximately constant because within-deme deme hetereozygosity vary little in this simula-

tion. In contrast, MAPS is able to separate the influence of migration and population sizes: the

estimated migration surface is approximately constant (with mean migration rate equal to the

true value 0.01) and the estimated population size surface shows a dip in the middle, with accu-

rate estimates of deme sizes (mean 985 at the center and 9100 at the edges). Additional simula-

tions with non-uniform migration rates reinforce these results; see S3 Fig.

Fig 3. Simulations comparing population sizes inferred with MAPS and “diversity-rates” inferred with EEMS. We

simulated uniform migration rates of 0.01 and a trough of low population sizes in the center of the habitat such that

population sizes equal to 1,000 at the center and 10,000 otherwise. Under these simulations, EEMS infers a barrier in

effective migration and infers uniform diversity rates. However, MAPS correctly infers a uniform migration surface

(mean 0.01) and provides accurate estimates of deme sizes (mean 985 at the center and 9100 at the edges).

https://doi.org/10.1371/journal.pgen.1007908.g003
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Applying MAPS to the POPRES data

To illustrate MAPS on real data, we analyze a genome-wide SNP dataset on individuals of

European ancestry [25]. Previous analyses of these data have shown the strong influence of

geography on patterns of genetic similarity [20, 34, 35]. In particular [20] analyzed spatial pat-

terns in the sharing of PSC segments across Europe. To facilitate comparison with their results,

we use their PSC segment calls, focusing on a subset of 2224 individuals after filtering (see

Methods).

We applied MAPS to these data using three different PSC segment length bins: 1−5cM,

5−10cM, and> 10cM. The longer bins correspond to more recent demography because as

PSC lengths increase, the average coalescent times decrease. Indeed, the average coalescent

times for each of these three length bins is inferred to be 90, 23 and 7.5 generations respec-

tively, which roughly correspond to 2700 years, 675 years and 225 years if we assume 30 years

per generation and a sufficiently large effective population size (see S1 Appendix). Here, we

caution that these are only the mean coalescent times: other analyses have shown that distribu-

tion on coalescent times can have a very wide distribution and are strongly affected by the

demographic history, especially in expanding populations [20].

We note that the accuracy of called PSC segments will vary across these bins: based on sim-

ulations in [20] PSC segment calls in the smallest bin (1-5cM) will likely suffer from both false

positives and false negatives, whereas for the longer bins PSC calls should be very reliable.

Nonetheless, even in the smallest bin, closely-related individuals will still tend to show higher

PSC sharing, and so the estimated MAPS surfaces should provide a useful qualitative summary

of spatial patterns of variation even if quantitative estimates may be less reliable.

Inferring dispersal and population density surfaces. The inferred MAPS dispersal rates

(migration rates scaled by grid step size, Eq 18) and population densities (population sizes

scaled by grid area size, Eq 17) for each PSC length bin are shown in Fig 4.

Largely speaking, the spatial variation in inferred dispersal rates and population densities is

remarkably consistent across the different time scales (Fig 4). In the MAPS dispersal surfaces,

several regions with consistently low estimated dispersal rates coincide with geographic fea-

tures that would be expected to reduce gene flow, including the English Channel, Adriatic Sea

and the Alps. In addition we see consistently high dispersal across the region between the UK

and Norway, which may reflect the known genetic effects of the Viking expansion [22]. These

features are consistent with visual inspection of the raw lPSC sharing data (S4b Fig). The

MAPS population density surfaces consistently show lowest density in Ireland, Switzerland,

Iberia, and the southwest region of the Balkans. This is consistent with samples within each of

these areas having among the highest PSC segment sharing (S4a Fig). The MAPS inferred

country population sizes are also highly correlated with estimated current census population

sizes from [36] and [37] (S5 Fig) which can be mainly attributed to the fact that lPSC segments

are highly informative of current census population sizes (Fig 5).

The most notable variation among the estimated surfaces from different time scales is a dra-

matic increase in the mean estimated population density in the most recent time scale (Fig 4

and S6 Fig). Indeed, the estimated mean for the last time scale—1.4 individuals per square

km—is 6-9 fold higher than those for the earlier time scales (0.16 and 0.22 respectively). This

increase is consistent with the recent exponential growth of human population sizes [38]. The

estimates themselves are lower than historical estimates of�1-30 individuals per square km

based on archaeological data [39].

The dispersal surfaces show more minor changes between time periods (Fig 4 and S6 Fig).

In particular, the estimated mean dispersal rates are relatively constant across time, being 73,

103 and 72 respectively (in units of km in a single generation, see S1 Appendix 1.2 on notes
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about units). Our estimates are not too different from empirical estimates of 10-100 km in a

single generation from [40] using pedigrees of individuals living between 1650 and 1950 AD.

Although, our estimates seem to be consistently higher before the year 1800. We do note the

lower estimated dispersal rates between Portugal and Spain compared to the rest of Europe in

the analyses of longer PSC segments (5-10 and> 10cM), and the higher estimated dispersal

rates through the Baltic Sea (> 10cM segments), possibly reflecting changing gene flow in

these regions in recent history.

Comparison to Ringbauer et al. 2017. A previous study also estimate a mean dispersal

rate and population density from the Eastern European subset of the data analyzed here [30].

Their estimates are based on PSC segments > 4cM, which is most comparable with our

Fig 4. Inferred dispersal surfaces and population density surfaces over time for Europe. We apply MAPS to a

European subset of POPRES [25] with 2,234 individuals and plot the inferred dispersal sð~xÞ and population density

Deð~xÞ surfaces for PSC length bins (a)>1cM (b) 5-10cM and (c)>10cM. We transform estimates of ~N and M to

estimates of sð~xÞ and Deð~xÞ by scaling the migration rates and population sizes by the grid step-size and area (see Eqs

(17) and (18)). Generally, we observe the patterns of dispersal to be relatively constant over time periods, however, we

see a sharp increase in population density in the most recent time scale (>10cM). Note the wider plotting limits in

inferred densities in the most recent time scale.

https://doi.org/10.1371/journal.pgen.1007908.g004

Estimating recent migration and population-size surfaces

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1007908 January 14, 2019 9 / 21

https://doi.org/10.1371/journal.pgen.1007908.g004
https://doi.org/10.1371/journal.pgen.1007908


analysis of 5-10cM. Unlike our analysis, their estimates are based on a spatially homogeneous

model. To compare with their estimates we computed the mean of the estimated dispersal rate

and population densities in Eastern Europe (but based on an analysis of the full data). For the

dispersal rate this yields an estimate of 88 km in a single generation, which is consistent with

the range of 50-100 given by [30]. For the population density, it yields an estimate of 0.10 indi-

viduals per square km, which is somewhat higher than the estimate of 0.05 obtained under a

comparable (time-homogeneous) population model in [30]. Possibly our higher estimate

partly reflects the influence of our spatial modeling approach, which will tend to shift the esti-

mate for Eastern Europe toward the estimated mean across all of Europe (which is 0.22). In

addition, the difference in length thresholds (> 4cM versus 5-10cM) may also be contributing;

Fig 5. The correlation between census size and inverse average PSC sharing as a function of minimum PSC length considered. We computed

the correlation coefficient (Spearman’s) between census size and one over the average PSC sharing. We use census size compiled from the [36] and

[37]. The smooth black curve denotes the loess fit. Longer PSC segments correlate more strongly with census size than shorter PSC segments.

https://doi.org/10.1371/journal.pgen.1007908.g005
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if segments in the analysis from [30] are on average shorter and hence older, one would expect

lower density estimates, based on our results that suggest lower densities in the past (Fig 4).

Comparison with EEMS. The EEMS results for these data (S7 Fig) show non-trivial dif-

ferences with the MAPS results (Fig 4a). Two potential causes are: i) differences in the sum-

mary data used (PSC segment sharing vs genetic distances) and hence sensitivity to different

timescales; and ii) differences in the underlying models (e.g. composite Poisson likelihood vs

Wishart likelihood, and different parameterizations/approximations to the coalescent model;

see Discussion). To evaluate the impact of i) we compared the PSC segment sharing and

genetic distances, and found their correlation to be only modest (Pearson’s ρ = -0.38), with the

most notable deviation for comparisons between countries in Eastern Europe (S8a Fig). Fur-

thermore, most of this correlation is due to geographic distance: after controlling for geo-

graphic distance the correlation is only -0.18, which may be a more relevant metric because

inferred spatial heterogeneity in gene flow (barriers and corridors) is driven by departures

from simple isolation by distance.

To better assess the impact of ii) we applied EEMS on a distance matrix constructed to have

the same similarity patterns as the PSC segment sharing matrix input to MAPS (1−5cM length

bin). The resulting EEMS surface is more similar to the corresponding MAPS dispersal surface

(S8b Fig vs Fig 4a), but there remain substantial differences. This investigation confirms what

we expected a priori—the two surfaces should be different because the underlying models and

inferred parameters of MAPS and EEMS are different. As noted before, EEMS infers the

“effective migration rate” which reflects the effects of both the migration rates and population

sizes, while MAPS infers them separately.

Discussion

We developed a method (MAPS) for inferring migration rates and population sizes across

space and time periods from geo-referenced samples. Our method builds upon a previous

method developed for estimating effective migration surfaces (EEMS) [12]. However there are

several differences between MAPS and EEMS. Most fundamentally, MAPS draws inferences

from observed levels of PSC sharing between samples, whereas EEMS draws inferences from

the genetic distance. These two data summaries capture different information about the coa-

lescent distributions: in essence, PSC sharing captures the frequency of recent coalescent

events, whereas genetic distance captures the mean coalescent time. Consequently MAPS

inferences largely reflect the recent past (mean coalescent time ⪅ 2,250 years for PSC

segments > 2cM), whereas EEMS inferences reflect demographic history on a longer timescale

across which pairwise coalescence occurs (99% of events> 6000 years old, assuming diploid

Ne of 10,000 for humans, exponential coalescent time distribution).

Another consequence of modelling PSC sharing, rather than genetic distance, is that MAPS

can separately estimate demographic parameters related to migration rates (M) and population

sizes (~N ), as in Fig 3 for example. In essence MAPS does this by using the known recombina-

tion map as an additional piece of information to help calibrate inferences. In contrast, EEMS

makes no use of recombination maps and cannot separate M and ~N . Instead EEMS infers a

compound parameter referred to as the “effective migration rate”, which is influenced by

changes in both M and ~N ; see Fig 3. In principle, if applied to sequence data instead of geno-

type data at ascertained SNPs, the genetic distances used by EEMS could perhaps also sepa-

rately estimate M and ~N by exploiting known mutation rates to calibrate inferences. However,

this would require non-trivial additional changes to the current EEMS likelihood, which was

designed to be applicable to ascertained SNPs and does not explicitly model variation in
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population sizes. (The EEMS likelihood instead uses a “diversity rate” eq, which reflects

within-deme heterozygosity but is not explicitly a population size parameter.)

An additional useful feature of PSC segments is that, by varying the lengths analyzed, one

can infer parameter values across associated with different time periods. For example, our sim-

ulations show how by contrasting shorter and longer PSC segments, the method can reveal dif-

ferent gene flow patterns in scenarios with recent changes (see Figs 2 and 3). Further support

comes from our empirical analysis of the POPRES data-set, where we found population sizes

inferred from longer PSC segments to be more correlated with census sizes than sizes inferred

from shorter segments (e.g. Spearman’s ρ = 0.71 for 1−5cM and ρ = 0.84 for > 10cM; see Fig 5

and S5 Fig). Also, not surprisingly, PSC segments greatly outperform using heterozygosity as

an indicator of census population size (the Spearman’s correlation coefficient between hetero-

zygosity and census size was insignificant, p-value = 0.25).

Our estimates of dispersal distances and population density from the POPRES data are

among the first such estimates using a spatial model for Europe (though see [30]). The features

observed in the dispersal and population density surfaces are in principle discernible by careful

inspection of the numbers of shared PSC segments between pairs of countries (e.g. using aver-

age pairwise numbers of shared segments, S4b Fig, as in [20]). For example, high connectivity

across the North Sea is reflected in the raw PSC calls: samples from the British Isles share a rel-

atively high number of PSC segments with those from Sweden (S4b Fig). Also the low esti-

mated dispersal between Switzerland and Italy is consistent with Swiss samples sharing

relatively few PSC segments with Italians given their close proximity (S4b Fig). However, iden-

tifying interesting patterns directly from the PSC segment sharing data is not straightforward,

and one goal of MAPS (and EEMS) is to produce visualizations that point to patterns in the

data that suggest deviations from simple isolation by distance.

The inferred population size surfaces for the POPRES data show a general increase in sizes

through time, with small fluctuations across geography; In our results, the smallest inferred

population sizes are in the Balkans and Eastern Europe more generally. This is in agreement

with the signal seen previously [20]; however, taken at face value, our results suggest that high

PSC sharing in these regions may be due more to consistently low population densities than to

historical expansions (such as the Slavic or Hunnic expansions).

Although consistent with previous results, our estimates of dispersal and population sizes

do not exactly agree with empirical estimates. For example, our estimates of population sizes

are consistently lower than the census sizes (S5 Fig). This is to be expected for several reasons.

First, census sizes include non-breeding individuals (juvenile and post-reproductive age) that

do not impact the formation of PSC segments. Second, MAPS is fitting a single population size

per location, and in a growing population the best fit population size will be an under-estimate

of contemporary size. Third, in a wide class of population genetic models, the effective size,

even among reproductive age individuals, is lower than the census size because of factors that

inflate the variance in offspring number. Fourth, some discrepancy is expected simply because

the stepping-stone population genetic model used here is only a coarse approximation to the

complex spatial dynamics of human populations. Finally, there is probably cryptic relatedness

in the POPRES samples which can decrease population size estimates.

Here, as in EEMS, we use a discrete stepping-stone model to approximate a process that

might be more naturally modelled as continuously varying in space [12]. Recent work exploits

continuous models to estimate dispersal and population density parameters from sharing of

lPSC segments [24, 30]. However, these methods assume that dispersal and population density

are constant across space: extending them to allow these parameters to vary across space could

be an interesting avenue for future work.

Estimating recent migration and population-size surfaces
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Here, we infer demography given a PSC length bin. These PSC length bins correspond to

very approximate time periods, and we report the mean age of the segment in the specified

time period to give an idea of the approximate time period under an assumption of a large

effective population size (see Lemma 5.3 in S1 Appendix). However, as mentioned previously,

the variance in the distribution of ages can be very large. A major advancement would be to

infer demography explicitly as a function of time. In principle, our method allows for inference

of demography across time by treating PSC segments as roughly approximating independent

across length bins conditional on the demography, see S1 Appendix. However, this requires

fitting multiple migration/population surfaces and is computationally unfeasible with our cur-

rent MCMC routine. Other computational techniques (e.g. Variational Bayes or fast optimiza-

tion of the likelihood) might make this goal possible.

Methods

MAPS configuration

For the empirical data analysis, we ran MAPS with 200 demes. The MAPS output was obtained

by averaging over 20 independent replicates (the number of MCMC iterations in each replicate

was to set 5e6, number of burn-in iterations set to 2e6, and we thinned every 2000 iterations).

We provide the the MAPS here: https://github.com/halasadi/MAPS, and the plotting scripts

here: https://github.com/halasadi/plotmaps.

Inferring PSC segments from the data

Our pipeline to call PSC segments for simulations can be found here: https://github.com/

halasadi/ibd_data_pipeline. We follow the recommendations of [27, 28] and [20] by running

BEAGLE multiple times and merging shorter segments.

For the empirical data analysis, we use the PSC segments (“IBD”) calls from [20], which can

be found here: https://github.com/petrelharp/euroibd. The calls from [20] were obtained by

running fastIBD (implemetned in BEAGLE [27]) and applying custom post-processing steps

derived by simulation. We further applied a filter to retain countries with at least 5 sampled

individuals, and removed Russian and Greek individuals to restrict the geographic region to a

smaller spatial scale.

Model

MAPS assumes a population genetic model consisting of triangular grid of d demes (or popu-

lations) with symmetric migration. The density of the grid is pre-specified by the user with the

consideration that the computational complexity is O(d3). We use Bayesian inference to esti-

mate the MAPS parameters: the migration rates and coalescent rates M and q respectively. Its

key components are the likelihood, which measures how well the parameters explain the

observed data, and the prior, which captures the expectation that M and q have some spatial

structure (in particular, the idea that nearby edges will tend to have similar migration rates

and nearby demes have similar coalescent rates).

MAPS estimates the posterior distribution of Y ¼ M; q given the data. The data used for

MAPS consists of a similarity matrix XR ¼ fXR
i;jg which denotes the number of PSC segments

in a range R = [μ, ν] base-pairs shared between pairs of haploid individuals (i, j) 2 {1, � � �, n} ×
{1, � � �, n} where n is the number of (haploid) individuals. Furthermore, a recombination rate

map is required as input for MAPS. The likelihood is a function of the expected value of

XR
i;j (E½XR

i;j�). Below we describe the computation of E½XR
i;j� and the other key components of the
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likelihood. Finally, we briefly describe the prior used and an MCMC scheme to sample from

the posterior distribution of Θ.

The likelihood function. Let α, β denote the demes that (haploid) individuals i and j are

sampled. We define,

l
Y

a;b
¼ E½XR

i;jjY�; ð1Þ

which implicitly depends on R. For the marginal distribution, we can assume

XR
i;jjY � PoisðlY

a;b
jYÞ: ð2Þ

See [41] for a rigorous study of the Poisson assumption. One option for computing the joint

distribution of the data is to assume independence between pairs of individuals (i, j) as done

previously [19, 20, 30, 42]. This assumption leads to the log-likelihood,

logLðY; �XÞ ¼
X

a�b

na;bð�Xa;blogðl
Y

a;b
Þ � l

Y

a;b
Þ; ð3Þ

where �X ¼ f�Xa;bg such that (α, β) 2 {1, � � �, d} × {1, � � �, d} and d is the number of demes. Fur-

thermore

�Xa;b ¼

1

nanb

P
i2da ;j2db

XR
ij if a 6¼ b

1

ð
na
2
Þ

P
i2da ;i<jX

R
ij if a ¼ b

8
<

:
; ð4Þ

where nα is the number of sampled individuals in deme α, dα is the set of all individuals in

deme α, and

na;b ¼
nanb if a 6¼ b

ð
na
2
Þ if a ¼ b

:

(

ð5Þ

However, we found that there were significant correlations in lPSC segments between indi-

viduals, also studied in previous work [43]. To deal with this, we down-weighted the likelihood

function to reflect the “effective” number of samples (eα,β) instead of the number of pairs (nα,

β). The effective number of samples between demes α,β is given by,

ea;b ¼
�Xa;b

Var½�Xa;b�
: ð6Þ

In the case of independence, Var½�Xa;b� �
�Xa;b
na;b

. However, because of correlations in the data,

the actual variance is significantly larger than the variance computed under an independence

model. Here, we estimate Var½�Xa;b� by bootstrapping individuals with replacement. For

instance, if α = β, we sample nα individuals with replacement and compute the average

between all ð
na
2
Þ comparisons, and repeat this process many times. Using this boostrapping

procedure allows us to better adjust for the correlations between pairs of individuals for

within and between-deme comparisons. The loglikelihood adjusted for correlations is given

by,

logLðY; �XÞ ¼
X

a�b

ea;b �Xa;blogðl
Y

a;b
Þ � l

Y

a;b

� �
: ð7Þ
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Computing the expectation of XR
i;jjY. Next, we derive expressions to compute the expec-

tation of the number of PSC segments of length greater than μ (XR¼½m;1Þ
i;j Þ conditional on the

demography Θ. From results in [19], we show in S1 Appendix that

E½XR¼½m;1Þ
i;j jY� � G

Z 1

m

fLðljYÞ=l dl; ð8Þ

where G denotes the length of the genome (in base-pairs), L denotes the random length (in

base-pairs) of the PSC segment between i and j containing a pre-specified position in the

genome (base b say), and fL is its probability density. Intuitively, GfL(l|Θ) is the expected num-

ber of base-pairs that lie in PSC segments of length l, making
GfLðljYÞ

l the expected number of

PSC segments of length l. Integrating the latter quantity from μ to1 gives the desired result.

Note, that (8) is only an approximation because we have implicitly assumed that the genome is

infinitely long as in [19, 42]. A more exact formula will take account of the finite length of the

genome, as in equation (6) in [20] which suggests that (8) will be off by an amount propor-

tional to m

G. This correction for finite length will become more important for longer segments.

For example, for segments of length 10cM, (8) is expected to be approximately 10% off.

To help compute (8) we introduce Tij to denote the (random) coalescent time in genera-

tions between i and j at base b, with density fTij
ðtjYÞ. Then (8) can be written as an integral

over Tij:

E½XR¼½m;1Þ
i;j jY� � G

Z 1

m

fLðljYÞ=l dl ð9Þ

¼ G
Z 1

m

Z 1

0

fL;Ti;j
ðl; tjYÞ=l dt dl ð10Þ

¼ G
Z 1

0

fTi;j
ðtjYÞ

Z 1

m

fLðljtÞ=l dl dt; ð11Þ

using the relation that fL;Ti;j
ðl; tjYÞ ¼ fLðljt;YÞfTi;j

ðtjYÞ ¼ fLðljtÞfTi;j
ðtjYÞ. A key simplification

here comes from the fact that, given Tij, L is conditionally independent of Θ.

It can be shown that the conditional distribution of L given Tij is an Erlang-2 distribution

(or a Gamma Distribution with shape parameter fixed to two) [19, 42, 44] with density

fLðljtÞ ¼ 4r2t2le� 2trl; ð12Þ

where r is the recombination rate per base-pair. Substituting this into the inner integral of (11)

and integrating analytically yields

Z 1

m

fLðljtÞ=l dl ¼ 2rte� 2trm; ð13Þ

leading to

E½XR¼½m;1Þ
i;j jY� � G

Z 1

0

fTi;j
ðtjYÞ2rte� 2trmdt: ð14Þ

Here, we assume the probability density of Ti,j is given by,

fTi;j
ðtjYÞ �

X

k

qkðe
� MtÞ

a;k
ðe� MtÞ

b;k
; ð15Þ
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where demes α, β denote the deme where lineages i and j are sampled from, qk ¼ 1

2Nk
is the coa-

lescent rate in deme κ, and M = hmα,βi is the migration rate matrix between all d demes such

that (α, β) 2 {1, � � �, d} × {1, . . ., d}. Please refer to S1 Appendix 1.1 for a derivation. We compute

the matrix exponential by first diagonalizing the matrix M = PDPT and compute e−Mt = Pe−Dt PT.

Having computed all individual components of
R1

0
fTi;j
ðtjYÞ2rte� 2trudt, we are left to evalu-

ate a one-dimensional integral which we do by Gaussian quadrature (with 50 weights).

We compute the expected number of PSC segments in a range R = (μ, ν) as

E½XR¼½m;n�
i;j � ¼ E½XR¼½m;1Þ

i;j � � E½XR¼½n;1Þ
i;j �: ð16Þ

As mentioned previously, the units of μ, ν are in base-pairs for clarity of presentation. How-

ever, we can work with units of centiMorgans (cM) as done in [19] by making the following

the transformation: μcM = 100μr. By making this substitution, our population-genetic model

becomes identical to [19] under a single population size.

The prior. MAPS uses a hierarchical prior parameterized by Voronoi tessellation (similar

to EEMS). The Voronoi tessellation partitions the habitat into C cells. Given a Voronoi tessel-

lation of the habitat, each cell c 2 {1, � � �, C} is associated with a migration rate (Mc) and

population size (N c). Demes (α) that fall into cell c will have population size Na ¼ N c, and

similarly, migration rates between demes α and β are equal to ma;b ¼
Mc1þMc2

2
if demes α, β fall

into cells c1 and c2. We use an MCMC to integrate over the distribution on partitions of Voro-

noi cells. See S1 Appendix for more information.

The MCMC. We break up the MCMC updates into updating a series of conditionally

independent distributions. Provided the conditional posterior distributions for each update

give support to all the parameter space, this will define an irreducible Markov chain with the

correct joint posterior distribution [45]. We use Metropolis-Hastings to update all parameters,

and random-walk proposals for most updates, with exception of birth-death updates for

updating the number of Voronoi cells. See S1 Appendix for more information.

Transformation of parameters to continuous space. Given an inferred population size

at a particular deme α and a grid with uniform spacing, the transformation from population

size to population density is given by

DeðxÞ ¼
Na

DA
; ð17Þ

where DA ¼ AH
d is the area covered per deme such that AH is the area of the habitat (in km2), d

is the number of demes, and x corresponds to the spatial position of deme α. Intuitively, (17)

implies that the density multiplied by the area equals population size, i.e. De(x)ΔA� Nα. Eq

(17) is analogous to equation 7 in [24].

Given a migration rate (m), the transformation to dispersal distances is given by,

s ¼
ffiffiffiffi
m
p

Dx; ð18Þ

where Δx is the step size of the grid (km). The dispersal distance represents the distance trav-

eled by an individual after one generation, and sometimes is called the “root mean square dis-

tance” or “dispersal rate” [23]. Please see S1 Appendix for the derivation of (18).

Supporting information

S1 Appendix. More detailed methods.

(PDF)
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S1 Fig. The performance of MAPS on a recent barrier scenario under different PSC length

bins. Here, we investigate the ability of MAPS to detect a recent barrier (< 10 generations) for

various PSC length bins (a) Simulation scenario. Population sizes were set to 10,000 per deme

and 10 diploids were sampled per deme, replicating the conditions in Fig 2b. (b) Results for

different PSC length bins. Length bins that encompass shorter segments (2-4cM 2-6cM 2-

8cM) recover the higher uniform migration surface; while length bins with longer segments

(>4,>6, >8) recover the recent ancestral barrier. For the last length scale (> 8cM), the signa-

ture of low migration extends across the habitat. The variation in migration rates is missed

presumably because of the small number of shared segments at this length scale.

(PDF)

S2 Fig. The performance of MAPS on a past barrier scenario under different PSC length

bins. a) Simulation scenario. Population sizes were set to 10000 per deme and 10 diploids were

sampled per deme, replicating the conditions in Fig 2c. (b) Results for different PSC length

bins. Length bins that encompass shorter segments (2-4cM, 2-6cM, 2-8cM) recover the ances-

tral barrier; while length bins with longer segments (>4, >6,>8) recover the recent constant

migration surface.

(PDF)

S3 Fig. The performance of MAPS under a jointly heterogeneous migration rate and

population size surface. a) Simulation Scenario. Heterogeneous population-sizes and migra-

tion rates (as shown) were simulated, and 10 diploid individuals were sampled per deme.

(b) Results for PSC segments greater than 2cM are shown.

(PDF)

S4 Fig. Visualizing normalized sharing of PSC segments that are 1-5cM. The color scheme

is the same as used in [20] where the colors give categories based on the regional groupings: W

Western Europe, S Southern Europe, and E Eastern Europe (a) The average sharing within

each sample locale is transformed to an estimate of effective population size using an equation

in Appendix B of [19]. The equation can be roughly summarized as to say that Na /
1

�xa;a
where

Nα is the effective population size in deme α and �xa;a is the average pairwise PSC sharing

between individuals in deme α. (b) Similar to [20], for each focal population (marked with an

x), we plot the normalized average pairwise sharing between that population and all others

(normalized by the average sharing within the focal population), i.e. if α is the focal population,

we show
�xa;b
�xa;a

for each other country β.

(PDF)

S5 Fig. Census size versus MAPS estimated population sizes. Using the MAPS output, we

estimate a total size per population by summing the estimated deme-level sizes across the area

of each respective country (whether’s a deme’s location falls within a country was determined

by querying [46]). Finally, we plot the results on a log10 scale for different length scales (a) 1-

5cM, (b) 5-10cM, and (c)>10cM. The red curve denotes the linear fit on the absolute scale.

Note Kosovo and Albania as candidate outliers possibility because of cryptic relatedness artifi-

cially decreasing population sizes.

(PDF)

S6 Fig. Plots of estimated average log10 differences in demographic parameters between

adjacent time scales. (a) We plot estimates of E log10 s0

s

� �� �
and E½log10ð

De
0

De
Þ� across the spatial

habitat where σ0 (D0e) denotes the dispersal rates (population densities) in the 5-10cM length

bin and σ (De) denotes the dispersal rates (population densities) in the 1-5cM length bin. (b)
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The results here are similarly plotted as above, however, the adjacent length scales are given

by: 5-10cM and >10cM. The log10 differences are estimated in such a way so that the mean

log10 difference is shrunk to zero. For example, for estimating dispersal in 5-10cM, we

assume log10(σ0) = E[log10(σ)] + � where E[log10(σ)] is estimated using PSC segments 1-5cM

and �* N(0, ω2) is estimated from PSC segments 5-10cM. Consequently, the log ratio

between dispersal rates from the two lengths bins is constructed to have mean zero apriori (i.e.

E log10 s0

s

� �� �
¼ 0).

(PDF)

S7 Fig. EEMS applied to the POPRES dataset. We apply EEMS to the same set of individuals

as used in Fig 4 (see Methods). (a) The effective migration rates (b) The effective diversity

rates. Here, we ran EEMS with 200 demes (as in Fig 4) with default parameters and averaged

over 10 independent replicate chains. Each chain ran with 50e6 MCMC iterations, 25e6 set as

burn-in, and we thinned every 5000 iterations.

(PDF)

S8 Fig. Genetic distance vs PSC sharing. (a) The averaged genetic distance (as used in EEMS)

is plotted against the average number of PSC segments (>1cM) for each pair of populations.

Each point denotes a pair, the symbols represent groupings from [20] (W Western Europe, S

Southern Europe, I Italian & Iberian Peninsula, and E Eastern Europe), and the colors repre-

sent the pair of regions. We see a negative correlation between the two summary statistics

(Pearson’s ρ = -0.38, p-value = 7e-11), with the largest deviations occurring in comparisons

between Eastern European populations. (b) EEMS results on PSC data transformed to a dis-

tance matrix. First, we encoded the PSC sharing statistics into a similarity matrix S such that Si,
j is the number of shared PSC segments between samples i and j and Si,i is the maximum num-

ber of shared segments in the dataset (which we denote as c) to ensure S is a similarity matrix.

Next, we transformed S to a genetic distance matrix D such that D = c11T − S + E where E� 0

is a random genetic distance matrix of normal vectors with mean 0 and standard deviation of

0.01 added to ensure D is full rank. Finally, we applied EEMS to the distance matrix D. Though

this procedure is heuristic, we see shared features between this surface and the MAPS dispersal

surface shown in Fig 4.

(PDF)
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