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Early Glaucoma Detection by Using Style
Transfer to Predict Retinal Nerve Fiber Layer
Thickness Distribution on the Fundus
Photograph
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Objective: We aimed to develop a deep learning (DL)—based algorithm for early glaucoma detection based
on color fundus photographs that provides information on defects in the retinal nerve fiber layer (RNFL) and its
thickness from the mapping and translating relations of spectral domain OCT (SD-OCT) thickness maps.

Design: Developing and evaluating an artificial intelligence detection tool.

Subjects: Pretraining paired data of color fundus photographs and SD-OCT images from 189 healthy par-
ticipants and 371 patients with early glaucoma were used.

Methods: The variational autoencoder (VAE) network training architecture was used for training, and the
correlation between the fundus photographs and RNFL thickness distribution was determined through the deep
neural network. The reference standard was defined as a vertical cup-to-disc ratio of >0.7, other typical changes
in glaucomatous optic neuropathy, and RNFL defects. Convergence indicates that the VAE has learned a dis-
tribution that would enable us to produce corresponding synthetic OCT scans.

Main Outcome Measures: Similarly to wide-field OCT scanning, the proposed model can extract the results
of RNFL thickness analysis. The structural similarity index measure (SSIM) and peak signal-to-noise ratio (PSNR)
were used to assess signal strength and the similarity in the structure of the color fundus images converted to an
RNFL thickness distribution model. The differences between the model-generated images and original images
were quantified.

Results: We developed and validated a novel DL-based algorithm to extract thickness information from the
color space of fundus images similarly to that from OCT images and to use this information to regenerate RNFL
thickness distribution images. The generated thickness map was sufficient for clinical glaucoma detection, and
the generated images were similar to ground truth (PSNR: 19.31 decibels; SSIM: 0.44). The inference results were
similar to the OCT-generated original images in terms of the ability to predict RNFL thickness distribution.

Conclusions: The proposed technique may aid clinicians in early glaucoma detection, especially when only
color fundus photographs are available. Ophthalmology Science 2022;2:100180 © 2022 by the American Academy
of Ophthalmology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/
licenses/by-nc-nd/4.0/).

Supplemental material available at www.ophthalmologyscience.org.
[

Glaucoma, a multifactorial optic degenerative neuropathy, is
the leading cause of irreversible blindness worldwide.' ~ Tt
is characterized by a progressive loss of retinal ganglion
cells and axons, followed by irreversible visual field dete-
rioration.”*” In 2013, approximately 64.3 million people
(age: 40—80 years) had glaucoma,’ and an increase to
111.8 million is estimated by 2040. Approximately 60%
of glaucoma cases are reported from Asia.” However,
effective glaucoma screening and detection are difficult
because the condition is chronic and asymptomatic. In
addition, glaucoma diagnosis requires high—diagnostic po-
wer equipment and professional evaluation by physicians.

© 2022 by the American Academy of Ophthalmology
This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/). Published by Elsevier Inc.

Glaucoma is diagnosed on the basis of characteristic
changes in the optic discs, defects in the retinal nerve fiber
layer (RNFL), and the corresponding loss in the visual
field.”* Diagnosis based on RNFL thickness, a major
indicator of glaucoma, offers high accuracy.” RNFL loss
can be diffuse or local.” Color fundus photography and
spectral domain OCT (SD-OCT) are the most widely used
clinical tools to noninvasively document and quantify
retinal structures and can facilitate glaucoma diagnosis and
screening.”'” Fundus photography is the simplest method
for assessing changes in the optic discs; however,
interpretating the photographs is labor intensive and
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subjective. In addition, although OCT is highly accurate and
reproducible, it is often unavailable in regions with few
medical resources.

Artificial intelligence based on computer vision and deep
learning (DL) has dominated medical care by revolutionizing
diagnosis.'” Automated computer vision is used in glaucoma
detection to identify the position of the optic cup and disc in a
fundus image.'' ' In addition to traditional computer vision
analysis, DL performs favorably in glaucoma detection
because trained algorithms can learn features from the data
rather than from predefined rules.'' The DL algorithms
developed by Ting et al to detect referable glaucoma
exhibited high performance (area under the curve:
0.942).'*° However, image-to-image translation entails
visual and graphical problems, and the goal is to learn the
mapping relations between the input images and output im-
ages. Image-to-image translation is mostly used for (1) noise
reduction, (2) super resolution, (3) image synthesis, and (4)
image reconstruction.”’ These applications rely on 2 powerful
deep neural networks (DNNs): autoencoders and generative
adversarial networks (GANs).zz*25 An autoencoder’s
network architecture consists of an encoder and a decoder.
An autoencoder recodes features through compression and
decompression and can be applied to the learning of corre-
lations in input data and feature extraction, dimensionality
reduction, generative models, and the pretraining of unsu-
pervised learning models.*

This study identified the structure of and color mapping
relations between fundus images and RNFL thickness by
using the DL structure of an autoencoder.”’ A medical
image style-transfer technology was developed. This study
used this technology to convert a fundus image into an
RNFL thickness distribution map, similar to those created
through OCT. The study created a model to assist clinicians
with or without specialization in glaucoma for early glau-
coma screening at clinics and medical institutions without
OCT equipment.

Methods

DNN Architecture

U-Net is a U-shaped, symmetric convolutional network with a
down-sampling contraction path and an up-sampling expansion
path. It requires few training data and is particularly advantageous
for image segmentation.”® This study adopted the U-Net as the core
training network for the DNN to extract new images exhibiting the
distribution of RNFL thickness from a fundus image database. The
deep generative learning models were a variational autoencoder
(VAE) and the GAN.”* ! The VAE enabled the model to encode
and decode features under limited conditions. The model-generated
vectors were forced to conform to a Gaussian distribution to control
image generation.”> The GAN enabled the model to determine the
distribution of the training data through competition between the
generative and discriminative models. With the VAE and GAN,
the model generated samples that conformed to this distribution
and generation limitations. Thus, with the GAN as the core
training network, the required sample size was large, and the
model was unlikely to converge. Thus, in this study, the VAE-
varied U-Net was used as the primary training network architec-
ture. The paired fundus and RNFL thickness distribution images
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were used for model training (Fig 1). All paired data were resized to
256 x 256 x 3 and input into the model. Because the RNFL
thickness distribution images were derived from OCT information
across multiple hierarchies, the U-Net network design was
advantageous. This decreased the probability of nonconvergence
because of an insufficient number of training samples in the model.

Training Methods

To enable the model to efficiently identify mapping functions for
image translation, images were normalized using a digital image-
processing unit. During model training, all images were flipped
and rotated before being input into the model, leading to random
augmentation. To handle differences in brightness and contrast
between images, adaptive histogram equalization was used for
image preprocessing during model training; this enhanced the de-
tails of the images and suppressed background noise. The k-fold
cross-validation technique is one of the most used approaches by
practitioners for model selection and error estimation of classi-
fiers.”? In this study, fivefold cross-validation was applied for
training and validation with the original and augmented data sets.
Retrospective samples were classified using random numbers.
Among the samples, 80% were used for model training, and the
remaining samples were reserved for the validation data set. The
training samples were classified fivefold, with random numbers
used in the model training process for model assessment. The
validation samples were not used for model training and vice versa.
The model could be assessed objectively when it received the test
samples for the first time.

Table S1 presents the training process for pseudocode
description. The U-Net was used as the DL training model, and
the structural similarity index measure (SSIM) and peak signal-
to-noise ratio (PSNR) were used as compound loss functions.
Adam was used to optimize model parameter correction. Adam is
simple and computationally efficient and requires little memory. It
is widely used to train DNNs because of its adaptive learning rate
and excellent performance.

Data Sets

To determine the feasibility of extracting RNFL thickness features
from color fundus images, we paired fundus and OCT images. This
retrospective case study was approved by the Human Experiment
Ethics Committee of Taipei Chang Gung Memorial Hospital,
Taiwan (IRB: 201900528B0C502). All participants underwent a
comprehensive ophthalmologic examination, and their diagnoses
were confirmed by glaucoma specialists on the basis of their his-
tory, the results of visual acuity measurement, slit lamp evaluation,
intraocular pressure measurement, standard automated perimetry,
fundus evaluation, and OCT scan images. Glaucoma was affirmed
by the consensus of 2 glaucoma specialists, and a third glaucoma
specialist was involved in case of disagreement. Only participants
with open angles on gonioscopy were included in our study. Par-
ticipants were excluded if they had any other ocular or systemic
disease affecting the fundus structures or visual field. Color fundus
photographs and OCT scan images were obtained from the Glau-
coma Clinic in the Department of Ophthalmology of Chang Gung
Memorial Hospital, Taipei, Taiwan. Low-quality fundus images
with poor location were excluded from the training and validation
data sets. Standard automated perimetry was performed using the
Swedish interactive threshold algorithm with the central 24-2
program of the Humphrey Field Analyzer III (Carl Zeiss Meditec).
The inclusion criteria were diagnosis of early glaucoma based on a
repeatable Humphrey Field Analyzer 24-2 Swedish Interactive
Thresholding Algorithm (SITA) standard visual field defect com-
parable with glaucoma, a mean deviation of at least —6 decibels



Chen et al + Style-Transfer RNFL Thickness to Screen Glaucoma

(dB), and optic nerve head and RNFL damage confirmed through
fundus photography and SD-OCT. The visual fields were consid-
ered reliable if the false-positive response rate was <15% and the
fixation loss rate and false-negative response rate were <25%.
Swept-source OCT (DRI OCT Triton, Topcon) was used for OCT
detection. Traditional OCT machines have a small scanning range,
whereas the swept-source OCT is a wide field (scanning area: 12
mm X 9 mm) and thus enables the effective assessment of early
glaucoma. To increase the clinical diagnostic value of the con-
version technology, the DRI OCT Triton was used to produce the
OCT index.

Verification of the Proposed Model: Loss
Function Design

The loss function was specially designed to ensure that the model
achieved image generation control under limited conditions. The
images displayed the anatomical structures in the fundus, such as
the vessels (arteries and veins), optic disc, and macula, and a layer
of jet-color heatmap to display the thickness distribution. An
analysis of the quality of the training fundus images indicated that
the luminance was low. In some samples, the pupils were small.
Because incident was limited light, the entire fundus did not
display completely. Therefore, a digital image-processing unit
was used for image preprocessing with contrast-limited adaptive
histogram equalization. Under contrast-limited conditions, the
feature details in the bright and dark parts of the images
improved.**

The SSIM, proposed by Wang et al, > is an index used to assess
the similarity of 2 images. It is highly correlated to the image
quality of the human vision system. The SSIM uses the
distortion characteristic function of images as a mathematical
model. This model covers 3 image distortion assessment
methods: loss of correlation, luminance distortion, and contrast
distortion.*® Tts formula is as follows:

SSIM(f,g) = I(f,8)c(f,8)s(f, &), (€]
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The first part, I(f, g), compares luminance, with the average
luminance of the 2 images being uf and ug. The second part,
c(f, g), compares the contrast, and standard deviations ¢ of the
images were calculated to determine whether they had similar
contrast. The third part, s(f, g), is used to determine whether
the images have similar structure. Image covariance Gfg was
calculated to assess the correlation coefficient of the images.
The SSIM, obtained by multiplying the values of the 3 parts,
was between O and 1. Structural similarity index measure
values approaching O indicate no correlation between images,
whereas those approaching 1 indicate identical images.

The PSNR was used to calculate the differences between the
generated and reference images (ground truth) of the signal con-
version, which indicated model performance. The PSNR, an
objective index, is commonly used to assess the signal-to-noise
ratios of images,””*® such as image compression. According to
its mathematical definition, when the mean square error of the
color space of the assessed image and the ground truth approach

0, the 2 images are the same. Thus, the higher the PSNR is, the
more similar are the signals of the 2 images.
The formula for PSNR is as follows:

Max?
PSNR =1 1 7
SN, <f>g) 0 * 0g 10 MSE(f,g)’ (3)
where
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where fis the reference image, g is the test image, Max; is the
maximum value of image pixels, and m and n represent image
width and height, respectively.

The compound loss function is used to assess anatomical
structure generation. The SSIM was used as the model performance
assessment index to ensure the structural information obtained
from the original fundus images.’* The PSNR was used to verify
the signal conversion quality of the RNFL thickness mapping
information (from the fundus images) extracted by the DNN. To
ensure the optic disc and cup retained their structure after the
conversion of the DNN, the SSIM and PSNR were used as the
compound loss function of the model.

CLFun.(f,g) = aSSIM + BPSNR, )
where
a+f =1, 6)
Results

This study used the data of 200 healthy participants and 550
patients with glaucoma. After the data were cleaned, the
images from 560 participants were included (both eyes from
371 glaucoma patients and 189 nonglaucoma controls)
for further analysis. Thus, the fundus images of 1120 eyes
(742 in glaucoma and 378 in nonglaucoma) and their cor-
responding OCT thickness maps were included for model
training and validation. Table 1 presents the demographic
data of the participants. The average age was 51 years in
the glaucoma group and 44 years in the nonglaucoma
group. Among the participants in each group, 45% and
66% of them were female in glaucoma and nonglaucoma
groups, respectively. As for myopia, 25% and 18% of the
participants had myopia in glaucoma and nonglaucoma
groups, respectively.

The hierarchy information of the color space in the retinal
thickness distribution was analyzed. In addition to the image
translation quality assessment, the performance of U-Net
models with various depths was evaluated (Fig 2). As the
number of layers in the network architecture increased, the
pooling and sampling became deeper and more complex.
Features such as color space and structural information
extracted by the U-Net network were analyzed objectively,
and the feature relations of the model in the RNFL
mapping were identified. The model’s feasibility was
determined through operational performance analysis.

Figure 3 presents the learning curves of the networks
during training and validation using different network
architecture in the PSNR and SSIM. The performance of
the training data set indicated that the network architecture
depth led to significant differences in the PSNR and
SSIM. The model performance index improved as the
depth increased. For the validation set, the SSIM exhibited
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Figure 1. Illustration of the pipelines in model training and model application for the conversion from fundus images to OCT thickness maps. A, Model
training: Color fundus images were inputted into the U-Net for generating OCT thickness maps. In addition, model parameter correction was performed
using raw OCT images and the compound loss function (CLFun.) proposed in this study. Images similar to the original OCT thickness maps were generated.
B, Model application: Only the color fundus images of the patients were required to generate output OCT thickness maps, which can be used for early
glaucoma diagnosis. Conv = convolution layer; PSNR = peak signal-to-noise ratio; ReLU = rectified linear unit; SSIM = structural similarity index

measure.

overfitting in the 5 x 5 and 6 x 6 architectures. For the 6 x
6 architecture, the SSIM decreased at approximately 300
epochs, whereas for the 5 x 5 architecture, it decreased at
approximately 400 epochs. The performance of the model
with different depths and parameters was also shown in
Table 2. The results indicated that the PSNR increased
with network architecture depth. The PSNR values were
from 23.8 dB and 18.8 dB in 4 X 4 architecture to 27.6
dB and 19.4 dB in 6 x 6 architecture, respectively, during
training and validation. However, the depth had little
effect on the SSIM, which had the same value (0.44) in
all architectures during validation.

The 4 cases not included in model training were
randomly selected as samples for demonstration of the re-
sults in different U-Net depths (Fig 4). The key feature
details of the generated images were assessed. Minimal
differences were noted in the translated and generated
structures of the optic disc, optic cup, macula, and large
blood vessels regarding to different network depths. Only
peripheral blood vessels were unclear in the shallower
networks (i.e., 4 x 4 U-Net). The RNFL thickness images
presented in the heatmap graphs were similar to the raw
OCT images.

In addition to the translation performance of the models,
the parameters and corresponding time required for the
models with various depths were compared (Table S2).
According to the GPU (Nvidia Geforce GTX2080Ti,
3,584 cuda cores and 11GB memory [GDDRS5X])

Table 1. Demographic Data of the Study Participants

Parameter Glaucoma Nonglaucoma
Number of subjects 371 189
Number of eyes 742 378
Age, years (SD) 50.96 (11.96) 44.41 (15.29)
Female (%) 45.20 66.15
Myopia (%) 24.94 18.19

SD = standard deviation.

operation time analysis, the 3 architectures had similar
operating times (average: approximately 5.5 ms).
However, the central processing unit operating time of the
6 x 6 architecture was > 0.5 sec, approximately twice
that of the 4 x 4 architecture.

The characteristics of the color space on the ocular
fundus include RNFL thickness information. Similarly to
wide-field OCT scanning, the proposed model can extract
the results of RNFL thickness analysis. Differences between
the model-generated images and original images were
quantified. The SSIM was used to verify the spatial struc-
tural consistency of the blood vessels and optic discs in the
generated images. The generated thickness maps are suitable
for glaucoma detection in clinics, and the generated images
were similar to ground truth (PSNR: 19.31 dB; SSIM: 0.44).

Discussion

This study used DNNs to learn glaucoma classification
features instead of using cup-to-disc ratios or fundus images
as the model input for early glaucoma diagnosis. The ad-
vantages of using the model in clinical glaucoma diagnosis
were achieved to overcome the problems of OCT avail-
ability and the difficulty in glaucoma screening. Model
performance was assessed, and the results of RNFL thick-
ness distribution prediction were similar to those obtained
from the original OCT images.

OCT provides high-resolution cross- and longitudinal-
sectional 3-dimensional images of various parts of the eye,
enabling clinicians to accurately locate lesions.””** In clinical
practices, fundus images and correlated RNFL thickness dis-
tribution in OCT scans were the basis for clinical diagnosis of
glaucoma.”>** However, OCT equipment is expensive and
requires additional maintenance costs, so it is not widely
used especially in an area with insufficient medical
resources.” ™ This study determined the mapping relations
of image translation between color fundus images and OCT
thickness maps by the model using a VAE network. The results
of our study can be applied to primary-care ophthalmology
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Figure 2. U-Net architectures with different depths to compare image translation performances: A, 4 x 4 U-Net, B, 5 x 5 U-Net, and C, 6 x 6 U-Net.
Conv = convolution layer; DEC = decoder convolution; EC = encoder convolution; InC = input convolution; ReLU = rectified linear unit.

clinics, and doctors use our model to obtain information for
diagnosis. In the proposed network, only color fundus
photography was required to obtain RNFL thickness distri-
bution images similar to those provided by high-level OCT
medical imaging equipment. Such images can then be used for
early glaucoma diagnosis and assessment.

The network depths were changed to imgrove the image
translation performance of the models.”® Theoretically,
deeper networks have superior feature extraction abilities.
However, they often require more parameter numbers and
higher costs.”” The number of parameters of the 6 x 6
architecture was almost 16 times that of the 4 x 4
architecture because of the difference in their depths. In our
study, the PSNR of the OCT images generated by the 5 X
5 U-Net architecture was approximately 19.3 dB, which
was acceptable for its quality. The color distribution was
also nearly identical to the original OCT thickness maps,
and the connected blood vessels were complete. Although
the PSNR of the 6 x 6 architecture was higher
(approximately 19.4 dB), it required > 4 times the
parameters of the 5 x 5 architecture. The quality of the
images generated by the 5 x 5 U-Net and 6 x 6 U-Net
was similar, and the average processing time required for
each fundus image was approximately 0.4 and 0.6 s,
respectively. Under limited hardware conditions, the
calculation time of the 6 x 6 U-Net may be even higher.

With only 1 central processing unit, the 5 x 5 U-Net is a
more suitable model. Comparing with the 4 x 4 U-Net, the
PSNR of its image translation quality was lower
(approximately 18.8 dB), though it has a lower cost than
the 5 x 5 U-Net. Furthermore, the images generated by the
4 x 4 U-Net had less complete connected blood vessels
because of the shallower network depth. Thus, the
resources required for the 5 x 5 U-Net architecture and its
model performance reached a balance, and this architecture
was therefore more applicable to clinical settings.

In our study, we used the PSNR to demonstrate the sim-
ilarity in signal quality between the generated image and the
original OCT RNFL thickness map. In traditional computer
vision, the PSNR before and after image compression must
be > 30 dB to be unnoticeable to the naked eye.”’ > Image
translation models with different PSNR performances were
applied to compare 2 cases (Fig 5). The overall quality of the
generated images could be divided into 2 parts, the
connectivity of the retinal blood vessels and the distribution
consistency of RNFL thickness. After the PSNR was > 17
dB, there was almost no significant difference in the
distribution of RNFL thickness compared with the raw
OCT images. However, the connectivity of the retinal
blood vessels was not ideal until the PSNR reached 19.31
dB, when the generated images had a favorable overall
quality. Therefore, this PSNR value of identifying

5
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Figure 3. Learning curves of the model during training and validation with different network architectures in loss function measurement of peak signal-to-
noise ratio (PSNR) and structural similarity index measure (SSIM). Learning curves of (A) training PSNR, (B) validation PSNR, (C) training SSIM, and

(D) validation SSIM.

correlation between fundus images and OCT thickness maps
may be sufficient enough for clinical early glaucoma
detection.

The compound loss function index, containing the PSNR
and SSIM,*° was proposed and used in our study to assess
the model-generated images. The PSNR was used to assess
the overall image generation and translation performance
and heatmaps of RFNL thickness distribution, and the SSIM
was used to assess structural features such as arteries, veins,
capillaries, and optic discs in the generated images. This
compound loss function index enabled non—GAN-based
VAE DNNSs to generate favorable image-generation results.

The proposed loss function also solved problems in tradi-
tional GANs, namely, that they require large data sets for
model training and have a low probability of convergence.

During the validation process, we noticed that overfitting
started to present after 500 epochs in the SSIM (Fig 3D).
However, the PSNR continued to converge without
overfitting (Fig 3B). Comparing the training and
validation data set, we found that the differences may be
related to the overall brightness of the images. Higher the
SSIM  values were, which evaluated overall signal
(brightness, contrast, and structure) Variation,% the higher
the human eye perceived the similarity of the image. As

Table 2. Performance of U-Net Networks and Models with Various Depths and Parameters

Training
Architecture Parameters PSNR (dB) SSIM
4 x 4 U-Net 13.40 M 23.76 + 1.20 0.67 + 0.03
5 x 5 U-Net 5352 M 26.16 + 1.10 0.75 + 0.03
6 x 6 U-Net 21397 M 27.63 + 0.99 0.81 + 0.12

dB = decibels; M = million; PSNR = peak signal-to-noise ratio; SSIM = structural similarity index measure.

Validation
PSNR (dB) SSIM
18.84 + 2.43 0.44 + 0.09
19.31 + 3.06 0.44 £ 0.12
19.42 + 0.44 0.44 + 0.02
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Figure 4. Four cases were used as examples to display the performance of a U-Net with various depths. The thickness information corresponding to the color
is provided on the right side of the image. The cooler the color is, the thinner the relative thickness is. Comparing to the raw OCT, the 4 x 4 U-Net was not
as ideal as the 5 x 5 and 6 x 6 U-Nets in the detailed translation of blood vessels. The 5 x 5 and 6 x 6 U-Nets differed little to the naked eye.

for the PSNR index, we found that an increased PSNR was
associated with better image details regarding RNFL
thickness around the optic disc (Fig 5, case 1). It
suggested that the PSNR index was more likely to reflect
the details of generated RNFL thickness, especially around
the optic disc. After reviewing the fundus images in the
training and validation data sets, we observed the images
of the validation data set were slightly darker, and the
rendering of fundus vessels was less clear, especially on
the vessels of the side branches, although the data set had
been shuffled through the fivefold cross-validation tech-
nique. The image quality around the optic disc was

9

Low PSNR

Casel

PSNR: 17.00 (dB) PSNR: 17.50 (dB)

Figure 5. Different peak signal-to-noise ratio (PSNR) indices used in validation and corresponding quality changes in the generated images. The higher
PSNR value indicates the higher similarity of the generated images to the raw OCT.

PSNR: 18.00 (dB) PSNR: 18.50 (dB) PSNR: 19.31 (dB)

comparable in both data sets. As a result, the overall
brightness requirements of the model for the input image
would be relatively higher during the validation process and
caused an overfitting in the SSIM. In terms of actual clinical
application, the impact may be ignorable. In clinical prac-
tice, physicians could still refer to the existing retinal fundus
images and compare them to the RNFL thickness maps for
glaucoma diagnosis at the same time.

For demonstrating the early glaucoma detection in the
clinical scenario, we introduced the proposed model to clin-
ical practice, and one sample case was presented (Fig 6). In the
fundus image from the right eye of a 50-year-old female

High PSNR Raw OCT

Baseline
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Figure 6. Example of early glaucoma detection by using our model to predict retinal nerve fiber layer (RNFL) thickness distribution on the retinal
fundus image from the right eye of a 50-year-old female patient with low-grade myopia (axial length = 24.2 mm, spherical equivalent = —2.25
diopters). A, The conventional retinal fundus photography showed no visible RNFL defect. B, No scotoma was identified by using the 24-2 visual field
test. C, The OCT thickness map automatically generated by the model showed a high probability of RNFL thinning in the superotemporal retina region
(red color labeled area). D, Although the macular ganglion cell analysis revealed no abnormality, the thickness map from the wide-field swept-source
OCT examination showed a wedge-shaped dark-blue area indicating RNFL thinning (black arrows). In addition, the OCT superpixel map revealed an
arcuate pattern of contiguous abnormal yellow/red pixels over the corresponding macula area. The lesion identified by the OCT scan was highly
correlated with the results generated by the model. E, Circumpapillary RNFL thickness analysis confirmed a borderline superotemporal RNFL thinning.

GCL = ganglion cell layer.

patient, there was no obvious abnormality in the cup-to-disc
ratio or significant RNFL defects. The fundus image was
input to our model, and a predicting RNFL thickness map was
generated. There was a distinct RNFL defect at the superior
temporal retina in the generated thickness map. The patient
also received a wide-field OCT examination, and an RNFL
defect was confirmed in the same region as predicted by the
model. This clinical sample could suggest the benefits of early
glaucoma identification using the proposed model at the in-
stitutes without OCT devices.

There are some limitations in this study. The OCT images
were produced based on the ocular fundus wide-field OCT
scan by using Topcon’s swept-source OCT (DRI OCT Triton)
only. The performance and results from other OCT devices
may be different. If the input fundus images were taken by
other fundus photography, the predicted RNFL thickness
distribution images, particularly the structural features, would
be affected. Furthermore, the results may be affected by the
quality of the fundus images because the images were selected
based on the quality for the model development in our study.
Thus, the robustness of the overall model could be increased
by including additional samples from different devices and by
using data augmentation. Nevertheless, our study had some
strengths. We used VAE U-Net DNNs for model training. The
U-Net is often used for image extraction, such as segmenting
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the retinal vessels from color fundus images.”” > It could
ensure that the segmentation process combines a multiscale
spatial context so that the network could be trained end to end
on limited training data. In addition, for the loss function
design of the model, unlike studies that have used solely the
PSNR as the model performance quantification index, we
used a compound index with the PSNR and SSIM. The dif-
ferences between the model-generated images and original
images could be quantified by the proposed compound loss
function index.

Conclusion

This study constructed and validated a DL algorithm for
extracting thickness information from the fundus images
similarly to OCT measurement and for using this informa-
tion to regenerate RNFL thickness distribution images.
Detection and screening tools must be safe, simple, accurate,
time saving, and cost effective. Despite some limitations, the
automated DNN is a promising alternative for distinguishing
referable glaucoma and for early glaucoma screening in
clinical settings. This technique may aid clinicians in
detecting early glaucoma, especially when an OCT scan is
not accessible.
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